1. Trang chủ
  2. » Giáo Dục - Đào Tạo

(Luận văn thạc sĩ) design and implementation of a testbed for indoor mimo systems

61 23 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 61
Dung lượng 22,38 MB

Nội dung

V IETN A M N A T IO N A L UNIVERSITY HANOI C O L L E G E OF TECHN O LO GY VU XUAN THANG DJEDESIGN AND IMPLEMENTATION OF A TESTBED FOR INDOOR MIMO SYSTEMS M a j o r : E l e c t r o n i c s & T e l e c o m m u n i c a t i o n F n g i n e e r in g S p e c ia lity : C ode: E le c tro n ic s E n g in e e rin g 60 52 70 M A S T E R T H E S I S IN E L E C T R O N I C S E N G I N E E R I N G SUPERVISO R: DR TRINH ANH v u H anoi - 2009 D E C L A R A T IO N B Y C A N D ID A T E I h e re b y d e c la re that th is th e sis is m y o w n w o r k a n d e ffo rt a n d it h as not been s u b m itte d a n y w h e r e fo r an y a w a r d W h e r e o th e r s o u r c e s o f in f o r m a tio n h a v e been u sed , they h a v e b e e n a c k n o w le d g e d A u th o r Vu Xuan Thang ACKNO W LED GEM EN T I w o u ld like to g iv e a w a rm th a n k to Prof N g u y e n D in h T h o n g and Dr T rin h A n h V u, m y s u p e rv is o rs , for th e ir c o n s id e b le help in m y tim e s tu d y in g m y m a ster w o u ld like to th a n k m y c o lle a g u e s , fam ily and friends for th e ir u n b e n d in g s u p p o rt and e n c o u r a g e m e n t CONTENTS A b s tra c t A b b r e v ia t io n s L ist o f F ig u re C h ap ter I n t r o d u c t i o n C h ap ter M I M O m o d e ls a n d c h a r a c t e r is t ic s 2.1 M a th e m a ti c a l M I M O m o d e l 2.1.1 C a p a c ity via S in g le V a lu e D e c o m p o s i t i o n 2 R a n k an d C o n d it io n n u m b e r 2.2 P h y s ic a l M I M O m o d e l 2.2.1 L in e o f sig ht S I M O 2 L in e o f s ig h t M S O 2.2 A n t e n n a a rra y s w ith o n ly L O S p a t h 10 2.3 K e y p a r a m e te r s in M I M O c h a n n e l 1 2.3.1 A n te n n a s e p a r a t i o n 11 R e s o lv a b ility in th e a n g u l a r d o m a i n 15 2.4 A n t e n n a S e le c tio n A l g o r i t h m s 16 C hap ter M I M O T e s t b e d fo r i n d o o r e n v i r o n m e n t 21 3.1 A s u rv e y o f M I M O T e s tb e d d e s i g n 21 3.1.1 T h e M I M O T e s t b e d at V ie n n a U n iv e rs ity .21 T h e M I M O T e s t b e d at B r ig h a m Y o u n g U n iv e r s ity 21 3.1.3 T h e M I M O T e s t b e d at T h e U n iv e r s ity o f B ris to l 22 T h e M I M O T e s t b e d at A lb e r ta U n iv e r s ity .22 3.2 D e s ig n T o o ls 22 3.2.1 X ilin x X t r e m e D S P V irte x - K i t 22 2 S y s te m G e n e r a t o r 27 3.2.3 IS E S o f t w a r e 29 3.3 T e s t b e d D e s c r ip tio n 30 3.3.1 R F M o d u l e 30 3.3.2 D ig ita l T r a n s m i tt e r 32 3.3.3 D ig ital R e c e i v e r 35 3.3.3.1 T i m in g S y n c h r o n iz a tio n 3.3 C o r r e la tio n B lo c k .36 3.3 3 M a x im u m S e l e c t o r 37 3 S ig n al D e te c tio n B lo c k 38 3.3 S y n c h r o n iz a tio n D e te c to r 39 C hap ter I m p l e m e n t in g R e s u lts o f M I M O T e s t b e d .41 4.1 R F I m p l e m e n t in g R e s u l t s 41 B a s e b e n d I m p l e m e n t in g R e s u lts 42 4.3 C o m p l e t e R e c e iv e r for M I M O s y s te m .45 C o n c l u s i o n s 49 R e f e r e n c e s 50 R e la te d P u b lic a tio n s 52 ABSTRACT T h e M u ltip le Inp ut - M u ltip le O u u t ( M I M O ) te c h n iq u e a lo n g w ith o th e r te c h n iq u e s s u c h as S p a c e T i m e B lo c k C o d e ( S T B C ) O r th o g o n a l F r e q u e n c y D iv isio n M u ltip le x in g ( O F D M ) h a s p la y e d an im p o rta n t ro le in w ir e le s s c o m m u n ic a tio n s y ste m s T a k i n g a d v a n ta g e fro m s c a tte rin g e n v i r o n m e n t a n d s p a tia l d iv e rsity , M I M O c o u ld in c re a s e w ire le s s lin ks s ig n if ic a n tly in b oth d a ta rate a n d reliab ility In th e o p tim a l c o n d i tio n w h e r e rich s c a tte r in g e n v i r o n m e n t a n d s ig n a l u n c o rre la te d a re a v a ila b le , th e c h a n n e l c a p a c ity c a n be i m p r o v e d lin e a rly w ith th e m i n im u m n u m b e r o f tra n s m it a n t e n n a s a n d r e c e iv e a n te n n a s U n fo r tu n a te ly , e v e n th o u g h in rich scatters, th e c h a n n e l m a tr ix c o u ld still b e ill-c o n d itio n e d This is k n o w n as key-h o le o r p in e - hole p h e n o m e n o n T h u s , c h a n n e l state in f o r m a tio n ( C S I ) is v a l u a b le in M I M O ch an n e l In a p c tic a l p o in t o f view', e n g in e e r s s h o u ld k n o w C S I o f a p a rtic u la r ch a n n e l to a p p ly M I M O te c h n iq u e s e f fe c tiv e ly T h is r a is e s r e q u i r e m e n t o f c h a n n e l m e a s u r e m e n t A te stb e d is o n e o f the m o s t c o m fo r t a b le a n d c o st e f f e c tiv e s o lu tio n s T h is th e s is p re s e n ts a d e s ig n an d im p le m e n ta t io n o f b o th R F s id e and B a s e b a n d s id e w h ic h g u a r a n t e e to b u ild a c o m p le te M I M O te s t b e d in in d o o r e n v iro n m e n t T h e c o m p le te d te s tb e d w o u ld s u p p o r t d u a l b a n d o f 2.4 G FIz a n d G H z a n d a n u m b e r o f m o d u l a ti o n ty p e s T h e R F p a rt is b u ilt b a s e d on IC M a x w h ic h is special IC for d io fre q u e n c y tr a n s m is s io n T h e o th e r p a rts o f th e te s tb e d a r e im p le m e n te d in th e X t r e m e D S P X ilin x V irte x -4 Kit A t th e tr a n s m itte r , d a ta s e q u e n c e is m u ltip lie d w ith d iffe re n t W a l s h c o d e s w h ic h are c o r r e s p o n d in g to tr a n s m it a n t e n n a s , b e fo re g o in g to m o d u l a to r a n d fre q u e n c y u p - c o n v e r te r T h e IF s ig n a l th e n g o e s to th e D A C to be c o n v e rte d in to a n a l o g a n d u p - c o n v e r t e d to c a r rie r f r e q u e n c y T h e re c e iv e r uses a c o r re la to r to d e te c t ch a n n e l c o e ffic ie n ts E a c h s ig n a l fro m a r e c e iv e a n te n n a w ill b e p a s s e d th r o u g h c o rre la to rs , ex in x te stb e d T h e s e c o r r e l a to r s h a v e W alsh c o d e s e q u e n c e s th e s a m e as in th e tra n s m itte r T h e re c e iv e d d a ta w ill th e n b e sen t to M a tla b to c o m p u te th e c h a n n e l m a tr ix to e s tim a te th e c h a n n e l c a p a c ity A B B R E V IA T IO N S ADC A n a lo g to D igital C o n v e r te r CSC C o n v e n tio n a l S ele ctio n C o m b in in g CSI C h a n n e l S tate In fo rm atio n DAC D ig ital to A n a lo g C o n v e rte r DSP D igital S ig n a l P ro c e s s in g EGC E q u a l G a in C o m b in in g FFT F ast F o u r ie r T n s f o r m FPGA F ield P r o g r a m m a b le G a te A rray s GSC G e n e liz e d S e le ctio n C o m b in in g IF In te r m e d ia te F re q u e n c y M IM O M u ltip le In p u t M u ltip le O u u t M ISO M u ltip le In p u t S in g le O u u t MRC M a x im u m R atio C o m b in g O F D M /A O r th o g o n a l F re q u e n c y D iv isio n M u ltip le x in g / A c c e ss RF R a d io F r e q u e n c y Rx R e c e iv e r SIM O S in g le Input M u ltip le O u u t SISO S in g le In p u t S in g le O u u t SNR S ig n al to N o is e R atio STBC S p a c e - l im e B lo c k C o d in g SVD S in g u la r V a lu e D e c o m p o s itio n Tx T r a n s m itte r LIST OF FIGURES F ig E q u iv a le n t c h a n n e l o f MI M O c h a n n e l th r o u g h S V D F ig A r c h ite c tu r e o f M I M O w ith S V D F ig L in e o f s ig h t S I M O an d L in e o f s ig h t M I S O c h a n n e l s F ig A g e n e l M I M O s y s te m w ith U l A s at both th e T x an d R x 12 F ig E i g e n v a lu e s for 3x3 M I M O s y s te m as a fun ctio n o f d e v ia tio n facto r in dB for p u r e I.O S c h a n n e l .14 F ig T h e c a p a c ity o f M I M O s y s te m 14 F ig T h e f u n c tio n f r ( Q , ) p lo te d as a fu n ctio n o f Q, for fixed L r = and d iffe re n t v a lu e s o f th e n u m b e r o f r e c e iv e a n te n n a n r 16 F ig A n in d o o r M I M O s c e n a r io c o m m u n ic a tin g th ro u g h a sm a ll h o le in the w a ll b e t w e e n tw o r o o m s 17 F ig V a ria tio n o f e ig e n v a lu e s w ith th e w id th o f th e ho le 18 F ig 10 C a p a c ity v e r s u s h o le s iz e d u e to s e le c tio n o f th ree a n d tw o re c e iv e a n te n n a u s in g n o r m - b a s e d in c re m e n ta l a lg o rith m 19 F ig 11 A c tu a l c a p a c ity loss fro m F ig u re 10 c o m p a r e d to th e u p p e r b o u n d L r in e q u a t io n (5 ) 20 F ig 12 T h e p h y s ic a l la y o u t b o a rd 23 F ig 13 A D C to F P G A I n te r fa c e .24 F ig 14 D A C I n t e r f a c e 25 F ig 15 Z B T S R A M In te rfa c e 26 F ig 16 X ilin x D S P B lo c k s e ts 28 F ig 17 H a r d w a r e C o - s im u l a ti o n 28 F ig 18 P r o je c t N a v i g a t o r 29 F ig 19 T h e T e s t b e d D ia g r a m 30 F ig 20: S tru c tu re o f R F IC M a x 31 F ig 21: B lo c k d ia g m o f R F t r a n s c e i v e r 32 F ig 22: D u a l- b a n d R F tr a n s c e iv e r m o d u l e 32 F ig 23: B a s e b a n d T r a n s m i tt e r D ia g m 33 F ig 24: D a ta G e n e r a t o r B lo c k 33 F ig 25: D ata, - le n g th W a lsh c o d e a n d C o d e d s i g n a l 34 F ig 26: B a s e b a n d S ig n a l, IF w a v e a n d IF s ig n a l 34 F ig 27: B a s e b a n d R e c e iv e r D ia g r a m 35 F ig 28: T i m in g s y n c h r o n i z a t i o n 36 F ig 29: C o r re la tio n B lo c k .36 F ig 30: C o r r e la tio n V a lu e .37 F ig 31: A b s o l u to r 37 F ig 32: M a x im u m s e l e c t o r .38 F ig 33 C o r r e la tio n sig n a l A b s o l u te sig n al an d M a x i m u m t i m e 38 F ig 34 S ig n al d e te c to r 38 F ig 35 S y n c h r o n iz a tio n D e te c tio n B lo c k 39 F ig 36: T r a n s m itte d d a ta C o r r e la tio n a n d R e c e iv e d F ig 37: R F c o n tro lle r in te r f a c e D a t a 40 42 F ig 38: S p e c tru m o f tr a n s m itt e d s ig n a l w ith cen tre f r e q u e n c y is at G H z 42 F ig 39: C o rr e la tio n R e c e iv e I m p l e m e n t a ti o n W a lsh c o d e a n d D a t a 43 F ig 40: B a s e b a n d s ig n al an d IF s ig n al 43 F ig 41: B a s e b a n d C o rr e la tio n R e c e iv e R e s u lts 43 F ig 42: Channel coefficients estimated vs S N R 4 F ig 43: BER o f Correlation Receiver for SISO 4 F ig 44: x M I M O M e a s u r e m e n t D ia g m 45 F ig 45: R e c o v e r e d D a ta in R X 46 F ig 46: R e c o v e r e d D a ta in R X 47 F ig 47: R X D a ta at A n te n n a w h e n D iffe re n t T X D a ta a re u s e d .47 F ig 48: C h a n n e l c o e f f ic ie n ts e s tim a te d o v e r S N R 48 CHAPTER INTRODUCTION T h e d e v e lo p m e n t o f services in c o m m u n ic a tio n s puts h eav y pressu re on w ireless co m m u n ic a tio n s , n ot only to e n h a n c e the quality o f service but also to increase the sp ectru m efficien cy o f c o m m u n ic a tio n links T h ere h ave been several solutions p ro p o se d an d d evelo ped T h e m u ltip le input- m ultiple o u u t (M IM O ) technique is one o f the m o st p ro m isin g solution s for the next generation w irele ss com m u nicatio ns w h ich ben efits from m u lti-p a th p rop ag ation By splitting a general data stream into several sm all, uncorrelated parallel ones, a M I M O system can achieve significant en h a n c e m e n t in cap acity as w ell as reliability T h e perfo rm a n ce o f a M IM O system dep en d s greatly on h o w m a n y s u b -stre a m s it has and ho w c o rrelated the sub-stream s are In general, the M I M O channel is d e te rm in e d by m a n y p aram eters such as reflection, scattering, sh a d o w in g , an te n n a sep aration, and angle o f arrival w aves U n fortu nately, a given M I M O sy stem is best suited only to the set o f propagation p aram eters it is d esig n ed for This stro n g ly requires us to k n o w th ese p aram eters well before d esig n in g an individual M IM O system , as well as a p p ly in g algorithm s There have been a n u m b e r o f m o d els for sim u latin g M IM O channels H ow ev er, those M IM O m o d els c a n n o t app ly to all situations H e n c e the b est w ay to k n o w accurately about the M I M O chann el is to m e a su re it in real co n d itio n s by using a M I M O testbed That is w h y the a u th o r c h o o se s the design o f a M I M O testbed as the topic for his M asters thesis In general, m u lti-p ath is hostile to w ireless p rop ag ation that results in fading in the received signal In co ntrast, M IM O m ak es u se o f m ultip ath pro pagatio n to im prove its data rate In addition, the use o f m u ltip le an ten n as at both tran sm itter and receiver d ep lo y s c o n sid era b le spatial diversity R ecently , M IM O co m b in e d w ith O F D M te ch n iq u e p ro m ise s a p oten tial solution for 3G and the next generation w ireless co m m u n ica tio n s M I M O ch annel c ap a city d ep en d s m ainly on the statistical properties o f the ch ann el and on the a n ten n as correlation A n te n n a correlation varies significantly as a fun ctio n o f the scatterin g co n d itio n , the tran sm issio n distance, the antenna structures an d the D o p p le r spread A s w e shall see, th e effect o f an te n n a correlation on capacity d e p e n d s on the c h a n n e l’s ch aracteristics at the transm itter a n d receiver A dditionally, c h an n e ls w ith very low co rrelatio n b etw ee n antennas can still exhibit a “k ey h o le” effect w h e re the ch an n e l m atrix 's rank is deficient, leading to loss o f capacity gains 3S Figure 32: Maximum selector Figure 33 Correlation signal (a) Absolute signal (b) and Maximum time (c) 3.3.3.4 Signal Detection Block Figure 34 Signal detector To en su re the correlatio n block and the follow ing blocks w ork correctly in the receiver, a signal d etection blo ck is added before so m e im p o rtan t m odules Figure 34 sh o w s the prin cip le o f h o w it w orks R eceived sam ples and their reversed values are subtracted If there is not signal on the line, this subtraction is equal to zero, hence p u tting ou tpu t to zero O n the other hand, output o f subtraction block is com p ared to a th resh o ld to m a k e sure there is signal rather than noise T he outpu t is set to high w hich enables the d e te c to r ’s fo llo w in g block 39 3.3.3.5 Synchronization Detector d> In ►cast]-► Wb a>b D4 r* C2 CD— a en ► In w b b A R1 a>b z - C3 R2 not Detect signaM Inv e r te r D5 sel dO en out cast ,- Lr* d1 a>b Ct2 Mux 30 ■ R3 C4 Figure 35 Synchronization Detection Block This is the m o st im portant block in this desig n (figure sy n chron ization T h ere are two signals entering into this block: 35) It senses one from the correlation calcu la to r and the other from the m a x im u m block T h ere usually are two s y n c h ro n iza tio n m e c h a n ism s w hich are im m ediately s y n c h ro n iza tio n and pilot-insert sy n ch ro n iza tio n In this schem e, we use the later m ethod In its operating, the block h o lds the m a x im u m valu es and the indexes o f signal and cou nts them I f the s u m m a tio n reaches a certain num ber, say synchronization num ber , w hich is d e term in e d p ractically, the block will fix the tim e sa m p lin g and control sam p ler to get data T h e data will b e stored in a buffer before going to be used in M atlab to calculate the channel m atrix w h ic h will be used to co m pute the channel capacity 40 Figure 36: Transmitted data (a) Correlation (b) and Received Data (c) Figure 36 sh o w s the sim u lation results for the receiv e correlation T h ere are 20 pilots inserted in a 1000 data frame W e see that after a short tim e, o u r design is settled into stability T h e rece iv ed data is exactly the sam e as the tra n sm itte d one The length o f pilot can be ad ju sted a c c o rd in g to the real operating co n d itio n to get the m axim um efficiency in chan nel estim ation 41 C H A PTER IM PLEM ENTIO N RESULTS OF THE MIMO TESTBED 4.1 R F I m p le m e n tio n R esults A fter d e s ig n in g a n d functional testing in Protel softw are, we outline and im p lem en t the RF m o d u le as in figure 21 The m od ule can w ork in both Tx m o de and Rx m o d e in dual b an d 2.45 G H z and 5G H z In Tx m o de, w e n eed to set T X E N A bit to high, R X E N A bit to low B aseb an d signal is passed into IC M ax 4447 w hich converts n o n -s y m m e tric into s y m m e tric signal M ax 4447 can supp ort small signal up to 50 m V T h e sign al is then p a s s e d into 0.1 uF capacity to avoid D C before m odulated to G H z carrier In the R x m o d e , T X E N A is set to low w hile R X E N A is set to high IC M ax 4 4 is e m p lo y e d to convert sym m etric b aseband signal into no n-sy m m etric signal W e can also control other param eters such as: transm it pow er, bandw idth, referen ce fre q u e n c y , etc, by M a x softw are (figure 37) through 3-serial lines This softw are is c o n n e c te d to RF m odule through LPT cable O n ce all param eters are satisfactorily set, p ress sen d a ll button to figure the kit F ig u re 38 sh o w s the sp ectru m o f transm itted signal on the n etw o rk analyzer w hen 1M H z b a s e b a n d signal is used The signal level is ab o u t d B m in com p arison to noise, o r a b s o lu te level is at -20dB m T he m a x im u m p o w e r can be -I ld B m if w e set the m o d u le at the h ig h e st p o w e r mode 42 Exit Options [ Entry Program Help Reg Control Pins fT SHDNB j ff RXHP RX LNA Gain 802 11G (Max RF Frequency ! F B7 | F B6 [l B5 F 03 F B2 F B1 ! F _!_I J Standby Mode Ertables RX VGA Gain MHz |3 ~ jl! T ra_nsmitterMode ; Normal

Ngày đăng: 05/12/2020, 09:45

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w