Áp dụng phương pháp quét gamma cắt lớp để xác định vị trí nguồn phóng xạ bên trong thùng thải

53 14 0
Áp dụng phương pháp quét gamma cắt lớp để xác định vị trí nguồn phóng xạ bên trong thùng thải

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Vũ Lan Anh ÁP DỤNG PHƯƠNG PHÁP QUÉT GAMMA CẮT LỚP ĐỂ XÁC ĐỊNH VỊ TRÍ NGUỒN PHĨNG XẠ BÊN TRONG THÙNG THẢI LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT Thành phố Hồ Chí Minh – 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC SƯ PHẠM THÀNH PHỐ HỒ CHÍ MINH Vũ Lan Anh ÁP DỤNG PHƯƠNG PHÁP QUÉT GAMMA CẮT LỚP ĐỂ XÁC ĐỊNH VỊ TRÍ NGUỒN PHĨNG XẠ BÊN TRONG THÙNG THẢI Chuyên ngành: Vật lý nguyên tử Mã số : 60 44 01 06 LUẬN VĂN THẠC SĨ KHOA HỌC VẬT CHẤT NGƯỜI HƯỚNG DẪN KHOA HỌC: PGS TS TRẦN THIỆN THANH Thành phố Hồ Chí Minh – 2019 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiên cứu riêng thân tơi Các số liệu luận văn trung thực Kết luận văn chưa công bố cơng trình Tác giả luận văn Vũ Lan Anh LỜI CÁM ƠN Trong trình học tập Trường Đại học Sư Phạm thời gian thực luận văn phịng thí nghiệm Vật lý Hạt nhân, Khoa Vật lý – Vật lý Kỹ thuật, Trường Đại học Khoa học Tự nhiên, Đại học Quốc gia Thành phố Hồ Chí Minh, em nhận giúp đỡ tận tình, quý giá thầy, cô, cán anh, chị bạn học viên Thông qua luận văn này, em xin gửi lời cảm ơn sâu sắc đến:  PGS TS Trần Thiện Thanh, người hướng dẫn trực tiếp, tạo điều kiện sở vật chất yếu tố khác để hoàn thành luận văn cách thuận lợi Thầy tận tình bảo, hướng dẫn cặn kẽ giúp đỡ, động viên tháo gỡ khó khăn vướng mắc trình thực luận văn  ThS Huỳnh Đình Chương, người hướng dẫn thứ hai người anh, ân cần bảo, hướng dẫn nhiệt tình, chi tiết, khơng ngại khó khăn em giải điều cịn vướng mắc q trình thực luận văn bên cạnh bảo thầy Thanh  TS Trần Nhân Giang, giúp đỡ em nhiều ngơn ngữ lập trình q trình dựng ảnh  Bộ mơn Vật lý Hạt nhân đáp ứng điều kiện sở vật chất, trang thiết bị cần thiết để em thực luận văn  Các Thầy Cô hội đồng bảo vệ luận văn đọc, nhận xét đóng góp ý kiến giúp luận văn hoàn thiện  Các thành viên gia đình dành tất tình yêu thương, hy sinh, lúc bên cạnh, giúp vượt qua khó khăn học tập sống  Phòng sau đại học tạo điều kiện giúp đỡ em để hoàn thành luận văn cách tốt Thành phố Hồ Chí Minh, tháng năm 2019 VŨ LAN ANH MỤC LỤC LỜI CAM ĐOAN LỜI CÁM ƠN DANH MỤC CÁC BẢNG DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ MỞ ĐẦU CHƯƠNG TỔNG QUAN 1.1 Tổng quan đề tài nghiên cứu 1.1.1 Tình hình nghiên cứu giới 1.1.2 Tình hình nghiên cứu nước 1.1.3 Nhận xét 1.1.4 Mục tiêu nội dung nghiên cứu luận văn 1.2 Cơ sở lý thuyết 1.2.1 Phép biến đổi Radon 1.2.2 Kỹ thuật chiếu ngược 11 1.2.3 Kỹ thuật lọc ảnh 13 1.2.4 Kỹ thuật lọc ảnh miền tần số 14 1.3 Tổng kết chương 16 CHƯƠNG THỰC NGHIỆM 17 2.1 Thiết lập thực nghiệm 17 2.2 Quy trình tái tạo ảnh gamma cắt lớp thùng thải 23 2.3 Tổng kết chương 26 CHƯƠNG KẾT QUẢ VÀ THẢO LUẬN 27 3.1 Dữ liệu thu hình chiếu 27 3.2 Kết tái tạo ảnh cắt lớp 28 3.3 Xác định vị trí nguồn phóng xạ 32 3.3 Tổng kết chương 33 KẾT LUẬN VÀ KIẾN NGHỊ 34 TÀI LIỆU THAM KHẢO 35 PHỤ LỤC PL1 DANH MỤC CÁC BẢNG Bảng 2.1 Thơng tin nguồn phóng xạ 137 Cs sử dụng luận văn DANH MỤC CÁC HÌNH VẼ, ĐỒ THỊ Hình 1.1 Mơ tả phép biến đổi Radon 10 Hình 1.2 Ma trận hình chiếu ảnh cắt lớp 11 Hình 1.3 Quá trình ghi nhận hình chiếu tái tạo ảnh 12 Hình 1.4 Sự nhịe ảnh phép chiếu ngược 13 Hình 2.1 Đầu dị nhấp nháy NaI(Tl) sử dụng luận văn 17 Hình 2.2 Cấu hình ống chuẩn trực đầu dị 18 Hình 2.3 Thùng thải sử dụng luận văn 19 Hình 2.4 Vị trí nguồn phóng xạ bên phân đoạn thùng thải 20 Hình 2.5 Hệ đo quét gamma cắt lớp cho thùng thải phóng xạ 21 Hình 2.6 Giao diện phần mềm March điều khiển hoạt động hệ khí .22 Hình 2.7 Sơ đồ thực quét cắt lớp thùng thải 24 Hình 2.8 Phổ gamma ghi nhận diện tích đỉnh 25 Hình 2.9 Sơ đồ mơ tả bước xử lý chương trình tái tạo ảnh cắt lớp 26 Hình 3.1 Sự phân bố diện tích đỉnh theo tọa độ đầu dị trục Ox .27 Hình 3.2 Sinogram tương ứng với liệu 28 Hình 3.3 Ma trận hình chiếu tương ứng với liệu 19 hình chiếu 29 Hình 3.4 Ma trận hình chiếu tương ứng với liệu 37 hình chiếu 30 Hình 3.5 Ảnh chụp cắt lớp tương ứng với liệu 19 hình chiếu 31 Hình 3.6 Ảnh chụp cắt lớp tương ứng với liệu 37 hình chiếu 31 Hình 3.7 Ảnh cắt lớp tái tạo kỹ thuật chiếu ngược có lọc 32 MỞ ĐẦU Các hoạt động nghiên cứu ứng dụng công nghệ hạt nhân như: sản xuất điện hạt nhân, điều chế dược phẩm phóng xạ, xạ trị y học chiếu xạ công nghiệp v.v tạo lượng lớn rác thải phóng xạ Những rác thải chứa đồng vị phóng xạ có hoạt độ khác chu kì bán rã từ vài chục năm đến hàng triệu năm Cơng tác quản lý rác thải phóng xạ mối quan tâm quốc gia sử dụng phát triển công nghệ hạt nhân Thông thường, rác thải phóng xạ chứa đựng bên thùng kín lớn để đảm bảo chúng cách ly hồn tồn với mơi trường bên ngồi Sau đó, hoạt độ đồng vị phóng xạ bên thùng chứa rác thải phóng xạ (sau gọi tắt thùng thải) xác định để phân loại cho phù hợp với quy tắc xử lý quốc gia Việc phân tích hoạt độ đồng vị phóng xạ bên thùng thải thường thực hệ phổ kế gamma Để đạt kết phân tích xác, phân bố đồng vị phóng xạ vật liệu (matrix) bên thùng thải cần phải biết rõ Tuy nhiên, đồng vị phóng xạ phân bố vị trí bên thể tích thùng thải, đồng thời thể tích thùng thải lấp đầy nhiều loại vật liệu khác (đối với trường hợp matrix không đồng nhất) Do đó, việc tìm kiếm phương pháp để xác định vị trí đồng vị phóng xạ matrix bên thùng thải cần thiết Phương pháp chụp ảnh gamma cắt lớp ứng dụng rộng rãi cho việc chẩn đốn hình ảnh y tế Phương pháp phân làm hai mơ hình chụp khác Mơ hình thứ có nguồn phóng xạ đầu dị nằm bên ngồi đối tượng cần chụp ảnh để ghi nhận tia gamma truyền qua Mơ hình cho biết thơng tin phân bố vật liệu bên đối tượng Mô hình cịn lại nguồn phóng xạ đưa vào bên đối tượng, đầu dị đặt bên ngồi để ghi nhận tín hiệu Ảnh từ mơ hình cho thấy phân bố nguồn phóng xạ bên đối tượng Về nguyên lý, phương pháp chụp ảnh gamma cắt lớp ứng dụng cho tốn phân tích thùng thải phóng xạ Do đó, đề tài nghiên cứu xác định phân bố vị trí nguồn phóng xạ vật liệu bên thùng thải phương pháp chụp ảnh gamma cắt lớp cơng việc có ý nghĩa Một điểm luận văn tiến hành khảo sát cho trường hợp có hai nguồn phóng xạ với hoạt độ khác bố trí hai vị trí khác bên thùng thải Luận văn thực với mục tiêu ứng dụng phương pháp chụp ảnh gamma cắt lớp để xác định phân bố nguồn phóng xạ bên thùng thải Trong đó, luận văn tập trung vào việc khai thác thuật toán chiếu ngược có lọc (filtered back projection algorithm) để dựng ảnh từ liệu ghi nhận hệ đo Vị trí nguồn phóng xạ xác định từ hình ảnh so sánh với vị trí thực tế bên thùng thải để kiểm chứng phương pháp Nội dung nghiên cứu luận văn phần đề tài khoa học công nghệ cấp Đại học Quốc Gia – Hồ Chí Minh mã số C2018-18-04, với tiêu đề “Nghiên cứu phương pháp phân tích khơng phá hủy để xác định phân bố hoạt độ đồng vị phóng xạ bên thùng chứa rác thải hạt nhân có matrix khơng đồng nhất” Nội dung luận văn trình bày 03 chương Trong đó: Chương trình bày tổng quan tình hình nghiên cứu chủ đề liên quan đến luận văn; sở lý thuyết dựng ảnh Chương mô tả chi tiết điều kiện thực nghiệm phép đo hệ phổ kế gamma dùng đầu dò NaI(Tl) thực luận văn; quy trình đo phân tích liệu để thu ảnh chụp cắt lớp Chương trình bày ảnh chụp cắt lớp đạt từ liệu thực nghiệm chương trình dựng ảnh xây dựng; đánh giá ảnh hưởng vài yếu tố lên chất lượng ảnh; so sánh kết dựng ảnh giá trị thực tế CHƯƠNG TỔNG QUAN 1.1 Tổng quan đề tài nghiên cứu 1.1.1 Tình hình nghiên cứu giới Stanga cộng [1] (năm 2012) đưa phương pháp để xác định hoạt độ đồng vị phóng xạ thùng thải kỹ thuật quét gamma Về nguyên lý hoạt động, thùng thải phóng xạ quay liên tục q trình phân tích, đầu dị dịch chuyển đến vị trí tương ứng với độ cao khoảng cách với thùng thải khác để ghi nhận phổ gamma cho vị trí đo Về mặt ý tưởng phương pháp, thể tích thùng thải chia thành hệ thống voxel tạo nên hình trụ bên vịng trụ bên ngồi Cho voxel đồng vị phóng xạ phân bố đồng có hoạt độ chưa biết Đối với vị trí đo đầu dị, tốc độ đếm đỉnh lượng quan tâm từ phép đo thùng thải tính tổng tốc độ đếm voxel Trong đó, tốc độ đếm cho voxel xác định tích hoạt độ, hiệu suất ghi nhận hệ số hiệu chỉnh voxel Trong trường hợp matrix thùng thải gần đồng hệ số hiệu chỉnh cho Từ phép đo nhiều vị trí khác đầu dị mức lượng khác xạ gamma phát từ đồng vị hệ phương trình đa biến thiết lập Trong đó, hoạt độ phóng xạ voxel biến số; tốc độ đếm phép đo, hiệu suất ghi nhận voxel hệ số phương trình Sau đó, hệ phương trình chuẩn hóa dạng ma trận phương pháp Tikhonov sử dụng để đưa lời giải Từ đó, hoạt độ phóng xạ tổng thùng thải xác định Phương pháp ứng dụng để phân tích thùng thải lấp đầy xi măng Portland (mật độ 2,1 g/cm ) chứa nguồn 152 Eu dạng dây Kết cho thấy độ sai biệt tương đối hoạt độ thực giá trị tính tốn nhỏ 16% Krings cộng [2] (năm 2012) đề xuất phương pháp để xác định hoạt độ đồng vị phóng xạ bên thùng thải không đồng Trong nghiên cứu này, tính khơng đồng matrix xem phân lớp vật liệu rác thải cấu trúc che chắn bên thùng chứa, mà hình học chúng 31 ảnh có lọc cao so với ảnh không lọc Điều giúp cho việc nhận diện xác định vị trí nguồn phóng xạ ảnh cắt lớp xác Hình 3.5 Ảnh chụp cắt lớp tương ứng với dữ liệu 19 hình chiếu (a) khơng có lọc, (b) có lọc Hình 3.6 Ảnh chụp cắt lớp tương ứng với dữ liệu 37 hình chiếu (a) khơng có lọc, (b) có lọc Như đặc trưng kỹ thuật chiếu ngược, ta quan sát thấy vệt sáng hình xuất ảnh cắt lớp Các vệt sáng tương ứng với hình chiếu liệu đầu vào sử dụng để tái tạo ảnh Vì thế, số lượng vệt sáng ảnh tái tạo từ 37 hình chiếu nhiều so với ảnh tái tạo từ 19 hình 32 chiếu Thực tế vệt sáng làm giảm khả nhận diện nguồn phóng xạ có hoạt độ thấp giảm độ xác xác định vị trí nguồn phóng xạ ảnh Về bản, số lượng hình chiếu sử dụng để tái tạo ảnh đủ nhiều vệt sáng ảnh Đồng thời, việc sử dụng nhiều hình chiếu tái tạo ảnh làm tăng lên độ tương phản nguồn khu vực xung quanh hình 3.5 hình 3.6 3.3 Xác định vị trí nguồn phóng xạ Để xác định vị trí nguồn phóng xạ bên thùng thải, trước tiên ta phải tiến hành đồng hệ trục tọa độ thùng thải với hệ trục tọa độ ảnh tái tạo Có thể thấy gốc tọa độ đặt góc phía bên trái ảnh cắt lớp, gốc tọa độ thùng thải đặt tâm thùng Hình 3.7 cho thấy ảnh cắt lớp tái tạo kỹ thuật chiếu ngược có lọc với 37 hình chiếu chuyển gốc tọa độ tâm thùng Vị trí nguồn phóng xạ xác định từ liệu ảnh cắt lớp Hình 3.7 Ảnh cắt lớp tái tạo kỹ thuật chiếu ngược có lọc với 37 hình chiếu chun gốc tọa độ tâm thùng Khi đó, vị trí nguồn phóng xạ xác định dựa vị trí pixel có cường độ lớn khu vực xung quanh điểm sáng ảnh cắt lớp Cụ 33 thể, vị trí pixel có cường độ lớn (19, 8) điểm ảnh cường độ cao (7, -19) điểm ảnh cường độ thấp Độ dài pixel 10 mm nên tọa độ nguồn mặt phẳng Oxy (190, 80) mm (70, -190) mm Trong thực tế, tọa độ mặt phẳng Oxy nguồn phóng xạ bên thùng thải (190, 77) nguồn 137 Cs-A (77, -190) nguồn 137 Cs-B mô tả mục 2.1 Như vậy, có phù hợp tốt vị trí nguồn phóng xạ xác định phương pháp quét gamma cắt lớp vị trí thực tế nguồn bên thùng thải 3.3 Tổng kết chương Trong chương 3, luận văn trình bày nội dung sau: - Trình bày kết việc tái tạo ảnh cắt lớp kỹ thuật chiếu ngược có lọc chiếu ngược khơng lọc với số lượng hình chiếu khác Kết đạt cho thấy kỹ thuật lọc tín hiệu miền tần số khơng gian giúp làm giảm độ nhịe ảnh gia tăng độ tương phản thùng nền, nguồn khu vực xung quanh Đồng thời, việc sử dụng liệu đầu vào với nhiều hình chiếu để tái tạo ảnh cắt lớp giúp đạt chất lượng ảnh tốt - Vị trí hai nguồn phóng xạ 137 Cs xác định từ ảnh cắt lớp cho thấy phù hợp tốt với vị trí thực tế chúng bên thùng thải Tuy nhiên, chương trình tái tạo ảnh xây dựng cịn hạn chế việc nhận diện nguồn phóng xạ có hoạt độ thấp có nhiều nguồn phóng xạ nằm phân đoạn 34 KẾT LUẬN VÀ KIẾN NGHỊ Luận văn thực nội dung nghiên cứu sau: - Thiết lập hệ đo quét gamma cắt lớp cho thùng thải phóng xạ sử dụng đầu dò NaI(Tl) Đồng thời, tiến hành thực nghiệm quét thùng thải hệ đo để thu thập liệu cho việc tái tạo ảnh cắt lớp - Một điểm luận văn tiến hành khảo sát cho trường hợp có hai nguồn phóng xạ 137 Cs với hoạt độ khác bố trí hai vị trí khác bên phân đoạn thùng thải Bên cạnh đó, ý tưởng việc chế tạo thùng thải phóng xạ gồm nhiều phân đoạn nhỏ giúp việc bố trí thực nghiệm xác thuận tiện cho việc thay mẫu - Xây dựng chương trình tái tạo ảnh cắt lớp kỹ thuật chiếu ngược có lọc dựa ngơn ngữ lập trình Python 3.7.4 - Đánh giá ảnh hưởng việc lọc tín hiệu số lượng hình chiếu lên chất lượng ảnh cắt lớp tái tạo kỹ thuật chiếu ngược - Nhận diện xác định vị trí nguồn phóng xạ 137 Cs dựa ảnh chụp cắt lớp tái tạo từ liệu quét thực nghiệm chương trình xây dựng Kết cho thấy có phù hợp tốt vị trí nguồn phóng xạ xác định phương pháp quét gamma cắt lớp vị trí thực tế nguồn bên thùng thải Tuy nhiên, chương trình tái tạo ảnh xây dựng hạn chế việc nhận diện nguồn phóng xạ có hoạt độ thấp có nhiều nguồn phóng xạ nằm phân đoạn Như vậy, luận văn hoàn thành mục tiêu nghiên cứu đề Tuy nhiên, luận văn số hạn chế định từ kiến nghị công việc nghiên cứu nên thực sau: - Tiếp tục nghiên cứu cải tiến thuật toán tái tạo ảnh cắt lớp kỹ thuật chiếu ngược có lọc để nhận diện tốt nguồn phóng xạ cho trường hợp có nhiều nguồn với hoạt độ khác nằm phân đoạn - Tiến hành khảo sát cho thùng thải có matrix khác để đánh giá ảnh hưởng matrix lên kết dựng ảnh 35 TÀI LIỆU THAM KHẢO [1] D Stanga, D Gurau, “A new approach in gamma ray scanning of rotating drums containing radioactive waste”, Applied Radiation and Isotopes 70, pp 2149-2153, 2012 [2] T Krings, E Mauerhofer, “Reconstruction of the isotope activity content of heterogeneous nuclear waste drums”, Applied Radiation and Isotopes 70, pp 1100-1103, 2012 [3] P Filß, “Relation between the activity of a high density waste drums and its gamma count rate measured with an unshielded Ge detector”, Applied Radiation and Isotopes 46, pp 805-812, 1995 [4] T Krings, C Genreith, E Mauerhofer, M Rossbach, “A numerical method to improve the reconstruction of the activity content in homogeneous radioactive waste drums”, Nuclear Instruments and Methods in Physics Research A 701, pp 262-267, 2013 [5] R Tushar, M.R More, R Jilju, S Amar, “Active and passive CT for waste assay using LaBr3(Ce) detector”, Radiation Physics and Chemistry 130, pp 29-34, 2017 [6] T.Q Dung, “New measuring technique for assay of radioactive materials in waste drums”, Progress in Nuclear Energy 33, pp 403-420, 1998 [7] T.H Anh, T.Q Dung, “Evaluation of performance of gamma tomographic technique for correcting lump effect in radioactive waste assay”, Annals of Nuclear Energy 28, pp 265-273, 2001 [8] T.T Thanh, H.T.K Trang, H.D Chuong, V.H Nguyen, L.B Tran, H.D Tam, C.V Tao, “A prototype of radioactive waste drum monitor by nondestructive assays using gamma spectrometry”, Applied Radiation and Isotopes 109, pp 544-546, 2016 [9] L.P Jerry and M.L Jonathan, Medical Imaging Signals and Systems, Pearson Education, New Jersey USA, 2015 36 [10] Mirion Technologies Inc (2017) 802 scintillation detectors Available: https://www.mirion.com/products/802-scintillation-detectors (đăng nhập vào ngày 30/08/2019) [11] Mirion Technologies Inc (2017) OspreyTM – Universal digital MCA tube base for scintillation spectrometry Available: http://www.mirion.com/products/osprey-universal-digital-mca-Tube-basefor-scintillation-spectrometry (đăng nhập vào ngày 30/08/2019) [12] Eckert & Ziegler Catalogue of industrial sources Available: https://www.ezag.com/fileadmin/ezag/useruploads/pdf/isotope/5_industrial_s ources.pdf (trang 34, đăng nhập vào ngày 30/08/2018) PL1 PHỤ LỤC Phụ lục 1: Code chương trình Phyton phiên 3.7.4 import numpy as np import matplotlib.pyplot as plt from PIL import Image, ImageChops from scipy.fftpack import fft, fftshift, ifft arr = [] inp = open ("scan_1.txt","r") #read line into array for line in inp.readlines(): # add a new sublist arr.append([]) # loop over the elemets, split by whitespace for i in line.split(): # convert to integer and append to the last # element of the list arr[-1].append(float(i)) sinogram = np.array(arr) #sinogram = np.transpose(sinogram) print(sinogram) print(np.size(sinogram)) plt.imshow(sinogram) imgplot = plt.imshow(sinogram) plt.colorbar() plt.show() print('Performing backprojection') from skimage.transform import iradon from skimage.io import imread PL2 from skimage import data_dir from skimage.transform import radon, rescale theta = np.linspace(0., 360., min(sinogram.shape), endpoint=False) print('Gia tri theta: ') print(len(theta)) reconstruction_fbp = iradon(sinogram, theta=theta, filter="ramp", interpolation="linear", circle=True) imgplot = plt.imshow(reconstruction_fbp) plt.colorbar() #plt.colorbar() #plt.show() #error = reconstruction_fbp - image #print('FBP rms reconstruction error: %.3g' % np.sqrt(np.mean(error**2))) #imkwargs = dict(vmin=-0.2, vmax=0.2) fig, (ax1,ax2) = plt.subplots(1, 2, figsize=(8, 4.5), sharex=True, sharey=True) #ax1.set_title("Reconstruction\nFiltered back projection") ax1.imshow(reconstruction_fbp) #ax2.set_title("Reconstruction error\nFiltered back projection") #ax2.imshow(reconstruction_fbp - image, cmap=plt.cm.Greys_r, **imkwargs) plt.show() PL3 0 Bảng P1 Số liệu thực nghiệm ứng với góc quay từ – 110 thùng thải Tọa độ trục Ox (mm) 0 4025 10 3780 20 2790 30 2384 40 2847 50 2377 60 2056 70 1756 80 1972 90 1603 100 1322 110 1014 120 547 130 696 140 736 150 559 160 786 170 591 180 481 190 201 200 411 210 220 256 230 51 240 351 250 260 217 270 132 PL4 280 28 290 752 300 1601 310 2771 320 5493 330 8809 340 11579 350 14830 360 17382 370 15800 380 12932 390 10886 400 7949 410 5583 420 6170 430 7238 440 12848 450 37030 460 129738 470 270825 480 414763 490 407796 500 262831 510 120578 520 34983 530 12398 540 5306 550 2708 560 1880 570 2188 580 1632 PL5 0 Bảng P2 Số liệu thực nghiệm ứng với góc quay từ 120 – 230 thùng thải Tọa độ trục Ox (mm) 120 0 10 338 20 30 523 40 854 50 5531 60 13415 70 24740 80 34915 90 35795 100 25466 110 14553 120 6087 130 3163 140 2538 150 2746 160 2491 170 4457 180 6752 190 12312 200 26737 210 49079 220 75346 230 10492 240 13445 250 15843 260 14818 PL6 270 119023 280 89096 290 61056 300 35940 310 17482 320 8100 330 4998 340 3437 350 2884 360 2182 370 2043 380 1391 390 856 400 1253 410 716 420 752 430 518 440 844 450 634 460 759 470 546 480 259 490 185 500 510 93 520 69 530 540 198 550 560 287 570 125 580 212 PL7 0 Bảng P3 Số liệu thực nghiệm ứng với góc quay từ 240 – 350 thùng thải Tọa độ trục Ox (mm) 240 872 10 839 20 1363 30 1539 40 2045 50 3069 60 1731 70 2980 80 12072 90 40845 100 198352 110 467613 120 637315 130 491897 140 215941 150 47855 160 18791 170 10714 180 5886 190 3212 200 727 210 46 220 230 240 175 250 382 PL8 260 420 270 280 127 290 300 310 320 330 340 359 350 198 360 988 370 2069 380 7655 390 39258 400 81212 410 85328 420 43530 430 11066 440 3599 450 1557 460 2520 470 2335 480 2497 490 2698 500 2696 510 3126 520 3980 530 4043 540 3647 550 4471 560 5270 570 4593 PL9 580 4513 8226 6990 9020 6981 6850 3339 1469 50 135 124 756 ... xuất để xác định hoạt độ đồng vị phóng xạ bên thùng thải Nhìn chung, kỹ thuật chủ yếu dựa hai phương pháp quét gamma phân đoạn quét gamma cắt lớp Trong đó, kỹ thuật đo dựa phương pháp quét gamma. .. Oxy nguồn phóng xạ bên thùng thải (190, 77) nguồn 137 Cs-A (77, -190) nguồn 137 Cs-B mơ tả mục 2.1 Như vậy, có phù hợp tốt vị trí nguồn phóng xạ xác định phương pháp quét gamma cắt lớp vị trí. .. hợp thùng thải có matrix nguồn phóng xạ phân bố khơng đồng Bên cạnh đó, phương pháp quét gamma cắt lớp [8] chứng minh cách thức hiệu để xác định phân bố nguồn phóng xạ matrix bên thùng thải Phương

Ngày đăng: 02/12/2020, 07:22

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan