Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 31 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
31
Dung lượng
1,39 MB
Nội dung
đề tài nghiệp vụ s phạm một số vấn đề về giá trị tuyệt đối trong trờng thcs mục lục A. những kiến thức cơ bản về giá trị tuyệt đối Trang 3 I: Các định nghĩa II: Các tính chất B. các dạng bài toán về giá trị tuyệt đối trong chơng trình THCS Chủ đề I: Giải phơng trình, hệ phơng trình chứa dấu giá trị tuyệt đối I. Kiến thức cần lu ý II. Bài tập điển hình 3 6 9 9 9 Chủ đề II: Giải bất phơng trình chứa dấu giá trị tuyệt đối I. Kiến thức cần lu ý II. Bài tập điển hình Chủ đề III: Đồ thị hàm số chứa dấu giá trị tuyệt đối I. Đồ thị hàm số y = f( x ) II. Đồ thị y = f(x) III. Đồ thị y = )(xf IV. Đồ thị y = ( ) xf V. Đồ thị y = )(xf Chủ đề IV: Tìm giá trị lớn nhất, nhỏ nhất của biểu thức chứa dấu giá trị tuyệt đối I. Kiến thức cần lu ý II. Bài tập điển hình c. Đáp án d. tài liệu tham khảo e.kết luận f. giáo án thực nghiệm 10 14 14 14 17 17 18 19 20 20 24 24 24 26 30 31 32 Phần I: Lời nói đầu Giá trị tuyệt đối là một khái niệm đợc phổ biến rộng rãi trong các ngành khoa học Toán - Lí, Kỹ thuật, .Trong chơng trình Toán ở bậc THCS, khái niệm giá trị tuyệt đối của một số đợc gặp nhiều lần, xuyên suốt từ lớp 6 đến lớp 9. ở lớp 6, học sinh bắt đầu làm quen với khái niệm " Giá trị tuyệt đối" qua bài 2: " Thứ tự trong Z", học sinh nắm đợc cách tìm giá trị tuyệt đối của một số nguyên và bớc đầu hiểu ý nghĩa hình học của nó. Nhờ đó sách giáo khoa dần dần đa vào các quy tắc tính về số nguyên rồi đến số hữu tỷ. ở lớp 8, tuy không có trong chơng trình giảng dạy song bài: " Giải phơng trình có chứa dấu giá trị tuyệt đối" đợc rất nhiều giáo viên quan tâm và trang bị đầy đủ cho học sinh nhất là các học sinh khá giỏi. Đến lớp 9, khi xét các tính chất của căn thức bậc hai, khái niệm giá trị tuyệt đối lại có thêm ứng dụng mới( đa một thừa số ra ngoài căn, đa một thừa số vào trong căn, khử mẫu của biểu thức lấy căn, .) Giá trị tuyệt đối là một khái niệm trừu tợng và quan trọng vì nó đợc sử dụng nhiều trong quá trình dạy Toán ở THCS cũng nh THPT và Đại Học, .Việc nắm 2 vững khái niệm này ở bậc THCS sẽ là nền tảng cơ bản cần thiết để các em có thể tiếp thu những kiến thức cao hơn ở các bậc học sau. Trớc nhu cầu nâng cao kiến thức của bản thân cũng nh nâng cao kiến thức cho ngời dạy cũng nh ngời học về khái niệm " Giá trị tuyệt đối", chúng tôi quyết định chọn đề tài: " Giá trị tuyệt đối trong trờng THCS". Tôi mong rằng đề tài này của tôi sẽ giúp cho giáo viên cũng nh học sinh trong quá trình giảng dạy và học tập của mình. Tôi xin trân trọng cảm ơn GS. TS Tống Trần Hoàn đã hớng dẫn và giúp đỡ tôi hoàn thành tốt đề tài này ! Vì hoàn thành trong một thời gian ngắn nên đề tài còn nhiều hạn chế, thiếu sót. Tôi rất mong nhận đợc sự quan tâm, đóng góp ý kiến của thầy cô giáo và các bạn đồng nghiệp. A. nhứng kiến thức cơ bản về giá trị tuyệt đối I. Các định nghĩa 1. 1. Định nghĩa 1 Giá trị tuyệt đối thực chất là một ánh xạ f: R R + a a với mỗi giá trị a R có một và chỉ một giá trị f(a) = a R + 1.2. Định nghĩa 2 Giá trị tuyệt đối của một số thực a, ký hiệu a là: a nếu a 0 a = -a nếu a < 0 Ví dụ1: 1515 = 3232 = 00 = 11 = 1717 = *Mở rộng khái niệm này thành giá trị tuyệt đối của một biểu thức A(x), kí hiệu )(xA là: A(x) nếu A(x) 0 )(xA = -A(x) nếu A(x) < 0 Ví dụ 2: 2x - 1 nếu 2x- 1 0 2x - 1 nếu 2 1 x 12 x = = -(2x - 1) nếu 2x - 1 < 0 1 - 2x nếu x < 2 1 1.3. Định nghĩa 3: 3 Giá trị tuyệt đối của số nguyên a, kí hiệu là a , là số đo( theo đơn vị dài đợc dùng để lập trục số) của khoảng cách từ điểm a đến điểm gốc 0 trên trục số ( hình 1). Hình 1 Ví dụ 1: a = 3 = 3 3 a Do đó đẳng thức đã cho đợc nghiệm đúng bởi hai số tơng ứng với hai điểm trên trục số ( hình 2) Hình 2 Tổng quát: = > = b b a b ba 0 ; == b b aba Ví dụ 2: a 3 nếu a 0 0 a 3 a 3 -3 a 3 -a 3 nếu a < 0 -3 a < 0 Do bất đẳng thức đã đợc nghiệm đúng bởi tập hợp các số của đoạn [ ] 3;3 và trên trục sôd thì đợc nghiệm đúng bởi tập hợp các điểm của đoạn [ ] 3;3 ( hình 3) Hình 3 Ví dụ 3: a 3 nếu a 0 a 3 nếu a 0 a 3 3 a hoặc a 3 -a 3 nếu a < 0 a -3 v nếu a < 0 Do bất đẳng thức đã đợc nghiệm đúng bởi tập hợp các số của hai nửa đoạn (- ; 3] và [3; + ) và trên trục số thì đợc nghiệm đúng bởi hai nửa đoạn tơng ứng với các khoảng số đó. (hình 4) 4 -a 0 a -a a -3 0 3 -3 0 3 -3 0 3 Hình 4 Tổng quát: ba ba ba bài tập tự luyện Bài 1. Tìm tất cả các số a thoả mãn một trong các điều kiện sau: a) a = a b) a < a c) a > a d) a = -a e) a a f) a + a = 0 g) bba =+ Bài 2:Tìm các ví dụ chứng tỏ các khẳng định sau đây không đúng: a) a Z a > 0 b) a Q a > a c) a, b Z, a = b a = b d) a, b Q, a > b a > b Bài 3: Bổ sung thêm các điều kiện để các khẳng định sau là đúng a) a = b a = b b) a > b a > b Bài 4: Tìm tất cả các số a thoả mãn một trong các điều kiện sau, sau đó biểu diễn các số tìm đợc lên trục số: a) a 1 b) a 3 c) a - 6 = 5 d) 1 < a 3 Bài 5: a) Có bao nhiêu số nguyên x sao cho x < 50 b) Có bao nhiêu cặp số nguyên (x, y) sao cho x + y = 5 ( Các cặp số nguyên (1, 2) và (2,1)là hai cặp khác nhau) c) Có bao nhiêu cặp số nguyên (x, y) sao cho x + y < 4 II - một số tính chất về giá trị tuyệt đối 2.1. Tính chất 1: a 0 a 5 2.2. Tính chất 2: a = 0 a = 0 2.3. Tính chất 3: - a a a 2.4 Tính chất 4: a = a Dựa trên định nghĩa giá trị tuyệt đối ngời ta rễ thấy đợc các tính chất 1, 2, 3, 4. 2.5. Tính chất 5: baba ++ Thật vậy: - a a a ; - b a b -( a + b ) a + b a + b 2.6. Tính chất 6: a - b baba + Thật vậy: a = bababbabba ++ (1) babababababa ++=++= )( (2) Từ (1) và (2) đpcm. 2.7. Tính chất 7: baba Thật vậy: baba (1) bababaababab == )()( (2) = )( ba ba ba (3) Từ (1), (2) và (3) baba (4) babababababa ++ )( (5) Từ (4) và (5) đpcm. 2.8. Tính chất 8: baba = Thật vậy: a = 0, b = 0 hoặc a = 0, b 0 hay a 0, b= 0 baba = (1) a > 0 và b > 0 a = a, b = b và a.b > 0 bababababa . === (2) a < 0 và b < 0 a = -a, b = -b và a.b > 0 babababababa .))(( ==== (3) a > 0 và b < 0 a = a, b = -b và a.b < 0 babababababa .).( ==== (4) Từ (1), (2), (3) và (4) đpcm. 2.9. Tính chất 9: )0( = b b a b a 6 Thật vậy: a = 0 00 == b a b a b a (1) a > 0 và b > 0 a = a, b = b và b a b a b a b a ==> 0 (2) a < 0 và b < 0 a = -a, b = -b và b a b a b a b a b a = ==> 0 (3) a > 0 và b < 0 a = a, b = -b và b a b a b a b a b a = ==< 0 (4) Từ (1), (2), (3) và (4) đpcm. bài tập tự luyện Bài 6: Điền vào chỗ trống các dấu , , = để khẳng đinh sau đúng a, b a) ba + . a + b b) ba . a - b với a b c) baba . d) b a b a = Bài 7: Tìm các số a, b thoả mãn một trong các điều kiện sau: a) a + b = a + b b) a + b = a - b Bài 8: Cho 3 < ca , 2 < cb Chứng minh rằng 5 < ba 7 Bài 9: Rút gọn biểu thức: a) a +a b) a - a c) a .a d) a : a e) 32)1(3 + xx f) )14(32 xx B. các dạng toán về giá trị tuyệt đối trong chơng trình THCS chủ đề i: giải phơng trình và hệ phơng trình chứa dấu giá trị tuyệt đối I. các kiến thức cần lu ý 1.1 A(x) nếu A(x) 0 )(xA = ( A(x) là biểu thức đại số) -A(x) nếu A(x) < 0 1.2. Định lí về dấu của nhị thức bậc nhất ax + b (a 0) Nhị thức bậc nhất ax + b (a 0) sẽ: + Cùng dấu với a với các giá trị của nhị thức lớn hơn nghiệm của nhị thức. + Trái dấu với a với các giá trị của nhị thức nhỏ hơn nghiệm của nhị thức. Giả sử x 0 là nghiệm của nhị thức ax + b khi đó: + Nhị thức cùng dấu với a x > x 0 + Nhị thức trái dấu với a x < x 0 1.3. Định lí về dấu của tam thức bậc hai Xét tam thức bậc hai: f(x) = ax 2 + bx + c (a 0) - Nếu < 0, thì f(x) cùng dấu với a x - Nếu 0 thì: + f(x) cùng dấu với a x nằm ngoài khoảng hai nghiệm + f(x) trái dấu với a x nằm trong khoảng hai nghiệm Hay - Nếu < 0 a.f(x) > 0 x - Nếu 0 f(x) có hai nghiệm x 1 x 2 nếu x 1 < x < x 2 a.f(x) < 0 nếu x x 1 hoặc x x 2 a.f(x) > 0 Nhận xét: Giả trị tuyệt đối của một biểu thức banừg chính nó( nếu biểu thức không âm) hoặc bằng biểu thức đối của nó( nếu biểu thức âm). Vì thế khi khử 8 dấu giá tị tuyệt đối của một biểu thức, cần xét giá trị tuyệt đối của biến làm cho biểu thức dơng hay âm( dựa vào định lí về dấu của nhị thức bậc nhất hoặc định lí về dấu của tam thức bậc hai). Dấu của biểu thức thờng đợc viết trong bảng xét dấu. II. các bài tập điển hình 2.1 Rút gọn biểu thức A = 2(3x - 1) - 3 x Thật vậy: + Với ( x - 3) 0 hay x 3 thì 3 x = x - 3 + Với ( x- 3) < 0 hay x < 3 thì 3 x = -(x - 3) = 3 - x ta xét hai trờng hợp ứng với hai khoảng của biến x + Nếu x 3 thì A = 2(3x - 1) - 3 x = 2(3x - 1) - (x - 3) = 6x - 2 - x + 3 = 5x + 1 + Nếu x < 3 thì A = 2(3x - 1) - 3 x = 2(3x - 1) - (3 - x) = 6x - 2 - 3 + x = 7x - 5 2.2 Rút gọn biểu thức B = 1 x - 5 x Thật vậy Với x-1 0 hay x 1thì 1 x =x-1 Với x-1<0 hay x<1thì 1 x = -(x-1)=1-x Với x-5 0 hay x 5 thì 5 x = x+5 Với x-5<0 hay x<5 thì 5 x =-(x-5) =5-x áp dụng định lý về dấu của nhị thức bậc bậc nhất ta có bảng xét dấu sau: X 1 5 x-1 - 0 + + x-5 - - 0 + Từ bảng xét dấu ta xét ba trờng hợp ứng với ba khoảng của biến x Nếu x<1 thì B = 1 x - 5 x =1-x-( 5-x) =1-x-5+x = - 4 Nếu 1 x<5 thì B = 1 x - 5 x =(x-1)-(5-x) =x-1-5+x =2x-6 Nếu x 5 thì B = 1 x - 5 x =(x-1)-(x-5) =x-1-x+5 = 4 2.2 Rút gọn biểu thức B = /x 2 - 4x + 3/-5 Thật vậy: Xét tam thức bậc hai: f(x) = x 2 4x + 3 f(x) có ' = 4 -3 = 1 > 0 9 x 1 = 1; x 2 = 3 Với 1 < x < 3 1.f(x) < 0 f(x) < 0 Với x 1 hoặc x 3 4f(x) > 0 f(x) > 0 Vậy ta xét hai trờng hợp ứng với ba khoảng của biến Với 1 < x < 3 thì B = -(x 2 - 4x + 3) - 5 = - x 2 + 4x - 3 - 5 = - x 2 + 4x - 8 Với x 1 hoặc x 3 thì B = ( x 2 - 4x + 3) - 5 = x 2 - 4x + 3 - 5 = x 2 - 4x - 2 2.3. Giải phơng trình 1321 +=+ xxx Thật vậy: áp dụng định lí về dấu nhị thức bậc nhất và lập bảng, ta xét 3 trờng hợp ứng với 3 khoảng. + Nếu x < 1 ta đợc phơng trình: 1 - x + 2 - x = 3x + 1 3 - 2x = 3x + 1 5x = 2 x = 2/5 < 1 ( là nghiệm) + Nếu 1 x < 2 ta đợc phơng trình: x -1 + ( 2 - x) = 3x + 1 x = 0 [1, 2] ( không là nghiệm) + Nếu x 2 ta đựoc phơng trình: x - 1 + x - 2 = 3x + 1 x = - 4 < 2 ( không là nghiệm) Vậy phơng trình có nghiệm duy nhất x = 2/5 2.4. Giải phơng trình 512 = x Thật vậy: áp dụng định nghĩa giá trị tuyệt đối ta có: 512 = x = = )2(512 )1(512 x x Giải 1: = = == )'2(62 )'1(62 62512 x x xx Giải 1': 8862 === xxx ( là nghiệm) Giải 2': == 462 xx x không có giá trị Giải 2: 42512 == xx ( không có nghĩa) Vậy phơng trình có hai ngiệm: x = 8 hoặc x = -8 2.5 Giải hệ phơng trình =+ = 32 1 yyx yx Thật vậy: Phơng trình thứ nhất đa đến tập hợp hai phơng trình: = = 1 1 yx yx hay += = )2(1 )1(1 xy xy Việc phân tích phơng trình thứ hai đa đến tập hợp 4 phơng trình theo các khoảng xác định. 10 . dẫn và giúp đỡ tôi hoàn thành tốt đề tài này ! Vì hoàn thành trong một thời gian ngắn nên đề tài còn nhiều hạn chế, thiếu sót. Tôi rất mong nhận đợc sự