Nghiên cứu, phát triển một cảm biến đo biến dạng ứng dụng cho các thiết bị mặc được001

59 16 0
Nghiên cứu, phát triển một cảm biến đo biến dạng ứng dụng cho các thiết bị mặc được001

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRẦN NHƯ CHÍ NGHIÊN CỨU, PHÁT TRIỂN MỘT CẢM BIẾN ĐO BIẾN DẠNG ỨNG DỤNG CHO CÁC THIẾT BỊ MẶC ĐƯỢC LUẬN VĂN THẠC SĨ CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ, TRUYỀN THÔNG HÀ NỘI - 2019 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ TRẦN NHƯ CHÍ NGHIÊN CỨU, PHÁT TRIỂN MỘT CẢM BIẾN ĐO BIẾN DẠNG ỨNG DỤNG CHO CÁC THIẾT BỊ MẶC ĐƯỢC Ngành : Công nghệ kỹ thuật điện tử, truyền thông Chuyên ngành : Kỹ thuật điện tử Mã ngành : 8510302.01 LUẬN VĂN THẠC SĨ CÔNG NGHỆ KỸ THUẬT ĐIỆN TỬ, TRUYỀN THÔNG Giảng viên hướng dẫn: PGS.TS Chử Đức Trình HÀ NỘI - 2019 LỜI CẢM ƠN Trước tiên, xin gửi lời cảm ơn đến thầy, cô giáo Trường Đại học Công nghệ ĐHQGHN, Khoa Điện tử - Viễn thơng tận tình giảng dạy truyền đạt kiến thức, kinh nghiệm quý giá suốt trình học tập nghiên cứu q trình thực đề tài Tơi xin gửi lời cảm ơn sâu sắc đến PGS.TS Chử Đức Trình tận tình hướng dẫn, cung cấp tài liệu, thiết bị suốt trình thực đề tài Hà Nội, tháng năm 2019 Trần Như Chí LỜI CAM ĐOAN Luận văn đánh dấu cho thành quả, kiến thức thu nhận trình rèn luyện, học tập trường Tơi xin cam đoan luận văn hồn thành q trình học tập nghiên cứu tơi Trong luận văn tơi có tham khảo số tài liệu số báo đưa phần tài liệu tham khảo Tôi xin cam đoan lời thật chịu trách nhiệm trước thầy cô hội đồng bảo vệ luận văn Hà Nội, tháng năm 2019 Thực Trần Như Chí MỤC LỤC LỜI CẢM ƠN LỜI CAM ĐOAN MỤC LỤC MỞ ĐẦU CHƯƠNG GIỚI THIỆU 1.1.Biến dạng 1.2.1 Đầu đo điện trở kim loại 1.2.2 Cảm biến áp trở silic 1.2.3 Đầu đo chế độ động 1.2.4 Ứng suất kế dây rung 1.3.Cảm biến đo biến dạng dải rộng CHƯƠNG CẢM BIẾN ĐO BIẾN DẠNG DỰA TRÊN CHẤT LỎNG ION 2.1 Nguyên lý hoạt động cảm biến 2.2.Đo điện trở cảm biến 2.2.1 Mạch tạo dao động cầu Wien 2.2.2 Nguồn dòng Howland 2.2.3 Thiết kế hệ đo CHƯƠNG CHẾ TẠO VÀ THỬ NGHIỆM 3.1.Chế tạo cảm biến 3.2.Thiết lập thí nghiệm CHƯƠNG KẾT QUẢ KHẢO SÁT HOẠT ĐỘNG CẢM BẾN 4.1.Khảo sát cảm biến theo tỉ lệ dung dịch muối 4.2.Khảo sát cảm biến theo đường kính ống silicone 4.3.Khảo sát ảnh hưởng nhiệt độ tới cảm biến CHƯƠNG ỨNG DỤNG ĐẾM BƯỚC CHÂN DỰA TRÊN CẢM BIẾN ĐO BIẾN DẠNG 5.1.Thiết lập thí nghiệm 5.2.Kết phân tích xử lí tín hiệu KẾT LUẬN DANH MỤC CÁC CƠNG TRÌNH CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN VĂN 45 TÀI LIỆU THAM KHẢO 46 DANH MỤC HÌNH ẢNH Hình 1.1 Sơ đồ cấu tạo đầu đo kim loại Hình 1.2 Các cố định đầu đo bề mặt khảo sát Hình 1.3 Đầu đo chế tạo mẫu cắt Hình 1.4 Đầu đo loại khuếch tán Hình 1.5 Sự phụ thuộc điện trở suất vào nồng độ pha tạp nhiệt độ Hình 1.6 Sự phụ thuộc K vào độ pha tạp Hình 1.7 Một số ứng dụng cảm biến biến dạng dải rộng (a) Cảm biến gắn lên cổ để phát giọng nói (b) Cảm biến gắn lên chân để xác định trạng thái đếm số bước chân (c) Cảm biến gắn lên tay để xác định cử tay Hình 2.1 Mơ hình cảm biến đo biến dạng dựa chất lỏng ion Hình 2.2 Nguyên tắc cảm biến biến dạng (a) Cảm biến trạng thái ban đầu, (b) Cảm biến kéo dãn Hình 2.3 Mạch hệ thống hồi tiếp (a) mạch mạch tương đương (b) Hình 2.4 Điều chỉnh biên độ biến dạng mạch cầu Wien Hình 2.5 Điều chỉnh tần số dùng biến trở đôi Hình 2.6 Điều chỉnh tần số dùng hồi tiếp âm Hình 2.7 Mạch nguồn dịn Howland Hình 2.8 Sơ đồ mạch đo Hình 3.1 Cơng thức hóa học cao su silicone Hình 3.2 Cấu trúc tinh thể clorua natri Lục sẫm = Na + Hình 3.3 Cơng thức hóa học Glycerin Hình 3.4 Các cảm biến sau chế tạo Hình 3.5 Mạch thực tế Hình 3.6 Bộ điều chỉnh ứng lực Hình 4.1 Kết thí nghiệm cho thấy điện trở thay đổi biến dạng với tỉ lệ NaCl/Nước/glycerin 1:15:5 (a), 1:18:5 (b), 1:25:5 (c) Hình 4.2 Kết thí nghiệm cho thấy điện trở thay đổi biến dạng với ống silicone có đường kính khác (a) d = 0.5mm (b) d = 1mm (c) d=1.5mm Hình 4.3 Ảnh hưởng nhiệt độ tới cảm biến (a) Ảnh hưởng nhiệt độ đến cảm biến chưa kéo dãn (b) Ảnh hưởng nhiệt độ đến hệ số GF cảm biến kéo dãn Hình 5.1 Gắn cảm biến lên khớp gối Hình 5.2 Chương trình phần mềm máy tính Hình 5.3 Dạng tín hiệu gập duỗi chân Hình 5.4 Tín hiệu thu từ hoạt động người Hình 5.5 Thuật tốn xử lí tín hiệu Hình 5.6 Tín hiệu gốc Hình 5.7 Tín hiệu sau qua lọc trung bình Hình 5.8 Tín hiệu sau qua lọc thông cao Hình 5.9 Tín hiệu sau qua lọc ngưỡng chuyển thành dạng xung vuông Hình 5.10 Tín hiệu có xung nhỏ sinh từ bước chân ngắn, khớp gối không gập nhiều 43 DANH MỤC BẢNG BIỂU Bảng 1.1 Bảng thông số hợp kim làm đầu đo Bảng 3.1 Thông số cảm biến chế tạo Bảng 5.1 Kết đếm bước chân so với thực tế MỞ ĐẦU Dưới tác động ứng lực học, môi trường chịu ứng lực xuất biến dạng Sự biến dạng cấu trúc ảnh hưởng lớn tới khả làm việc độ an toàn làm việc kết cấu chịu lực Mặt khác ứng lực biến dạng có mối quan hệ với nhau, dựa vào mối quan hệ người ta xác định ứng lực đo biến dạng gây Bởi vậy, đo biến dạng vấn đề quan tâm nhiều kỹ thuật Có nhiều loại cảm biến đo biến dạng phổ biến cảm biến đo biến dạng kiểu điện trở Chúng chế tạo từ vật liệu có điện trở biến thiên theo mức độ biến dạng, thường hợp kim vật liệu bán dẫn (Silic) Tuy nhiên cảm chế tạo từ vật liệu có dải đo thấp (5%) nên khó áp dụng vào ứng dụng yêu cầu dải đo lớn giám sát biến dạng địa hình, giám sát vết nứt vật liệu, cơng trình xây dựng, giám sát hỗ trợ người bệnh phục hồi chức năng, hỗ trợ tập vật lý trị liệu y học Chính vậy, việc phát triển loại cảm biến biến dạng lớn tốn quan tâm Gần đây, có nhiều nhiều nghiên cứu tập trung vào phát triển cảm biến đo biến dạng có dải đo rộng việc sử dụng vật liệu có độ kéo dãn cao sợi quang, polymer,… Đặc biệt cảm biến đo biến dạng dải rộng sử dụng chất lỏng ion Một loại cảm biến dễ chế tạo, chi phí thấp thân thiện với môi trường Mục tiêu đề tài phát triển cảm biến biến dạng sử dụng chất lỏng ion cho ứng dụng thiết bị mặc người (weable devices) Chất lỏng ion sử dụng hỗn hợp glycerin với dung dịch muối Natri clorua nước với tỷ lệ khác Cảm biến chế tạo sử dụng dung dịch chứa ống silicone hình trụ với hai điện cực làm kim loại Các nghiên cứu thực khảo sát hoạt động cảm biến, khả ứng dụng cảm biến vào thực tế thực Mạch điện tử thu thập liệu từ cảm biến phát triển Hoạt động cảm biến cho việc phát biến dạng kiểm nghiệm Bên cạnh ứng dụng sử dụng cảm biến gắn thiết bị mặc được phát triển cho toán đếm bước chân CHƯƠNG GIỚI THIỆU 1.1 Biến dạng Biến dạng ( ε ) tỉ số độ biến thiên kích thước ( ∆L ) kích thước ban đầu ( l0 ) ε= l0 Biến dạng gọi đàn hồi mà ứng lực biến dạng theo Biến dạng mà tồn sau ứng lực gọi biến dạng dư Giới hạn đàn hồi ứng lực tối đa không gây nên biến dạng dẻo vượt 2%, tính kG / mm2 Ví dụ giới hạn đàn hồi thép từ 20 – 80 kG / mm2 Mô đun Young (Y): Xác định biến dạng theo phương ứng lực ε = || Ở đây: - F: Lực tác dụng, kG - S: Tiết diện chịu lực, mm - F σ : Ứng lực, σ = S Đơn vị đo mô đun Young kG / mm2 Mô đun Young thép 18.000 – 29.000 kG / mm2 Hệ số poison ν : Hệ số xác định biến dạng theo phương vng góc với lực tác dụng ε⊥ = −νε|| Trong vùng biến dạng đàn hổi ν ≈ 0,3 1.2 Phương pháp đo biến dạng Tác động ứng lực gây biến dạng kết cấu chịu ứng lực Giữa biến dạng ứng lực có quan hệ chặt chẽ với nhau, cách đo biến dạng ta tính ứng lực tác động lên kết cấu Để đo biến dạng người ta sử dụng cảm biến 34 Ngoài ra, kết cho thấy hệ số GF cảm biến với ba tỉ lệ muối có giá trị tương đối (2.31 – 2.41) Điều cho thấy hệ số GF cảm biến giữ nguyên tỉ lệ muối dung dịch thay đổi 1.2 ∆R/R0 0.8 0.6 0.4 0 0.2 0.4 ∆L/L0 c) Hình 4.1 Kết thí nghiệm cho thấy điện trở thay đổi biến dạng với tỉ lệ NaCl/Nước/glycerin 1:15:5 (a), 1:18:5 (b), 1:25:5 (c) 4.2 Khảo sát cảm biến theo đường kính ống silicone Tương tự với khảo sát trên, dung dịch muối với tỉ lệ muối:nước:glycerin 1:18:5 bơm vào ống cao su silicone với đường kính khác (0.5mm, 1mm, 1.5mm) Sau cảm biến gắn lên điều chỉnh ứng lực để khảo sát Kết thí nghiệm thể hình 4.2, cho thấy thay đổi điện trở cảm biến lực kéo dãn Tất các phép đo thực nhiệt độ phòng khoảng 25o C 1.2 ∆R/R0 0.8 0.6 0.4 0.2 00 ∆L/L0 (a) Hình 4.2 Kết thí nghiệm cho thấy điện trở thay đổi biến dạng với ống silicone có đường kính khác (a) d = 0.5mm (b) d = 1mm (c) d=1.5mm 35 Kết cho thấy điện trở ban đầu cảm biến chưa kéo dãn giảm đường kính cảm biến tăng Điều lý giải dựa công thức 4.2 bên trên, đường kính ống silicone lớn tương ứng d lớn chiều dài cảm biến ( l không đổi) điện trở suất ρ khơng đổi sử dụng cảm biến có tỉ lệ 1:18:5 Vì vậy, điện trở cảm biến giảm đường kính ống silicone tăng Khi cảm biến bị kéo dãn, điện trở cảm biến tăng theo độ biến dạng ống Vì kéo dãn đường kính d cảm biến nhỏ lại phần chiều dài l cảm biến tăng dẫn đến điện trở cảm biến tăng (theo công thức 4.2) Thêm vào đó, kết cho thấy hệ số GF cảm biến thay đổi (2.11 – 2.47) đường kính ống silicone thay đổi Từ kết hai khảo sát thấy cảm biến đo biến dạng dựa chất lỏng ion chế tạo có hệ số GF ổn định khoảng từ 2.11 tới 2.47 không phụ thuộc vào nồng độ muối đường kính ống silicone Hệ số GF cảm biến tương đương với hệ số GF phôi kim loại (2 - 2.5) Kết tương đồng với nghiên cứu trước [6] Kết mở hướng phát triển cho cảm biến đo biến dạng thay cảm biến truyền thống làm từ hợp kim 4.3 Khảo sát ảnh hưởng nhiệt độ tới cảm biến Để khảo sát ảnh hưởng nhiệt độ đến cảm biến, cảm biến với tỉ lệ muối: nước:glycerin 1:18:5 đường kính ống cao su silicone 1.5 mm sử dụng Một tủ gia nhiệt Jlabtech sử dụng để thay đổi nhiệt độ từ thấp tới cao Tủ gia nhiệt điều khiển, trì nhiệt độ buồng tủ giá trị cố định cài đặt từ người sử dụng Đầu tiên, cảm biến gắn với hệ đo đặt vào tủ, sau điều khiển tăng nhiệt độ theo bước tăng độ C Ở nấc nhiệt độ trì mười năm phút trước đo giá trị Điều nhằm giúp cho nhiệt độ dung dịch muối ống silicone tăng nhiệt độ bên ống Kết điện áp hai đầu cảm biến thể hình 4.3a Sau cảm biến lấy đặt lên điều chỉnh ứng lực để khảo sát ảnh hưởng nhiệt độ tới hệ số Gauge Factor cảm biến Ở nhiệt độ, cảm biến kéo dãn trì mười lăm phút cho lần kéo dãn tiếp Kết ảnh hưởng nhiệt độ tới hệ số GF thấy hình 4.3b Kết cho thấy điện trở hệ số GF cảm biến giảm nhanh tăng nhiệt độ Điều lý giải tăng nhiệt độ dung dịch muối, độ linh động ion Na+ Cl − tăng kết dẫn đến tăng độ dẫn dung dịch hay nói cách khác giảm điện trở cảm biến Như nhiệt độ ảnh hưởng đáng kể đến độ xác độ ổn định cảm biến Để sử dụng cảm biến mơi trường có nhiệt độ thay đổi ta cần có mạch bù nhiệt độ tự động (V) n áp (mV) Đi ệ 35 40 45 50 55 60 TemperatureNhiệđộ (°C) a) b) Hình 4.3 Ảnh hưởng nhiệt độ tới cảm biến (a) Ảnh hưởng nhiệt độ đến cảm biến chưa kéo dãn (b) Ảnh hưởng nhiệt độ đến hệ số GF cảm biến kéo dãn Từ kết khảo sát trên, ta rút số kết luận tính cảm biến sau: - Độ nhạy (Hệ số Gauge Factor): ≈ 2.3 Dải đo: ÷ 50% Nhiệt độ làm việc ổn định: Nhiệt độ phòng (25°C) Đường kính cảm biến: 0.5 mm, mm, 1.5 mm 37 CHƯƠNG ỨNG DỤNG ĐẾM BƯỚC CHÂN DỰA TRÊN CẢM BIẾN ĐO BIẾN DẠNG 5.1 Thiết lập thí nghiệm Từ kết trên, sử dụng cảm biến có tỉ lệ natri clorua, nước glycerin 1:18:5, hỗn hợp dung dịch bơm vào ống cao su silicone (ống có đường kính 1.5mm chiều dài 100 mm) hệ mạch đo thu thập liệu để thực xây dựng ứng dụng đếm bước chân Cảm biến biến dạng chế tạo gắn lên đầu gối để thu kết tốt Để gắn cảm biến lên đầu gối, cố định cảm biến lên hai đai co dãn keo silicone, sau hai đai co dãn lên khuỷu gối cho cảm biến nằm đầu gối hình 5.1 Khi chân duỗi thẳng, ống silicone khơng bị kéo dãn nên ống có chiều dài ban đầu l0 , điện trở R0 Ngược lại, gập chân lại, ống bị dãn dẫn tới giá trị trở cảm biến tăng lên Từ đó, ta xác định trạng thái co duỗi chân thông qua giá trị trở ống cao su Sơ đồ khối mạch thể hình 2.8 với giá trị nguồn dịng cài đặt 2.0 μA tần số hoạt động mạch cầu Wien kHz Tín hiệu lối vào lối quan sát thông qua máy dao động kí (TDS 1002B, Tektronix) Bên cạnh đó, tơi có gắn thêm hình hiển thị LCD (16x2) để theo dõi giá trị điện áp điện trở cảm biến Module Bluetooth HC05 tích hợp bo mạch để truyền giá trị đo tới hệ thống thu thập liệu máy tính Bo mạch điện tử thiết kế xây dựng thấy hình 3.5 Trên máy tính, chương trình phát triển để nhận xử lý tín hiệu thơng qua module Bluetooth HC05 (hình 5.2) Chương trình viết ngơn ngữ C# Với chương trình này, liệu lưu trữ dạng bảng với hai cột: thời gian điện áp Bên cạnh đó, liệu thể theo đồ thị thời gian thực Hình 5.1 Gắn cảm biến lên khớp gối 38 Hình 5.2 Chương trình phần mềm máy tính Sau đó, tơi tiến hành thử nghiệm thu liệu thực hoạt động đứng lên, ngồi xuống, chạy Các thí nghiệm thực điều kiện giống điều kiện nhiệt độ phòng 25 độ C 5.2 Kết phân tích xử lí tín hiệu Một tình nguyện viên đeo thiết bị thực thu thập liệu với trạng thái hoạt động khác nhau: đứng lên, ngồi xuống, chạy Toàn thực nghiệm tiến hành điều kiện nhiệt độ phòng khoảng 25 °C Ở trạng thái duỗi thẳng chân, điện áp ban đầu cảm biến đo 400mV Khi thực gập duỗi chân, dải điện áp đo khoảng từ 400 mV tới 800mV Khi co chân, chiều dài cảm biến tăng lên, làm cho giá trị điện trở hay điện áp hai đầu điện cực tăng theo (do dòng điện qua cảm biến không đổi) Ngược lại, chiều dài cảm biến trở kích thước ban đầu hay biên độ điện áp giảm dần chân duỗi Quá trình co duỗi chân liên tục tạo tín hiệu xung liên tục với đỉnh xung thể trạng thái co đạt cực đại hình 5.3 Biên độ (mV) 39 Thời gian Hình 5.3 Dạng tín hiệu gập duỗi chân Khi chạy, chân co duỗi nhanh liên tục tạo nhiều sóng xung tín hiệu có tần số lớn hơn, đồng thời biên độ điện áp chạy nhỏ chân khơng co hồn tồn hình 5.4 Hình 5.4 Tín hiệu thu từ hoạt động người Hình 5.5 Thuật tốn xử lí tín hiệu 40 Biên độ (mV) Để xác định xác bước chân dựa vào tín hiệu xung thu được, chúng tơi đề xuất xây dựng thuật tốn xử lý tín hiệu sơ đồ hình 5.5 Tín hiệu ban đầu thu từ cảm biến tín hiệu thô chứa nhiều nhiễu tần số cao việc cử động gây hình 5.6 Để loại bỏ tín hiệu nhiễu này, chúng tơi đưa tín hiệu thu qua lọc trung bình (lọc thơng thấp) Tín hiệu lối lúc làm mịn cách đáng kể, loại bỏ nhiễu tần số cao khơng ảnh hưởng nhiều tới hình dạng tần số sóng hình 5.7 Nhiễu Thời gian Hình 5.6 Tín hiệu gốc Khi thực hoạt động khác liên tiếp, dạng sóng xung lặp lại với hình dạng giống khác tần số biên độ Ngoài ra, đường chuỗi liệu tương đối thằng chân co duỗi Tuy nhiên, trường hợp chạy nhanh chạy cao gối, đường bị cao lên chân khơng gập duỗi cách hồn tồn (đường màu đỏ hình 5.7) Điều làm cho việc xử lí tín hiệu gặp nhiều khó khăn ảnh hưởng tới độ xác việc đếm xung thấy hình 5.7 Biên độ (mV) 41 Thời gian Hình 5.7 Tín hiệu sau qua lọc trung bình Biên độ (mV) Để giải vấn đề này, tín hiệu cho qua lọc thơng cao với tần số cắt Hz bậc ba để đồng đường trung bình chuỗi tín hiệu đường đẳng điện (đường màu đỏ hình 5.8) Biên độ tín hiệu bị suy hao số lượng xung khơng đổi hình 5.8 Thời gian Hình 5.8 Tín hiệu sau qua lọc thơng cao Sau qua lọc thơng cao, tín hiệu tiếp tục cho qua lọc ngưỡng để chuyển sóng xung thành dạng xung vuông với mức logic cao thấp Ở đây, ngưỡng chọn có giá trị tương ứng với 10% biên độ đỉnh cao Các điểm có 42 Biên độ (mV) giá trị lớn ngưỡng chọn chuyển thành mức logic cao, lại điểm có giá trị thấp chuyển thành mức logic thấp hình 5.9 Kết trung bình đếm bước chân thể bảng 5.1 với tình nguyện viên đeo thiết bị Thời gian Hình 5.9 Tín hiệu sau qua lọc ngưỡng chuyển thành dạng xung vuông Bảng 5.1 Kết đếm bước chân so với thực tế L Xu Từ bảng kết đếm bước chân thu từ cảm biến thấy hệ thống đếm bước chân có độ xác cao Đặc biệt lên cầu thang kết thu có độ xác tuyệt đối thực lên cầu thang chân co gập rõ ràng Các trạng thái lại độ xác cảm biến bị giảm ảnh hưởng từ việc chân không co gập rõ ràng Như vậy, tín hiệu ban đầu chuyển thành tín hiệu xung vng việc đếm xung trở nên dễ dàng Số bước chân tính số lượng xung vng đếm Thêm vào đó, từ số bước chân đếm thời gian, ta xác 43 định tốc độ di chuyển từ kết luận trạng thái chuyển động bộ, chạy nhanh, chậm Cảm biến gắn chân tình nguyện viên để thu liệu thực đếm số bước chân Dữ liệu nhận có dạng xung, với xung thể chuyển động bước chân Từ kết cho thấy bước dài với khớp gối bị gập nhiều cho xung rộng có biên độ lớn Trong đó, bước ngắn với khớp gối gập cho xung hẹp có biên độ nhỏ Theo đó, liệu cảm biến phân tích để đưa tình trạng vận động, độ ổn định vận động viên suốt trình khảo sát Dữ liệu sử dụng cho huấn luyện viên người giám sát để có điều chỉnh nằm nâng cao hiệu tập luyện, thi đấu điều trị Tín hiệu xử lý cách sử dụng lọc chuyển đổi thành dạng xung vng nhằm đơn giản hố việc đếm số xung hình 5.9 Tuy nhiên, độ xác bị ảnh hưởng trường hợp biên độ tín hiệu q nhỏ Điều xảy ta bước ngắn, chân không thật gập nhiều khiến cho trở kháng cảm biến thay đổi q hình 5.10 Dù vậy, trường hợp xảy không ảnh hưởng nhiều tới kết đếm số bước chân Hình 5.10 Tín hiệu có xung nhỏ sinh từ bước chân ngắn, khớp gối không gập nhiều 44 KẾT LUẬN Cảm biến đo biến dạng dựa chất lỏng ion, hỗn hợp dung dịch muối, nước glycerin được đề xuất, chế tạo khảo sát Để khảo sát đặc tính cảm biến, bo mạch gồm vi điều khiển PIC16F877A hãng Microchip, nguồn dòng Howland cầu Wien tạo sóng sin phát triển Kết cho thấy hệ số Gauge Factor cảm biến ổn định với tỉ lệ pha muối (cụ thể tỉ lệ muối, nước glycerin 1:15:5, 1:18:5 1:25:5) diện tích ống silicone (0.5 mm, mm,và 1.5 mm) Hoạt động cảm biến nhiệt độ khác khảo sát Thêm vào đó, cảm biến thử nghiệm cho ứng dụng thiết bị mặc người để đếm bước chân cho kết tốt Cảm biến khơng giúp đếm xác số cử động chân mà cịn mở khả phân tích sâu tính chất vận động dựa vào phân tích cường độ dạng tín hiệu thu từ cảm biến Với ưu điểm thân thiện với môi trường, độ nhạy cao, giá thành rẻ, mẫu cảm biến đo biến dạng dải rộng sử dụng chất lỏng ion đề xuất ứng dụng vào nhiều lĩnh vực đời sống Bên cạnh đó, việc kết hợp công nghệ chế tạo đại tạo cảm biến nhỏ gọn linh hoạt để lên tích hợp quần áo gắn trực tiếp lên thể mở nhiều hội áp dụng vào ứng dụng giám sát, hỗ trợ chăm sóc sức khoẻ người 45 DANH MỤC CÁC CƠNG TRÌNH CỦA TÁC GIẢ LIÊN QUAN ĐẾN LUẬN VĂN Chi Tran Nhu, Ha Tran Thi Thuy, An Tran Hoai, Nguyen Ta Hoang, Hoai Nguyen Thi, An Nguyen Ngoc, Trinh Chu Duc, Van Thanh Dau and Tung Bui Thanh, “Experimental Characterization of an Ionically Conductive Fluid Based High Flexibility Strain Sensor,” ICERA Conference (2018), Chapter 42, pp 318-323 Nhu Chi Tran and Thi Hoai Nguyen and Hoang Nguyen Ta and Thi Thanh Van Nguyen and Ngoc An Nguyen (2018) “Phát triển cảm biến đo biến dạng dải rộng dựa chất lỏng ion cho ứng dụng đếm bước chân” In: The National Conference on Electronics, Communications and Information Technology, 14-15 December 2018, Hanoi, Vietnam 46 TÀI LIỆU THAM KHẢO [1] V T Dau, T Yamada, D V Dao, B T Tung, K Hata, and S Sugiyama, “Integrated CNTs thin film for MEMS mechanical sensors,” Microelectron J., vol 41, no 12, pp 860–864, Dec 2010 [2] Bui Thanh Tung, Hoang Minh Nguyen, Dzung Viet Dao, S Rogge, H W M Salemink, and Susumu Susumu, “Strain Sensitive Effect in a Triangular Lattice Photonic Crystal Hole-Modified Nanocavity,” IEEE Sens J., vol 11, no 11, pp 2657–2662, 2011 [3] A.L Window, Strain Sensor Technology, 2nd edn., Elsevier Applied Science, London and New York, 1992, pp 6–7 [4] S Russo, T Ranzani, H Liu, S Nefti-Meziani, K Althoefer, and A Menciassi, “Soft and Stretchable Sensor Using Biocompatible Electrodes and Liquid for Medical Applications,” Soft Robot., v 2, no 4, pp 146–154, 2015 [5] T Hampshire, “Monitoring the behavior of steel structures using distributed optical fiber sensors,” J Constr Steel Res., vol 53, no 3, pp 267–281, 2000 [6] L et al Rupprecht, CONDUCTIVE POLYMERS in Industrial Applications 1999 [7] V T Dau, C D Tran, T T Bui, V D X Nguyen, and T X Dinh, “Piezo- resistive and thermo-resistance effects of highly-aligned CNT based macrostructures,” RSC Adv., vol 6, no 108, pp 106090–106095, Nov 2016 [8] V T Dau, D V Dao, T Yamada, B T Tung, K Hata, and S Sugiyama, “Integration of SWNT film into MEMS for a micro-thermoelectric device,” Smart Mater Struct., vol 19, no 7, p 075003, Jun 2010 [9] V T Dau et al., “A micromirror with CNTs hinge fabricated by the integration of CNTs film into a MEMS actuator,” J Micromechanics Microengineering, vol 23, no 7, p 075024, Jul 2013 [10] L Flandin, Y Bréchet, and J.-Y Cavaillé, “Electrically conductive polymer nanocomposites as deformation sensors,” Compos Sci Technol., vol 61, no 6, pp 895–901, 2001 [11] Y N Cheung, Y Zhu, C H Cheng, C Chao, and W W F Leung, “A novel fluidic strain sensor for large strain measurement,” Sens Actuators Phys., vol 147, no 2, pp 401–408, 2008 47 [12] G Keulemans, P Pelgrims, M Bakula, F Ceyssens, and R Puers, “An ionic liquid based strain sensor for large displacements,” Procedia Eng., vol 87, pp 1123–1126, 2014 [13] J B Chossat, Y L Park, R J Wood, and V Duchaine, “A soft strain sensor based on ionic and metal liquids,” IEEE Sens J., vol 13, no 9, pp 3405–3414, 2013 [14] C Majidi, R Kramer, and R J Wood, “A non-differential elastomer curvature sensor for softer-than-skin electronics,” Smart Mater Struct., vol 20, no 10, 2011 [15] Y L Park, B R Chen, and R J Wood, “Design and fabrication of soft artificial skin using embedded microchannels and liquid conductors,” IEEE Sens J., vol 12, no 8, pp 2711–2718, 2012 [16] J Chossat, Y Tao, V Duchaine, and Y Park, “Wearable Soft Artificial Skin for Hand Motion Detection Detection with Embedded Microfluidic Strain Sensing,” Icra, pp 2568–2573, 2015 [17] T Yamada et al., “A stretchable carbon nanotube strain sensor for human- motion detection,” Nat Nanotechnol., vol 6, no 5, pp 296–301, 2011 [18] Q Liu, J Chen, Y Li, and G Shi, “High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions,” ACS Nano, vol 10, no 8, pp 7901–7906, 2016 [19] X Wang, Y Gu, Z Xiong, Z Cui, and T Zhang, “Silk-Molded Flexible , Ultrasensitive , and Highly Stable Electronic Skin for Monitoring Human Physiological Signals,” pp 1336–1342, 2014 L Cai et al., “Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection,” Sci Rep., vol 3, pp 1–9, 2013 [20] [21] Y Wang et al., “Wearable and Highly Sensitive Graphene Strain Sensors for Human Motion Monitoring,” pp 1–5, 2014 [22] C M Boutry, A Nguyen, Q O Lawal, A Chortos, S Rondeau-gagné, and Z Bao, “A Sensitive and Biodegradable Pressure Sensor Array for Cardiovascular Monitoring,” pp 1–8, 2015 [23] T Yang et al., “A Wearable and Highly Sensitive Graphene Strain Sensor for Precise Home-Based Pulse Wave Monitoring,” 2017 ... kim loại Các nghiên cứu thực khảo sát hoạt động cảm biến, khả ứng dụng cảm biến vào thực tế thực Mạch điện tử thu thập liệu từ cảm biến phát triển Hoạt động cảm biến cho việc phát biến dạng kiểm... cảm biến đo biến dạng dải rộng sử dụng chất lỏng ion Một loại cảm biến dễ chế tạo, chi phí thấp thân thiện với mơi trường Mục tiêu đề tài phát triển cảm biến biến dạng sử dụng chất lỏng ion cho. .. HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CƠNG NGHỆ TRẦN NHƯ CHÍ NGHIÊN CỨU, PHÁT TRIỂN MỘT CẢM BIẾN ĐO BIẾN DẠNG ỨNG DỤNG CHO CÁC THIẾT BỊ MẶC ĐƯỢC Ngành : Công nghệ kỹ thuật điện tử, truyền thông

Ngày đăng: 11/11/2020, 22:09

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan