Điều chế OFDM trong truyền hình số mặt đất DVB t luận văn ths công nghệ điện tử viễn thông 60 52 02 03

83 20 0
Điều chế OFDM trong truyền hình số mặt đất DVB   t  luận văn ths  công nghệ điện tử   viễn thông  60 52 02 03

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGUYỄN QUỐC NAM ĐIỀU CHẾ OFDM TRONG TRUYỀN HÌNH SỐ MẶT ĐẤT DVB-T LUẬN VĂN THẠC SĨ NGÀNH CÔNG NGHỆ ĐIỆN TỬ - VIỄN THÔNG HUẾ - 2014 ĐẠI HỌC QUỐC GIA HÀ NỘI TRƯỜNG ĐẠI HỌC CÔNG NGHỆ NGUYỄN QUỐC NAM ĐIỀU CHẾ OFDM TRONG TRUYỀN HÌNH SỐ MẶT ĐẤT DVB-T Ngành: Công nghệ Điện tử - Viễn thông Chuyên ngành: Kỹ thuật điện tử Mã số: 60.52.02.03 LUẬN VĂN THẠC SĨ NGÀNH CÔNG NGHỆ ĐIỆN TỬ - VIỄN THÔNG CÁN BỘ HƯỚNG DẪN TS NGUYỄN QUỐC TUẤN HUẾ - 2014 LỜI CẢM ƠN Em xin gửi lời cảm ơn chân thành tới TS Nguyễn Quốc Tuấn, người thầy ln tận tình hướng dẫn, giúp đỡ, tạo điều kiện tốt cho em suốt thời gian làm luận văn Hỗ trợ dẫn giúp em hoàn thành phần thực nghiệm Xin cảm ơn thầy, cô, anh, chị, bạn khoa Điện tử viễn thông tạo điều kiện giúp đỡ, bảo cho lời khuyên vô quý báu Em xin trân trọng cảm ơn ! Học viên Nguyễn Quốc Nam LỜI CAM ĐOAN Tôi xin cam đoan : Những nội dung luận văn thực hướng dẫn trực tiếp thầy Nguyễn Quốc Tuấn Mọi tham khảo dùng luận văn trích dẫn rõ ràng tên tác giả, tên cơng trình, thời gian, địa điểm cơng bố Mọi chép không hợp lệ, vi phạm quy chế đào tạo tơi xin chịu hồn tồn trách nhiệm Học viên Nguyễn Quốc Nam NHỮNG TỪ VIẾT TẮT ASK A ATSC A Sy B BPSK Bi C C/N Ca CCIR Co In Te CCITT Co In CENELEC Co isa COFDM Co D CSIF Co In D D/A D co DBPSK D Sh DCT D DFT D DPCM D M DQPSK D Sh DTTB Digital Terrestri Broadcasting DTV Digital televisio DVB Digital Video B DVB-C DVB - Cable DVB-S DVB – Satellite DVB-T DVB - Terrestri E EBU European Union EDTV Enhanced TeleVision ETSI European Standards Instit F FDM Frequency Multiplex FEC Forward Error C FFT Fast Fourier Tra FSK Frequency Shift G GOP Group Of Pictur H HDTV High Definition HL High Level HP High Priority bi I In-phase IDFT Inverse DFT IEC International Commission (p IFFT Inverse FFT ISDB-T Intergeted Broadcasting – ISO International Organization ITU International Telecommunic J JBIG Joint Binary Im Group JPEG Joint Group JTC Joint broadcast L LDTV Limited TeleVision LO Local Oscillato LP Low Priority b M MB Macro Block ML Main Level MP Main Profile MPEG Moving Group MUX Multiplex N NRZ Non Return to Ze O OBO Output Back Off OFDM Orthogonal Division Multiple OOK On-Off-Keying OSI Open System nection model P PAL Phase Alternating PRBS Pseudo-Random Sequence PRK Phase Reversal K PSK Phase Shift Keyin Q Q Quadrature phase QAM Quadrature Modulation QPSK Quadratue Phas Keying R RF Radio Frequency R-S Reed-Solomon SDTV Standard TeleVision SFN Single Frequency SNR Signal Noise Rati T 62 Qua luận văn giúp hiểu thêm kỹ thuật điều chế đa sóng mang OFDM với đặc tính kỹ thuật bật mình: Tính trực giao khẳng định chắn hiệu lý thuyết truyền tin; Khoảng bảo vệ cho phép đảm bảo tính trực giao đồng thời giúp loại bỏ nhiễu ISI; Phép biến đổi Fourier tạo giải pháp đơn giản hiệu để thực kỹ thuật này, giúp cho OFDM ứng dụng rộng rãi Cùng với việc sử dụng hiệu kỹ thuật đồng bộ, cân mã hóa, OFDM chứng tỏ vai trị hệ thống viễn thông kỹ thuật điều chế tiên tiến.Hiểu thêm truyền hình số mặt đất – ứng dụng kỹ thuật OFDM thực tế.Biết trở ngại hệ thống OFDM là: vấn đề tần số offset, vấn đề đồng bộ, cuối vấn đề tỷ số công suất đỉnh trung bình PAPR lớn Mạng OFDM ứng dụng cách hiệu nhiều hệ thống vô tuyến riêng biệt hệ thống phát kỹ thuật số (DAB) truyền hình kỹ thuật số (DVB) Truyền hình số mặt đất DVB-T (mà chọn làm tiêu chuẩn cho truyền hình số Việt Nam) ứng dụng công nghệ OFDM Công nghệ sử dụng 1705 sóng mang (ở chế độ 2K) 6817 sóng mang (chế độ 8K) cho luồng liệu QPSK, 16-QAM hay 64-QAM tỷ lệ khoảng bảo vệ Tu/Ts = 1/4, 1/8, 1/16, 1/32 tuỳ mơi trường có trễ dài hay ngắn Với khả chống hiệu ứng đa đường động tốt OFDM tạo ngành truyền hình có hai khả mà truyền hình tương tự trước truyền hình số tn theo tiêu chuẩn khơng thể đạt Giải pháp q trình chuyển đổi từ phát sóng analog sang phát sóng truyền hình số đáp ứng yêu cầu trước mắt địa phương Các giải pháp nêu tốn tạm thời đài truyền hình nhằm giải toán:Tận dụng sở vật chất sẵn có sử dụng Đài truyền hình địa phương truyền hình Analog Chuẩn bị đội ngũ kĩ thuật phát truyền hình số Đảm bảo cho người tiêu dùng có thời gian chuẩn bị kinh phí, thiết bị chuyển đổi sang máy thu hình số sử dụng máy thu hình Analog Do phạm vi đề tài rộng nên tơi thực qua luận văn chưa cung cấp nhiều thơng tin ứng dụng truyền hình số mặt đất Dù cố gắng luận văn cịn nhiều sai sót kèm theo giới hạn hiểu biết đề tài Hy vọng kinh nghiệm hữu ích cho tơi sau Chương trình mơ luận văn giới hạn khuôn khổ xem xét ảnh hưởng vấn đề ánh xạ (mapping) điều chế IFFT cho truyền hình OFDM chủ yếu liệu ảnh file ảnh (dạng bmp ) hình ảnh chưa nén (hay chưa xử lý) Độ hồn thiện đánh giá theo BER với SNR 63 Khi hình ảnh xử lý (nén – định dạng mp2 mp4) độ hồn thiện truyền hình dựa OFDM đánh giá theo PSNR PSNR tỷ lệ tín hiệu đỉnh nhiễu tỷ lệ tín hiệu tham chiếu ảnh tín hiệu biến dạng hình ảnh tính decibel (dB).Nói chung, giá trị PSNR cao tương quan với chất lượng hình ảnh cao hơn,nhưng thực nghiệm luôn PSNR thước đo chất lượng phổ biến tính tốn dễ dàng nhanh chóng Với khung hình ảnhA = {a1 aM}, B={b1 BM} MAX giá trị điểm ảnh tối đa có thể(2 ^ - 1= 255tương ứng hình ảnh 8-bit) (, )=10 (, ) Chương trình mơ luận văn chưa xem xét đến ảnh hưởng phương pháp mã hóa cho truyền hình số dựa OFDM nêu chương chương 2.Tín hiệu đưa vào xử lý bước đầu định dạng ảnh chưa phải liệu video Các vấn đề tiếp tục nghiên cứu làm rõ sau 64 TÀI LIỆU THAM KHẢO Tiếng Việt T.S Phạm Đắc Bi, K.S Lê Trọng Bằng , K.S Đỗ Anh Tú, ”Các đặc điểm máy phát số DVB-T”, Tạp chí Bưu Chính Viễn Thông & Công Nghệ Thông Tin , (8/2004) Đặng Văn Chuyết, Nguyễn Tuấn Anh, “Cơ sở lý thuyết truyền tin-Tập hai “, Nhà xuất giáo dục (2000) Cheng-Xiang Wang, Nguyễn Văn Đức, “Kỹ thuật thông tin số_tập 1”, Nhà xuất khoa học kĩ thuật- Hà Nội (2006) Nguyễn Hoàng Hải , Th.s Nguyễn Việt Anh , “ Lập trình Matlab ứng dụng“, Nhà xuất khoa học kỹ thuật- Hà Nội (2006) Phan Hương , “ Công nghệ OFDM truyền dẫn vô tuyến băng rộng điểm-đa điểm tốc độ cao (54Mbit/s) “ , Tạp chí Bưu Chính Viễn Thơng & Công Nghệ Thông Tin (13/03/2006) Quách Tuấn Ngọc,”xử lý tín hiệu số “, Nhà xuất giáo dục (1999) Nguyễn Ngọc Tiến,” Một số vấn đề kỹ thuật OFDM”, Tạp chí Bưu Chính Viễn Thơng & Công Nghệ Thông Tin, Kỳ 1(10/2003) Tạ Quốc Ưng , “ Điện thoại di động truyền hình số mặt đất DVB_T “ , Tạp chí Bưu Chính Viễn Thông & Công Nghệ Thông Tin (12/11/2003) Tiếng Anh Anibal Luis Intini, “ Orthogonal Frequency Division Multiplexing for Wirelss Networks “ , University of California Santa Barbara – (December, 2000) 10 Digital Video Broadcasting The international Standard for Digital Television 11 Eric Phillip LAWREY BE (Hons), “Adaptive Techniques for Multiuser OFDM”, a thesis submitted for the degree of Doctor of Philosophy, Electrical and Computer Engineering School of Engineering, JAMES COOK University ( Dec-2001) 65 12 ETS 300 744, “Digital broadcasting systems for television, sound and data services; framing structure, channel coding, and modulation for digital terrestrial television”, European Telecommunication Standard, Doc.300 744 13 K.Fazel , S.Kasier , “ Multi-carrier and spread spectrum systems “, John Wiley & Sons Ltd , The Atrium , Southern Gate, Chichester, West Sussex PO19 8SQ, England ( 2003) 14 Richard van Nee, Ramjee Prasad, OFDM for Wireless Multimedia Communications, Artech House (2000) 15.Guillermo Acosta, "Smart Antenna Research Laboratory" www.ece.gatech.edu/research/ /OFDM/Tutorial_web.pdf 66 PHỤ LỤC Chương trình mơ (Nguồn: Guillermo Acosta,"Smart Antenna Research Laboratory"- www.ece.gatech.edu/research/ /OFDM/Tutorial_web.pdf ) A File OFDM_sim.m % *************** MAIN PROGRAM FILE ***************% % ####################################################### % % ************* OFDM SYSTEM INITIALIZATION: ************* % % **** setting up parameters & obtaining source data **** % % ####################################################### % % Turn off exact-match warning to allow case-insensitive input files warning('off','MATLAB:dispatcher:InexactMatch'); clear all; % clear all previous data in MATLAB workspace close all; % close all previously opened figures and graphs SNR_dB=0:4:40; ber = zeros(1,length(SNR_dB)) fprintf('\n\n##########################################\n') fprintf('#*********** OFDM Simulation ************#\n') fprintf('##########################################\n\n') % save parameters for receiver save('parameters'); 67 % read data from input file x = imread(file_in); figure(100) rgb = imread(file_in); image(rgb); title('RGB image') title('Anh goc lena file bitmap'); colormap(hot(256)) % arrange data read from image for OFDM processing h = size(x,1); w = size(x,2); x = reshape(x', 1, w*h); baseband_tx = double(x); % convert original data word size (bits/word) to symbol size (bits/symbol) baseband_tx = convertor(baseband_tx, word_size, symb_size); % save original baseband data for error calculation later save('err_calc.mat', 'baseband_tx'); % signal to noise ratio in dB for SNR_dB = 0:4:40 save snr SNR_dB % ####################################################### % % ******************* OFDM TRANSMITTER ****************** % % ####################################################### % tic; % start stopwatch % generate header and trailer (an exact copy of the header) 68 f = 0.25; header = sin(0:f*2*pi:f*2*pi*(head_len-1)); f=f/(pi*2/3); header = header+sin(0:f*2*pi:f*2*pi*(head_len-1)); % arrange data into frames and transmit frame_guard = zeros(1, symb_period); time_wave_tx = []; symb_per_carrier = ceil(length(baseband_tx)/carrier_count); fig = 1; if(symb_per_carrier > symb_per_frame) % === multiple frames === % power = 0; while ~isempty(baseband_tx) % number of symbols per frame frame_len = min(symb_per_frame*carrier_count,length(baseband_tx)); frame_data = baseband_tx(1:frame_len); % update the yet-to-modulate data baseband_tx = baseband_tx((frame_len+1):(length(baseband_tx))); % OFDM modulation time_signal_tx = modulate(frame_data,ifft_size,carriers, conj_carriers, carrier_count, symb_size, guard_time, fig); fig = 0; %indicate that modulate() has already generated plots % add a frame guard to each frame of modulated signal time_wave_tx = [time_wave_tx frame_guard time_signal_tx]; frame_power = var(time_signal_tx); end % scale the header to match signal level 69 power = power + frame_power; % The OFDM modulated signal for transmission time_wave_tx = [power*header time_wave_tx frame_guard power*header]; else % === single frame === % % OFDM modulation time_signal_tx = modulate(baseband_tx,ifft_size,carriers, conj_carriers, carrier_count, symb_size, guard_time, fig); % calculate the signal power to scale the header power = var(time_signal_tx); % The OFDM modulated signal for transmission time_wave_tx = [power*header frame_guard time_signal_tx frame_guard power*header]; end % show summary of the OFDM transmission modeling peak = max(abs(time_wave_tx(head_len+1:length(time_wave_tx)-head_len))); sig_rms = std(time_wave_tx(head_len+1:length(time_wave_tx)-head_len)); peak_rms_ratio = (20*log10(peak/sig_rms)); fprintf('\nSummary of the OFDM transmission and channel modeling:\n') fprintf('Peak to RMS power ratio at entrance of channel is:%f dB\n', peak_rms_ratio) % ####################################################### % % **************** COMMUNICATION CHANNEL **************** % % ####################################################### % % ===== signal clipping ===== % clipped_peak = (10^(0-(clipping/20)))*max(abs(time_wave_tx)); 70 time_wave_tx(find(abs(time_wave_tx)>=clipped_peak)) = clipped_peak.*time_wave_tx(find(abs(time_wave_tx)>=clipped_peak)) /abs(time_wave_tx(find(abs(time_wave_tx)>=clipped_peak))); % ===== channel noise ===== % power = var(time_wave_tx); % Gaussian (AWGN) SNR_linear = 10^(SNR_dB/10); noise_factor = sqrt(power/SNR_linear); noise = randn(1,length(time_wave_tx)) * noise_factor; time_wave_rx = time_wave_tx + noise; % show summary of the OFDM channel modeling peak = max(abs(time_wave_rx(head_len+1:length(time_wave_rx)-head_len))); sig_rms = std(time_wave_rx(head_len+1:length(time_wave_rx)-head_len)); peak_rms_ratio = (20*log10(peak/sig_rms)); fprintf('Peak to RMS power ratio at exit of channel is: %f dB\n', peak_rms_ratio) % Save the signal to be received save('received.mat', 'time_wave_rx', 'h', 'w'); fprintf('#******** OFDM data transmitted in %f seconds ********#\n\n', toc) % ####################################################### % % ********************* OFDM RECEIVER ******************* % % ####################################################### % clear all; % flush all data stored in memory previously tic; % start stopwatch % invoking ofdm_parameters.m script to set OFDM system parameters 71 load('parameters'); load('snr'); if SNR_dB > load('Ber_QPSK'); end % receive data load('received.mat'); time_wave_rx = time_wave_rx.'; end_x = length(time_wave_rx); start_x = 1; data = []; phase = []; last_frame = 0; unpad = 0; if rem(w*h, carrier_count)~=0 unpad = carrier_count - rem(w*h, carrier_count); end num_frame=ceil((h*w)*(word_size/symb_size)/(symb_per_frame*carrier_count)); fig = 0; for k = 1:num_frame if k==1 || k==num_frame || rem(k,max(floor(num_frame/10),1))==0 fprintf('Demodulating Frame #%d\n',k) end % pick appropriate trunks of time signal to detect data frame if k==1 time_wave = time_wave_rx(start_x:min(end_x, 72 (head_len+symb_period*((symb_per_frame+1)/2+1)))); else time_wave = time_wave_rx(start_x:min(end_x, ((start_x-1) + (symb_period*((symb_per_frame+1)/2+1))))); end % detect the data frame that only contains the useful information frame_start = frame_detect(time_wave, symb_period, envelope, start_x); if k==num_frame last_frame = 1; frame_end = min(end_x, (frame_start-1) + symb_period* (1+ceil(rem(w*h,carrier_count*symb_per_frame)/carrier_count))); else frame_end=min(frame_start-1+(symb_per_frame+1)*symb_period, end_x); end % take the time signal abstracted from this frame to demodulate time_wave = time_wave_rx(frame_start:frame_end); % update the label for leftover signal start_x = frame_end - symb_period; if k==ceil(num_frame/2) fig = 1; end % demodulate the received time signal [data_rx, phase_rx] = demod (time_wave, ifft_size, carriers, conj_carriers, guard_time, symb_size, word_size, last_frame, unpad, fig); if fig==1 73 fig = 0; % indicate that demod() has already generated plots end phase = [phase phase_rx]; data = [data data_rx]; end phase_rx = phase; % decoded phase data_rx = data; % received data % convert symbol size (bits/symbol) to file word size (bits/byte) as needed data_out = convertor(data_rx, symb_size, word_size); fprintf('#********** OFDM data received in %f seconds *********#\n\n', toc) % ####################################################### % % ********************** DATA OUTPUT ******************** % % ####################################################### % % patch or trim the data to fit a w-by-h image if length(data_out)>(w*h) % trim extra data data_out = data_out(1:(w*h)); elseif length(data_out)

Ngày đăng: 11/11/2020, 21:31

Tài liệu cùng người dùng

Tài liệu liên quan