Phát triển thuật toán tự triển khai cho hệ thống đa robot giám sát môi trường không biết trước

177 34 0
Phát triển thuật toán tự triển khai cho hệ thống đa robot giám sát môi trường không biết trước

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

I HC QUăC GIA H NáI TRìNG I HC CNG NGH Ph⁄m Duy H÷ng PH T TRI N THU T TO N Tĩ TRI N KHAI CHO H THăNG A ROBOT GI M S T M˘I TR×˝NG KH˘NG BI T TRìC Chuyản ng nh: K thut iằn tò M s: 9510302.01 LU N NTI NS NG NHC˘NGNGH KßTHU T I NTÛ, VI N TH˘NG NG×˝I HײNG D N KHOA H¯C: PGS.TS Trƒn Quang Vinh PGS.TS Ngỉ Trung Dơng H Nºi - 2019 i L˝I CAM OAN Tæi xin cam oan lu“n ¡n n y l cỉng tr…nh nghi¶n cứu ca tổi dữợi sỹ hữợng dÔn ca PGS.TS Trn Quang Vinh v PGS TS Ngỉ Trung Dơng, ch÷a ÷ỉc xuĐt bÊn ti bĐt ký nỡi n o Mồi nguỗn thổng tin tham khÊo sò dửng lun Ăn ãu ữổc trch dÔn y TĂc giÊ Phm Duy Hững ii LIC MèN Lới u tiản, tổi xin gòi lới c£m ìn s¥u s›c ‚n PGS.TS Trƒn Quang Vinh v PGS.TS Ngổ Trung Dụng  trỹc tip hữợng dÔn, hỉ trỉ v ºng vi¶n tỉi suŁt qu¡ tr…nh nghi¶n cøu Tỉi xin c£m ìn PhỈng th‰ nghi»m More-Than1 One Robotics cıa PGS.TS Ngỉ Trung Dơng ¢ hØ trỉ cì s vt chĐt, trang thit b v cĂc iãu kiằn cƒn thi‚t ” tæi thüc hi»n c¡c th‰ nghi»m thüc nghiằm trản hằ thng robot tht Tổi xin gòi lới cÊm ỡn chƠn th nh tợi Ban giĂm hiằu Trữớng ⁄i håc Cæng ngh» v c¡c thƒy/cæ cıa khoa i»n tò - Vin thổng  hỉ trổ, to iãu kiằn v ng viản tổi rĐt nhiãu thới gian thỹc hi»n lu“n ¡n CuŁi cịng, tỉi xin gßi líi c£m ỡn tợi nhng ngữới thƠn yảu gia nh  ln s¡t c¡nh, hØ trỉ, chia s· v ºng vi¶n ” tæi ho n th nh lu“n ¡n n y PhỈng th‰ nghi»m More-Than-One Robotics (http://www.morelab.org) thuºc University of Brunei Darussalam, Brunei giai o⁄n 2011-2016, thuºc University of Prince Edward Island, Canada tł 2017 ‚n iii MÖC LÖC Trang phö b…a i Líi cam oan ii Líi c£m ìn iii Danh mửc cĂc kỵ hiằu v ch vi‚t t›t vi Danh möc b£ng ix Danh möc c¡c h… nh v, ỗ th x Mð ƒu xii Chữỡng TNG QUAN V H THăNG A ROBOT 1.1 Giỵi thi»u 1.2 i•u khi”n ph¥n t¡n h» thŁng a robot 1.2.1 iãu khin dỹa trản h nh vi 1.2.2 Trữớng lỹc th nhƠn to 1.2.3 i•u khi”n k‚t nŁi ⁄i sŁ 10 1.3 Tü tri”n khai h» thŁng 1.3.1 Theo dªi a robot 13 a mưc ti¶u 13 1.3.2 Bao phı 17 1.4 K‚t lu“n ch÷ìng 24 Ch÷ìng I U KHI N PH N T N A T NG HDC CHO DUY TR V M— R¸NG M NG A ROBOT 25 2.1 Mæ h…nh h» thŁng 25 2.2 Duy tr… m⁄ng a robot 30 2.3 TŁi ÷u k‚t nŁi, mð rºng m⁄ng 33 iv 2.4 i•u khi”n ph¥n t¡n 2.4.1 2.4.2 2.5 a tƒng 37 i•u khi”n nót 38 i•u khi”n k‚t nŁi 41 º phøc t⁄p v t‰nh Œn ành cıa HDC 2.5.1 43 º phøc t⁄p 43 2.5.2 T‰nh Œn ành 45 2.6 K‚t lu“n ch÷ìng 47 Ch÷ìng ÙNG DƯNG HDC CHO TRI N KHAI H THăNG A ROBOT THEO DI A MệC TI U V BAO PHÕ 48 3.1 B i toĂn theo dêi a mửc tiảu 51 3.1.1 ¡m mƠy ch liản thổng 51 3.1.2 PhĂt hiằn v phƠn loi biản cıa m⁄ng a robot 55 3.1.3 Ăm mƠy ch khổng liản thổng 62 3.1.4 K‚t qu£ th‰ nghi»m v th£o lu“n 64 3.2 B i to¡n bao phı 79 3.2.1 Quy t›c t⁄o ¿nh £o 83 3.2.2 i•u khi”n bao phı 85 3.2.3 K‚t qu£ th‰ nghi»m v th£o lu“n 88 3.3 K‚t lu“n ch÷ìng 92 Ch÷ìng NG DệNG HDC CHO TRI N KHAI H THăNG A ROBOT KH M PH M˘I TR×˝NG C´ C U TRĨC 94 4.1 Chin lữổc trin khai cĂc robot ỗng nh§t 95 4.2 Chin lữổc trin khai robot mà, 96 4.3 K‚t qu£ th‰ nghi»m v th£o lu“n 98 4.3.1 Mæ phäng 98 4.3.2 Thüc nghi»m 106 4.3.3 Th£o lu“n 106 4.4 K‚t lu“n ch÷ìng 108 K T LU N 109 v DANH MÖC C˘NG TR NH KHOA H¯C CÕA T C GI LI N QUAN N LU N N 112 T I LI U THAM KH O vi 113 DANH MƯC C C KÞ HI U V CHVI TT T Danh mửc cĂc kỵ hiằu STT Kỵ hiằu 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 x xi rc S i a Si c Si n Si B i "; "i N Ni c Ni n Ni g Ni ! ! ! ! vi v ia v ic v is ‘Iij Lc di eij r ij Ti Ki Rni T Rni K Rni v max ; ; ij vii = ji Danh möc c¡c chœ vi‚t t›t STT Chœ vi‚t t›t AA ACC AP BC BEC CDI DAR DCC DSHR 10 DSNR 11 ESD 12 13 14 15 16 17 18 19 FILO HDC INMC LCT MANET MRS MTT MWSN 20 NSB 21 22 23 24 RREP RREQ VF VTG viii chu ký iãu khin v i mili giƠy so vợi v i giƠy phữỡng iãu khin kt ni truyãn thng sò dửng ữợc lữổng kt ni i s HDC thch nghi vợi mồi cĐu trúc mng: Nhớ v o chin lữổc tinh giÊn cĂc cĐu trúc kt ni cửc b ca HDC nản cĂc robot loi bọ ữổc cĂc im cỹc tiu cửc b, cặn gồi l bÔy cĐu trúc, v cõ th chuyn ng n mửc tiảu mong muŁn i•u n y gióp MRS câ th” th‰ch nghi vợi cĂc cĐu trúc mng bĐt ký vy ⁄t hi»u su§t cao thüc thi nhi»m vư Trong cĂc nghiản cứu hiằn nay, khổng cõ phữỡng phĂp n o giÊi quyt vĐn ã cỹc tiu cửc b iãu khin MRS bng chin lữổc tinh giÊn cĐu trúc kt ni cửc b nhữ ã xuĐt ca lun Ăn HDC cõ khÊ nông m rng v linh hot vợi nhi•u øng dưng: HDC câ th” ho⁄t ºng cịng MRS cõ s lữổng robot khĂc m khổng cn cĐu h…nh l⁄i h» thŁng T‰nh linh ho⁄t cıa HDC th” hi»n ð chØ HDC câ th” øng dưng cho nhi•u nhi»m vư kh¡c nh÷ di chuy”n theo bƒy; theo dêi a mửc tiảu; bao ph, õng gõp n y ữổc cổng b cổng trnh [CT1-CT4],[CT8] ã xuĐt chin lữổc trin khai MTT sò dửng HDC giÊi quy‚t c£ hai b i to¡n theo dªi a mưc tiảu v bao ph Chin lữổc MTT kt hổp th tửc phƠn nhiằm dỹa trản trao i thổng tin gia cĂc robot trản nãn tÊng mng ữổc tr bi HDC v sò dửng HDC iãu khin robot thỹc thi nhiằm vử Vữổt qua cĂc nghiản cứu  tỗn ti, lu“n ¡n ch¿ b i to¡n theo dªi a mưc ti¶u v bao phı câ °c i”m chung l c¡c ‰ch cho b i to¡n theo dªi a mưc tiảu ging vợi cĂc ch Êo ca b i toĂn bao phı, v… th‚ MTT ÷ỉc ¡p dưng ” gi£i quy‚t c£ hai b i to¡n Trong b i to¡n bao ph, lun Ăn ã xuĐt quy tc to ch Êo VTG cõ th to cĐu trúc lữợi lửc gi¡c cịng c¡c ¿nh quy t›c v b§t quy t›c cho ph†p MRS câ th” bao phı ÷ỉc mỉi tr÷íng cõ cĐu trúc bĐt ký Lun Ăn cụng nghiản cứu, kt hổp nhiãu quĂ trnh iãu khin nhữ di chuyn theo by, trin khai bao ph v thu hỗi MRS mổi trữớng cõ cĐu trúc ging tặa nh trản mổ hnh sò dửng cĂc robot ỗng nhĐt v mổ hnh khổng ỗng nhĐt kiu robot mà, õng gõp n y ữổc cổng b cổng trnh [CT2-CT5] ã xuĐt thut toĂn phĂt hiằn v phƠn loi biản cho mng MRS õ sòa lỉi biản ữổc thỹc hiằn bng tip cn hnh hồc Lỉi 110 biản ữổc loi bä thỉng qua xem x†t c§u tróc h…nh håc c¡c kt ni cửc b thay cho phữỡng phĂp sòa lỉi » quy thu“t to¡n gŁc Nâ ÷ỉc øng dưng ” gi£i quy‚t b i to¡n theo dªi a mưc tiảu kch bÊn cĂc Ăm mƠy ch khổng liản thỉng âng gâp n y ÷ỉc cỉng bŁ cỉng tr…nh [CT6-CT7] HDC v c¡c chi‚n l÷ỉc tri”n khai ÷ỉc ki”m chøng v ¡nh gi¡ hi»u qu£ thæng qua c¡c th nghiằm mổ phọng ữổc nghiản cứu sinh tỹ phĂt trin trản phn mãm MatLab v thỹc nghiằm trản ti a 14 robot di ºng hai b¡nh vi sai câ ti phặng ngh nghiằm Kt quÊ cho thĐy HDC v c¡c chi‚n l÷ỉc tri”n khai ho⁄t ºng Œn ành, cho hiằu suĐt cao, c biằt ữổc kch hot tƒng vỵi Lc = n 1, linh ho⁄t v thch nghi vợi nhiãu ứng dửng v kch bÊn khĂc Kin ngh vã nhng nghiản cứu tip theo: Nhữ  ã cp phn m u, lun Ăn khổng nghiản cứu, giÊi quyt b i toĂn vã hằ thŁng c£m bi‚n v tŒng hỉp c£m bi‚n cho v§n • ành và, ành danh cıa robot; khỉng nghi¶n cøu b i to¡n £m b£o º tin c“y cıa truy•n thæng m⁄ng a robot thay v o â lu“n ¡n gi£ thi‚t c¡c robot câ vòng c£m nh“n v truyãn thổng hnh ắa trặn vợi khÊ nông nh v, ành danh v trao Œi thỉng tin vỵi º ch‰nh x¡c v tin c“y cao M°c dị gi£ thi‚t v• vũng cÊm nhn ữổc sò dửng rng rÂi cĂc nghiản cứu vã MRS v mng cÊm nhn khổng dƠy di ºng MWSN (Mobile Wireless Sensor Network) song thüc t, vũng cÊm nhn ắa trặn khõ Êm bÊo viằc nh v, nh danh ỗng ãu to n dÊi c¡c h⁄n ch‚ v• cỉng ngh» c£m bi‚n hi»n v… v“y mỉ h…nh x¡c su§t cịng vi»c bŒ sung thảm nhiu trng cho vũng cÊm nhn ắa trặn cn thit ữổc nghiản cứu Ăp dửng cho b i toĂn Tữỡng tỹ, mổ h nh truyãn thổng nh phƠn ữổc ¡p dưng ” bi”u di„n truy•n thỉng cıa robot theo mổ hnh mng MANET vợi giÊ thit t lằ truyãn/nhn th nh cổng luổn ữổc Êm bÊo vợi phữỡng thức truy•n i”m - i”m (P2P) M°c dị gi£ thi‚t n y l hổp lỵ i vợi cĂc cổng nghằ truyãn thổng khổng dƠy hiằn nay, viằc truyãn thổng gia c¡c robot kho£ng c¡ch hµp câ th” bà c£n tr bi cĂc chữợng ngi vt v tr truyãn thổng P2P gƠy bi viằc chuyn ng ca cĂc robot vÔn l b i toĂn nghiản cứu m mng di ng khổng dƠy Trong tữỡng lai, cõ th phĂt trin cĂc nghiản cứu tip theo vã: HDC vợi mổ hnh xĂc suĐt v nhiu cho cÊm nhn v khÊ nông truyãn thổng ca robot; Mổ hnh hồc s¥u (deep learning) cho b i to¡n l“p k‚ ho⁄ch v dÔn ữớng sò dửng HDC; theo dêi a mửc ti¶u di ºng 111 DANH MƯC C˘NG TR NH KHOA H¯C CÕA T C GI LI NQUAN NLU N N [CT1] Pham Duy Hung, Pham Minh Trien, Tran Quang Vinh, and Trung Dung Ngo, Accelerating multi-target tracking by a swarm of mobile robots with network preservation , IEEE International Conference of Soft Computing and Pat-tern Recognition (SoCPaR), Hanoi, Vietnam, pp.327-332, 2013 [CT2] Pham Duy Hung, Pham Minh Trien, Tran Quang Vinh, and Ngo Trung Dung, Self-deployment strategy for a swarm of robots with global network preser-vation to assist rescuers in hazardous environments , IEEE International Confer-ence on Robotics and Biomimetics (ROBIO), Bali, Indonesia, pp.2655-2660, Dec 2014 [CT3] Ngo Trung Dung, Pham Duy Hung, and Pham Minh Trien, "A kangaroo inspired heterogeneous swarm of mobile robots with global network integrity for fast deployment and exploration in large scale structured environments", IEEE International Conference on Robotics and Biomimetics (ROBIO), Bali, Indonesia, pp 1205-1212, Dec 2014 [CT4] Pham Duy Hung, Tran Quang Vinh, and Ngo Trung Dung, "A scalable, decentralised large-scale network of mobile robots for multi-target tracking , In: Intelligent Autonomous Systems 13, 2194-5357, vol 302, Springer International Publishing, pp 621-637, ISBN 978-3-319-08338-4, 2016 [CT5] Pham Duy Hung, Tran Quang Vinh, and Ngo Trung Dung, "Distributed coverage control for networked multi-robot systems in any environments , IEEE In-ternational Conference on Advanced Intelligent Mechatronics (AIM), Banff, Canada, pp 1067-1072, 2016 [CT6] Pham Duy Hung, Tran Quang Vinh, and Ngo Trung Dung, "An online local boundary detection and classification algorithm for networked multi-robot systems , IEEE International Conference on Advanced Technologies for Commu-nications (ATC), Hanoi, Vietnam, pp 253-258, 2016 [CT7] Pham Duy Hung, Tran Quang Vinh, and Ngo Trung Dung, "An online distributed boundary detection and classification algorithm for mobile sensor networks , Journal on Electronics and Communications (JEC), Vol 7, No.1-2, pp 29-36, 2017 [CT8] Pham Duy Hung, Tran Quang Vinh, and Ngo Trung Dung, "Hierarchical distributed control for global network integrity preservation in multi-robot systems," IEEE Transactions on Cybernetics, DOI:10.1109/TCYB.2019.2913326, pp.1-14, 2019 112 T ILI UTHAMKH O [1] L Steels, When are robots intelligent autonomous agents? Robotics and Autonomous systems, vol 15, no 1-2, pp 9, 1995 [2] B Khaldi and F Cherif, An overview of swarm robotics: Swarm intelligence applied to multi-robotics, International Journal of Computer Applications, vol 126, no 2, 2015 [3] L H Lan and L T T Nga, Aggregation stability of multiple agents with fuzzy attraction and repulsion forces, in 2013 18th International Conference on Methods Models in Automation Robotics (MMAR), pp 81 85, 2013 [4] L¶ Th Thúy Nga Lả Hũng LƠn, phƠn tch sỹ n ành tư bƒy cıa robot v bƒy n sß dưng h m hót/ 'y mí, T⁄p ch‰ Khoa håc Giao thỉng V“n t£i, pp 88 93, 2013 [5] L¶ Thà Thúy Nga v Lả Hũng LƠn, iãu khin robot by n tm kim v trĂnh vt cÊn sò dửng logic mí, T⁄p ch‰ Khoa håc Giao thỉng V“n t£i, pp 15 20, 2014 [6] L T T Nga and L H Lan, Application of null space based behavior control to the swarm robot’s control, 2015 [7] L¶ Thà Thóy Nga v Lả Hũng LƠn, iãu khin robot by n tr¡nh v“t c£n v t… m ki‚m mưc ti¶u, in Hºi nghà VCCA to n quŁc lƒn thø 3, pp.87 93, 2015 [8] N Le Thi Thuy and T Nguyen Trong, The multitasking system of swarm robot based on null-space-behavioral control combined with fuzzy logic, Mi-cromachines, vol 8, no 12, p 357, 2017 [9] L¶ Thà Thóy Nga, ˚n ành v i•u khi”n a nhi»m h» thŁng robot bƒy n, Lun Ăn Tin sắ, Trữớng i hồc Giao thổng Vn t£i, 2016 113 [10] L N Tan, Omnidirectional-vision-based distributed optimal tracking con- trol for mobile multirobot systems with kinematic and dynamic disturbance rejection, IEEE Transactions on Industrial Electronics, vol 65, no 7, pp 5693 5703, 2018 [11] N T Linh, Nghiản cứu thut toĂn tm ữớng bao ph cho mt nhõm robot di ng, Lun vôn thc sắ, Trữớng i håc B¡ch Khoa H Nºi, 2016 [12] H H Viet, V.-H Dang, S Choi, and T C Chung, Bob: an online coverage approach for multi-robot systems, Applied Intelligence, vol 42, no 2, pp 157 173, 2015 [13] A Q Hoang and M T Pham, Applying apf and pso algorithm for searching task of multi-robot system, VNU Journal of Science, 2015 [14] A Q Hoang and M T Pham, Swarm optimization approach for light source detection by multi-robot system, 2016 [15] A Q Hoang and M T Pham, Light source detection using multirobot sys-tems with particle swarm optimization approach, PROCEEDING of Pub-lishing House for Science and Technology, vol 1, no 1, 2016 [16] A.Q Hoang and M.T Pham, Swarm intelligence-based approach for macro-scopic scale odor source localization using multi-robot system, in Interna-tional Conference on Advances in Information and Communication Technol-ogy Springer, pp 593 602, 2016 [17] L E Parker, Current research in multirobot systems, Artificial Life and Robotics, vol 7, no 1-2, pp 5, 2003 [18] C W Reynolds, Flocks, herds and schools: A distributed behavioral model, SIGGRAPH Comput Graph., vol 21, no 4, pp 25 34, Aug 1987 [19] C W Reynolds, Steering behaviors for autonomous characters, in Game developers conference, vol 1999, pp 763 782, 1999 [20] C W Reynolds, Interaction with groups of autonomous characters, in Game Developers Conference, vol 2000, pp 449 460, 2000 [21] T Vicsek, A Czirâk, E Ben-Jacob, I Cohen, and O Shochet, Novel type of phase transition in a system of self-driven particles, Physical review letters, vol 75, no 6, p 1226, 1995 114 [22] A Jadbabaie, J Lin, and A S Morse, Coordination of groups of mobile autonomous agents using nearest neighbor rules IEEE Transactions on au-tomatic control, vol 48, no 6, pp 988 1001, 2003 [23] M J Mataric, Designing emergent behaviors: From local interactions to collective intelligence, in Proceedings of the Second International Conference on Simulation of Adaptive Behavior, pp 432 441, 1993 [24] M J Mataric, Designing and understanding adaptive group behavior, Adaptive Behavior, vol 4, no 1, pp 51 80, 1995 [25] A Marino, L Parker, G Antonelli, and F Caccavale, Behavioral control for multi-robot perimeter patrol: A finite state automata approach, in Robotics and Automation, 2009 ICRA’09 IEEE International Conference on IEEE, pp 831 836, 2009 [26] A Marino, L E Parker, G Antonelli, and F Caccavale, A decentralized architecture for multi-robot systems based on the null-space-behavioral con-trol with application to multi-robot border patrolling, Journal of Intelligent & Robotic Systems, vol 71, no 3-4, pp 423 444, 2013 [27] G Antonelli, F Arrichiello, and S Chiaverini, Flocking for multi-robot sys- tems via the null-space-based behavioral control, Swarm Intelligence, vol 4, no 1, pp 37 56, 2010 [28] L Sabattini, C Secchi, and C Fantuzzi, Coordinated dynamic behaviors for multirobot systems with collision avoidance, IEEE transactions on cybernetics, vol 47, no 12, pp 4062 4073, 2017 [29] D Xu, X Zhang, Z Zhu, C Chen, and P Yang, Behavior-based formation control of swarm Engineering, vol 2014, 2014 robots, Mathematical Problems in [30] F J Mendiburu, M R Morais, and A M Lima, Behavior coordination in multi-robot systems, in Automatica (ICA-ACCA), IEEE International Conference on IEEE, pp 7, 2016 [31] O Khatib, Real-time obstacle avoidance for manipulators and mobile robots, International Journal of Robotics Research Res., vol 5, no 1, pp 90 98, Apr 1986 115 [32] M J M Andrew Howard and G S Sukhatme, Mobile sensor network de- ployment using potential fields: A distributed, scalable solution to the area coverage problem, in Proceedings of the International Symposium on Dis-tributed Autonomous Robotic Systems, pp 299 308, 2002 [33] W M Spears, W M Spears, D F Spears, J C Hamann, and R Heil, Dis-tributed, physics-based control of swarms of vehicles, Autonomous Robots, vol 17, pp 137 162, 2004 [34] D O Popa, H E Stephanou, C Helm, and A C Sanderson, Robotic deploy-ment of sensor networks using potential fields, in Robotics and Automation, 2004 Proceedings ICRA’04 2004 IEEE International Conference on, vol IEEE, pp 642 647,2004 [35] D V Dimarogonas and K J Kyriakopoulos, Connectedness preserving dis-tributed swarm aggregation for multiple kinematic robots IEEE Transac-tions on Robotics, vol 24, no 5, pp 1213 1223, 2008 [36] S B Mikkelsen, R Jespersen, and T D Ngo, Probabilistic communication based potential force for robot formations: A practical approach, in DARS, ap 243 253, 2010 [37] A Ajorlou, A Momeni, and A G Aghdam, A class of bounded distributed control strategies for connectivity preservation in multi-agent systems, IEEE Transactions on Automatic Control, vol 55, no 12, pp 2828 2833, 2010 [38] B J Julian, M Angermann, M Schwager, and D Rus, Distributed robotic sensor networks: An information-theoretic approach, International Journal of Robotics Research, vol 31, no 10, pp 1134 1154, September 2012 [39] G Sallam, U Baroudi, and M Al-Shaboti, Multi-robot deployment using a virtual force approach: Challenges and guidelines, Electronics, vol 5, no 3, p 34, 2016 [40] Y Dong, Rendezvous with connectivity preservation for multi-robot systems with an unknown leader, International Journal of Control, pp 10, 2017 [41] F Matoui, B Boussaid, and M N Abdelkrim, Local minimum solution for the potential field method in multiple robot motion planning task, in 2015 16th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), pp 452 457, Dec 2015 116 [42] M Fiedler, Algebraic connectivity of graphs, Czechoslovak mathematical journal, vol 23, no 2, pp 298 305, 1973 [43] P Yang, R A Freeman, G J Gordon, K M Lynch, S S Srinivasa, and R Sukthankar, Decentralized estimation and control of graph connectivity for mobile sensor networks Automatica, vol 46, no 2, pp 390 396, 2010 [44] L Sabattini, N Chopra, and C Secchi, On decentralized connectivity main-tenance for mobile robotic systems, in Decision and Control and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on IEEE, pp 988 993, 2011 [45] L Sabattini, N Chopra, and C Secchi, Decentralized connectivity mainte- nance for cooperative control of mobile robotic systems The International Journal of Robotics Research, vol 32, no 12, pp 1411 1423, 2013 [46] L Sabattini, C Secchi, N Chopra, and A Gasparri, Distributed control of multirobot systems with global connectivity maintenance IEEE Transactions on Robotics, vol 29, no 5, pp 1326 1332, 2013 [47] P Robuffo Giordano, A Franchi, C Secchi, and H H Bulthoff, A Passivity-Based Decentralized Strategy for Generalized Connectivity Maintenance, The International Journal of Robotics Research, vol 32, no 3, pp 299 323, Mar 2013 [48] T Nestmeyer, P R Giordano, H H Bulthoff, and A Franchi, Decentralized simultaneous multi-target exploration using a connected network of multiple robots, Autonomous Robots, pp 23, 2016 [49] R K Williams and G S Sukhatme, Locally constrained connectivity con- trol in mobile robot networks, in 2013 IEEE International Conference on Robotics and Automation, pp 901 906, May 2013 [50] R K Williams, A Gasparri, G S Sukhatme, and G Ulivi, Global con- nectivity control for spatially interacting multi-robot systems with unicycle kinematics, in 2015 IEEE International Conference on Robotics and Automation (ICRA), pp 1255 1261, May 2015 [51] D Cai, S Wu, and J Deng, Distributed global connectivity maintenance and control of multi-robot networks, IEEE Access, 2017 117 [52] A Gasparri, L Sabattini, and G Ulivi, Bounded control law for global connectivity maintenance in cooperative multirobot systems, IEEE Transactions on Robotics, vol 33, no 3, pp 700 717, 2017 [53] K Karpe, D Samiappan, K Ramamoorthy, and L Sabattini, Perturbation analysis of decentralized estimators, in 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) IEEE, pp 2373 2378, 2018 [54] J Panerati, M Minelli, C Ghedini, L Meyer, M Kaufmann, L Sabattini, and G Beltrame, Robust connectivity maintenance for fallible robots, Autonomous Robots, vol 43, no 3, pp 769 787, 2019 [55] K Khateri, M Pourgholi, M Montazeri, and L Sabattini, A comparison between decentralized local and global methods for connectivity maintenance of multi-robot networks, IEEE Robotics and Automation Letters, vol 4, no 2, pp 633 640, 2019 [56] C Robin and S Lacroix, Multi-robot target detection and tracking: taxonomy and survey, Autonomous Robots, vol 40, no 4, pp 729 760, Apr 2016 [57] B Jung and G S Sukhatme, Tracking targets using multiple robots: The effect of environment occlusion Auton Robots, vol 13, no 3, pp 191 205, 2002 [58] S Martinez and F Bullo, Optimal sensor placement and motion coordina- tion for target tracking, Automatica, vol 42, no 4, pp 661 668, 2006 [59] Y Zou and K Chakrabarty, Distributed mobility management for target tracking in mobile sensor networks, IEEE Transactions on Mobile Computing, vol 6, no 8, pp 872 887, Aug 2007 [60] Y Lan, G Yan, and Z Lin, A hybrid control approach to cooperative target tracking with multiple mobile robots, in Proceedings of the 2009 Conference on American Control Conference, ser ACC’09 Piscataway, NJ, USA: IEEE Press, pp 2624 2629, 2009 [61] R Tan, G Xing, J Wang, and H C So, Exploiting reactive mobility for col-laborative target detection in wireless sensor networks, IEEE Transactions on Mobile Computing, vol 9, no 3, pp 317 332, 2010 118 [62] P Dames, Distributed multi-target search and tracking using the phd filter, in 2017 International Symposium on Multi-Robot and Multi-Agent Systems (MRS) IEEE, pp 8, 2017 [63] N Majcherczyk, A Jayabalan, G Beltrame, and C Pinciroli, Decentral- ized connectivity-preserving deployment of large-scale robot swarms, in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE, pp 4295 4302, 2018 [64] A Q Faridi, S Sharma, A Shukla, R Tiwari, and J Dhar, Multi-robot multi-target dynamic path planning using artificial bee colony and evolutionary programming in unknown environment, Intelligent Service Robotics, vol 11, no 2, pp 171 186, 2018 [65] S Marangoz, M F Amasyal , E Uslu, F Cakmak, N Altuntas, and S Yavuz, More scalable solution for multi-robot multi-target assignment problem, Robotics and Autonomous Systems, 2019 [66] J Cortes, S Martinez, T Karatas, and F Bullo, Coverage control for mobile sensing networks, IEEE Transactions Automation, vol 20, no 2, pp 243 255, 2004 on Robotics and [67] L E Parker, Distributed algorithms for multi-robot observation of multiple moving targets, Autonomous robots, vol 12, no 3, pp 231 255, 2002 [68] Z Tang and U Ozguner, Motion planning for multitarget surveillance with mobile sensor agents IEEE Transactions on Robotics, vol 21, no 5, pp 898 908, 2005 [69] B Shucker and J K Bennett, Target tracking with distributed robotic macrosensors, in Military Communications Conference (MILCOM), vol 4, pp 2617 2623, 2005 [70] T H Chung, J W Burdick, and R M Murray, A decentralized motion coordination strategy for dynamic target tracking, in Int Conf Robotics and Automation, pp 2416 2422, 2006 [71] R Olfati-Saber, Distributed tracking for mobile sensor networks with information-driven mobility, in American Control Conference, 2007 ACC’07 IEEE, pp 4606 4612, 2007 119 [72] I Harmati and K Skrzypczyk, Robot team coordination for target tracking using fuzzy logic controller in game theoretic framework Robotics and Autonomous Systems, vol 57, no 1, pp 75 86, 2009 [73] A Kolling and S Carpin, Cooperative observation of multiple moving targets: an algorithm and its formalization I J Robotic Res., vol 26, no 9, pp 935 953, 2007 [74] D Tolic, R Fierro, and S Ferrari, Cooperative multi-target tracking via hybrid modeling and geometric optimization, Mediterranean Conference on Control and Automation, vol 0, pp 440 445, 2009 [75] L Blazovics, K Csorba, B Forstner, and C Hassan, Target tracking and surrounding with swarm robots, Engineering of Computer-Based Systems, IEEE International Conference on the, vol 0, pp 135 141, 2012 [76] H M La and W Sheng, Dynamic target tracking and observing in a mobile sensor network Robotics and Autonomous Systems, vol 60, no 7, pp 996 1009, 2012 [77] T Marian, O Mokryn, and Y Shavitt, Sensing clouds: A distributed cooperative target tracking with tiny binary noisy sensors Ad Hoc Networks, vol 11, no 8, pp 2356 2366, 2013 [78] R Olfati-saber and R Olfati-saber, Flocking for multi-agent dynamic sys- tems: Algorithms and theory, IEEE Transactions on Automatic Control, vol 51, pp 401 420, 2006 [79] J Banfi, J Guzzi, A Giusti, L Gambardella, and G A Di Caro, Fair multi-target tracking in cooperative multi-robot systems, in 2015 IEEE International Conference on Robotics and Automation (ICRA) IEEE, pp 5411 5418, 2015 [80] K Hausman, J Muller, A Hariharan, N Ayanian, and G S Sukhatme, Cooperative multi-robot control for target tracking with onboard sensing, The International Journal of Robotics Research, vol 34, no 13, pp 1660 1677, 2015 [81] J J Rold¡n, P Garcia-Aunon, M Garzân, J de Leân, J del Cerro, and A Barrientos, Heterogeneous multi-robot system for mapping environmental variables of greenhouses, Sensors, vol 16, no 7, p 1018, 2016 120 [82] J Tardâs, R Aragues, C Sagu†s, and C Rubio, Simultaneous deployment and tracking multi-robot strategies maintenance, Sensors, vol 18, no 3, p 927, 2018 with connectivity [83] L Jin, S Li, H M La, X Zhang, and B Hu, Dynamic task allocation in multi-robot coordination for moving target tracking: A distributed approach, Automatica, vol 100, pp 75 81, 2019 [84] Y Sung, A K Budhiraja, R K Williams, and P Tokekar, Distributed si- multaneous action and target assignment for multi-robot multi-target track-ing, in 2018 IEEE International Conference on Robotics and Automation (ICRA) IEEE, pp 9, 2018 [85] L Zhou, V Tzoumas, G J Pappas, and P Tokekar, Resilient active target tracking with multiple robots, IEEE Robotics and Automation Letters, vol 4, no 1, pp 129 136, 2019 [86] Q Du, V Faber, and M Gunzburger, Centroidal voronoi tessellations: Ap- plications and algorithms, SIAM review, vol 41, no 4, pp 637 676, 1999 [87] J Cort†s, S Mart‰nez, and F Bullo, Spatially-distributed coverage optimization and control with limited-range interactions, ESAIM: Control, Optimisation and Calculus of Variations, vol 11, pp 691 719, 2005 [88] K Guruprasad and P Dasgupta, Distributed voronoi partitioning for multi- robot systems with limited range sensors, in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on IEEE, pp 3546 3552, 2012 [89] L C Pimenta, V Kumar, R C Mesquita, and G A Pereira, Sensing and coverage for a network of heterogeneous robots, in Decision and Control, 2008 CDC 2008 47th IEEE Conference on IEEE, pp 3947 3952, 2008 [90] A Breitenmoser, M Schwager, J.-C Metzger, R Siegwart, and D Rus, Voronoi coverage of non-convex environments with a group of networked robots, in Robotics and Automation (ICRA), 2010 IEEE International Conference on IEEE, pp 4982 4989, 2010 [91] M Schwager, D Rus, and J J Slotine, Decentralized, adaptive coverage control for networked robots, International Journal of Robotics Research, vol 28, no 3, pp 357 375, March 2009 121 [92] M Schwager, M P Vitus, D Rus, and C J Tomlin, Robust adaptive cov- erage for robotic sensor networks, in Proceedings of the International Sym-posium on Robotics Research (ISRR 11), August 2011 [93] D E Soltero, M Schwager, and D Rus, Decentralized path planning for coverage tasks using gradient descent adaptive control, International Journal of Robotics Research, vol 33, no 3, pp 401 425, March 2014 [94] E Bryngelsson, Multi-robot distributed coverage in realistic environments, Master’s thesis, Chalmer University of Technology, Sweden, 2016 [95] M Pavone, A Arsie, E Frazzoli, and F Bullo, Distributed algorithms for environment partitioning in mobile robotic networks, IEEE Trans on Automatic Control, vol 56, no 8, pp 1834 1848, 2011 [96] R J Alitappeh, G A Pereira, A R Araójo, and L C Pimenta, Multi-robot deployment using topological maps, Journal of Intelligent & Robotic Systems, vol 86, no 3-4, pp 641 661, 2017 [97] G Lee and N Y Chong, A geometric approach to deploying robot swarms, Annals of Mathematics and Artificial Intelligence, vol 52, no 24, pp 257 280, 2008 [98] S K Lee, S P Fekete, and J McLurkin, Structured triangulation in multi- robot systems: Coverage, patrolling, voronoi partitions, and geodesic centers, The International Journal of Robotics Research, vol 35, no 10, pp 1234 1260, 2016 [99] N Karapetyan, K Benson, C McKinney, P Taslakian, and I Rekleitis, Ef- ficient multi-robot coverage of a known environment, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) IEEE, pp 1846 1852, 2017 [100] C Gao, Y Kou, Z Li, A Xu, Y Li, and Y Chang, Optimal multirobot coverage path planning: Ideal-shaped spanning tree, Mathematical Problems in Engineering, vol 2018, 2018 [101] J J Lopez-Perez, U H Hernandez-Belmonte, J.-P Ramirez-Paredes, M A Contreras-Cruz, and V Ayala-Ramirez, Distributed multirobot exploration based on scene partitioning and frontier selection, Mathematical Problems in Engineering, vol 2018, 2018 122 [102] S Poduri, S Poduri, and G S Sukhatme, Constrained coverage for mo- bile sensor networks, IN IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, vol 1, pp 165 172, 2004 [103] J M Sailesh Prabhu, William Li, Hexagonal lattice formation in multi- robot systems, in Distributed Autonomous Robotic Systems, vol 104 Springer Berlin Heidelberg, pp.307 320,2014 [104] H Zhao, J Wei, S Huang, L Zhou, and Q Tang, Regular topology forma-tion based on artificial forces for distributed mobile robotic networks, IEEE Transactions on Mobile Computing, 2018 [105] V Gazi and K M Passino, A class of attractions/repulsion functions for stable swarm aggregations, International Journal of Control, vol 77, no 18, ap 1567 1579, 2004 [106] W Fan, Y Liu, F Wang, and X Cai, Multi-robot formation control using potential field for mobile ad-hoc networks, in Robotics and Biomimetics (ROBIO) 2005 IEEE International Conference on IEEE, pp 133 138, 2005 [107] A Howard, M J Mataric, and G S Sukhatme, An incremental self- deployment algorithm for mobile sensor networks, Auton Robots, vol 13, no 2, pp 113 126, 2002 [108] W Li and C G Cassandras, Distributed cooperative coverage control of sensor networks, in Decision and Control, 2005 and 2005 European Control Conference CDC-ECC’05 44th IEEE Conference on IEEE, pp 2542 2547, 2005 [109] M A Batalin and G S Sukhatme, Coverage, exploration and deployment by a mobile robot and communication network Telecommunication Systems, vol 26, no 2-4, pp 181 196, 2004 [110] Y Zou and K Chakrabarty, Sensor deployment and target localization in distributed sensor networks, ACM Trans Embed Comput Syst., vol 3, no 1, pp 61 91, Feb 2004 [111] L E Parker, L E Parker, and A Howard, Experiments with a large het- erogeneous mobile robot team: Exploration, mapping, deployment and detection, INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, vol 25, ap 431 447, 2006 123 [112] C C Minyi Zhong, Distributed coverage control and data collection with mobile sensor networks, IEEE Trans Automat Contr., vol 56, pp 5604 5609, 2011 [113] B Liu, O Dousse, P Nain, and D Towsley, Dynamic coverage of mobile sensor networks, IEEE Transactions on Parallel and Distributed Systems, vol 24, no 2, pp 301 311, 2013 [114] J M Palacios-Gasâs, E Montijano, C Sagu†s, and S Llorente, Distributed coverage estimation and control for multirobot persistent tasks, IEEE transactions on Robotics, vol 32, no 6, pp 1444 1460, 2016 [115] J Zhong, H Cheng, L He, and F Ouyang, Decentralized full coverage of unknown areas by multiple robots with limited visibility sensing, IEEE Robotics and Automation Letters, vol 4, no 2, pp 338 345, 2019 [116] M Schwager, D Rus, and J J Slotine, Unifying geometric, probabilis-tic, and potential field approaches to multi-robot deployment, International Journal of Robotics Research, vol 30, no 3, pp 371 383, March 2011 [117] J L Gross and J Yellen, Graph theory and its applications Chapman and Hall/CRC, 2005 [118] I H Lee, Y Sooyoung, S H Cho, and H S Kim, Robot path routing for shortest moving distance in wireless robotic sensor networks, IEICE trans-actions on communications, vol 94, no 1, pp 311 314, 2011 [119] P H Dave, Design and analysis of algorithms Pearson Education India, 2009 [120] H KHALIL, Nonlinear Control Pearson education, Prentice Hall, 2002 [121] J McLurkin and E D Demaine, A distributed boundary detection algo- rithm for multi-robot systems, in Intelligent Robots and Systems, 2009 IROS 2009 IEEE/RSJ International Conference on IEEE, pp 4791 4798, 2009 124 ... Ch÷ìng ÙNG DƯNG HDC CHO TRI N KHAI H THăNG A ROBOT KH M PH MI TRìNG C C U TRểC 94 4.1 Chin lữổc trin khai cĂc robot ỗng nhĐt 95 4.2 Chi‚n l÷ỉc tri”n khai robot mµ, ... the ni»m robot tỵi h⁄n (Critical robot) cho h nh ng iãu khin nƠng cao Mºt robot applied in a connectivity-maintenance algorithm for full robot tợi hn n ữổc xem l point robots, where each robots... v ma trn li•n k• A: Robot (xanh l¡) câ ma s tr“n li•n k• A t⁄o bði robot v c¡c robot h ng xâm cıa nâ {2, 5, 12}; Robot ( ä s t÷ìi) câ ma tr“n li•n k• A t⁄o bði robot v c¡c robot h ng xâm {4, 6,

Ngày đăng: 09/11/2020, 09:06

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan