Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 325 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
325
Dung lượng
42,67 MB
Nội dung
ĐẠI SỐ 10 Lớp toán thầy Dũng Ngõ 13, Khuất Duy Tiến ĐT: 0972026205 HDedu - Page HDedu - Page HDedu - Page HDedu - Page HDedu - Page HDedu - Page HDedu - Page HDedu - Page HDedu - Page HDedu - Page 10 www.tuhoc.edu.vn P(x) dx, Q(x) Bài toán 1: 1)(x P(x) Q(x) a A x B x1 x x2 0) P(x) Q(x) a A x x0 a A x x1 B , (x x )2 – x2)(x – x3) thì: B x C x2 1)(x P(x) Q(x) a A x x1 x a A x x1 x x3 , – x2)2 thì: B x2 1)(x P(x) Q(x) , 1)(x P(x) Q(x) – x2 C , (x - x )2 + mx + n) thì: Bx C , x mx n htttp://tuhoc.edu.vn/blog HDedu - Page 311 www.tuhoc.edu.vn VD6: Tính nguyên hàm sau: (a) I1 2x dx; x 3x 2x dx x 3x (b) I2 = HD (a) – Ta có: 2x x 3x 2 2x (x 1)(x 2) A B x A(x 2) B(x 1) (x 1)(x 2) x x A B dx (A B)x (2A B) (x 1)(x 2) A B 2A B I1 x x dx x dx 3ln|x+1| ln|x+2| + C (b) – Ta có: 2x x 3x 2x (x 1)(x 2)2 A(x 2)2 (A B)x A B 3(x 1) 3(x 2) (x 2) C (x 2)2 B(x 1)(x 2) C(x 1) (x 1)(x 2)2 (4A B C)x 4A (x 1)(x 2)2 A B (x 1) 4A B C 4A 2B C I2 A 1/3 B C 1/3 3 (x 2B C 2)2 dx dx dx dx 3 x x (x 2)2 1 ln | x | ln | x | 3 (x 2) C htttp://tuhoc.edu.vn/blog HDedu - Page 312 www.tuhoc.edu.vn Tính nguyên hàm sau: 2x dx, x 5x 5x dx, 2x 4x I1 I3 4x dx x 6x 3x dx x 3x I2 2 I4 Tính nguyên hàm sau: 2x dx, x 5x2 6x x2 2x dx, x3 x 5x I1 I3 I2 I4 x3 x3 P(x) dx, Q(x) Bài toán 2: P(x) Q(x) x 2x dx 2x 5x x2 3x dx 2x 5x P1 (x) , Q(x) R(x) P1 (x) P(x) dx Q(x) P1 (x) dx Q(x) R(x)dx x5 VD7: Tính nguyên hàm sau: I 2x 4x3 x2 2x dx = HD x5 x3 I htttp://tuhoc.edu.vn/blog x4 2x 4x3 x2 2x 2x 2 x + 2x – 4x3 + cho x x3 2x 2x x 2x 2x dx x2 2x ln x ln|x - 2| C HDedu - Page 313 www.tuhoc.edu.vn Tính nguyên hàm sau: I1 x2 x3 dx, 2x I2 x3 2x 10x dx x 2x Tính nguyên hàm sau: I1 x5 3x3 dx, x2 x I2 x3 4x dx, x2 2x I3 x 5x dx 2x htttp://tuhoc.edu.vn/blog HDedu - Page 314 www.tuhoc.edu.vn e2x I1 +C I2 ln x ln x I3 sin(2x I4 I7 x cos 2x x sin 2x I2 I2 ln x x2 I1 x2 I2 I3 x2 x3 6 ln x C cos x C ln x 2 x3 2x 2x 2x ln x 3x 11x x 1 2x xe 2x e C I4 x ln x x C x I4 ln x 14 ln x I3 11 ln x I4 ln x 5ln x C C ln x ln x C C 2(x 1) C C C 4x ln x I3 ln x C 2x 3ln x x4 I1 ln x 1)100 C I3 C 12 C x 3 ln x I2 ln x 4ln x I1 I2 cos2x C ln x I1 sin2x C C 4) (x2 200 I8 I1 cos(3x-1)+C I6 C 8(x C ) C cos x I5 C 49 ln 2x 16 C htttp://tuhoc.edu.vn/blog HDedu - Page 315 HDedu - Page 316 www.tuhoc.edu.vn sin2 x cos2 x 1 cos 2x sin2 x cos 2x cos2 x 3sin x sin 3x 3cos x cos 3x cos3 x sin3 x Tính nguyên hàm: T1 = (sinx)n dx – T1 (sin x)n dx (sin x)2k dx (sin2 x)k ( cos x) dx (1 cos2 x)k d(cos x) T1 (sin x)n dx VD1: Tính nguyên hàm: T = HD T sin2 xdx 2)k (1 t2 )k dt, sin2 xdx cos 2x dx dx x htttp://tuhoc.edu.vn/blog cos 2xdx sin2x C HDedu - Page 317 www.tuhoc.edu.vn VD2: Tính nguyên hàm: T sin3 3xdx = TOPPER Chú ý T sin3 3xdx 3sin3x sin 9x sin3xdx cos 3x VD3: Tính nguyên hàm: T sin5 ( 3x)dx cos 9x 36 C sin5 ( 3x)dx = HD Ta có: T sin9xdx sin5 3xdx sin4 3xd(cos 3x) (1 cos2 3x cos4 3x)d(cos 3x) (1 cos2 3x)2d(cos 3x) d(cos 3x) cos2 3xd(cos 3x) cos 3xd(cos 3x) cos 3x cos3 3x cos5 3x C 15 htttp://tuhoc.edu.vn/blog HDedu - Page 318 www.tuhoc.edu.vn Tính nguyên hàm: T2 = (cosx)n dx – T2 (cos x)n dx (cos x)2k dx (cos2 x)k (sin x) dx (1 sin2 x)k d(sin x) T2 (cos x)n dx 2)k (1 t2 )k dt, VD4: Tính nguyên hàm sau: T cos 3xdx = HD T 1 (1 cos 6x)2 dx (1 cos 6x 4 1 1 cos12x x sin6x dx 12 1 1 x sin6x x sin12x C 12 96 1 x sin6x sin12x C 12 96 cos 3xdx VD5: Tính nguyên hàm: T (sin8 x cos 6x)dx cos8 x)dx = HD 8x sin8 x cos8 x + cos8 (sin4 x cos x)2 cos 4x cos2 4x 16 htttp://tuhoc.edu.vn/blog 2sin4 x cos x sin 2x cos 4x 16 1 cos 4x 1 cos 8x cos 4x 16 16 35 cos 8x cos 4x 64 16 64 (1 cos 4x 32 cos2 4x)2 HDedu - Page 319 www.tuhoc.edu.vn I cos 8xdx 64 sin8x 512 cos 4xdx 16 sin 4x 64 35x 64 35 dx 64 C T3 = sinf(x).cosg(x)dx [ sin(a b) sin(a b)] cos a cosb [ cos(a b) cos(a b)] sina sinb [ cos(a b) cos(a b)] sina cos a VD6: Tính nguyên hàm sau: (a) T1 cos 3x cos 5xdx (b) I cos x sin 2x cos 3xdx = HD (a) (cos 8x cos 2x) 1 (cos 8x cos 2x)dx sin 8x 2 cos3x.cos5x = T1 sin2x C (b) Ta có: cos x.sin 2x cos 3x htttp://tuhoc.edu.vn/blog T2 cos 6x 24 (sin3x sin x) cos 3x (sin3x cos 3x cos 3x.sin x) 1 [ sin 6x (sin 4x sin 2x)] 2 = (sin 6x sin 4x sin2x) cos 4x 16 cos 2x C HDedu - Page 320 www.tuhoc.edu.vn tannxdx, dx cos2 x dx sin2 x dx cos (ax b) dx sin (ax b) tan x C cot x cot nxdx (n C ) tan(ax b) C a cot(ax b) C a VD7: Tính nguyên hàm: (a) T1 = (b) T2 = (1 tan x)dx tan xdx = HD (a) Ta có: T1 = tan xdx sin x dx cos x d(cos x) cos x ln|cosx| C (b) Ta có: T2 = TOPPER Chú ý dx cos2 x tan x C VD8: Tính nguyên hàm: (a) T1 cách làm hoàn toàn (1 tan2 x)dx (b) T2 tan2 xdx tan3 xdx = HD Ta có: T1 tan2 xdx [(tan2 x 1) 1]dx (tan2 x 1)dx dx tan x x C (b) Ta có: T2 tan2 x tan xdx [(tan2 x 1) tan x (tan2x 1) tan xdx tan xd(tan x) tan x]dx tan xdx tan xdx tan2 x ln|cosx| C htttp://tuhoc.edu.vn/blog HDedu - Page 321 www.tuhoc.edu.vn Tính nguyên hàm sau: T1 (2sin3x T2 T3 cos 2x)dx, T7 sin2x.coxdx, sin2 (1 2x)dx T8 sin x cos 2x sin3xdx sin4 2xdx, T9 (1 cot2 x)dx, sin3 (2x 1)dx, T4 T10 cot3 2xdx sin5 (1 2x)]dx, T11 tan4 2xdx, cos3 3x sin3 ( 2x)]dx T12 cot (1 3x)dx T5 [3x T6 [ Tính nguyên hàm sau: T1 cos 2x(sin4 x cos4 x)dx T2 sin3 x.sin3x.dx T3 (sin6 x cos6 x)dx T4 cos x(cos x cos3 x)dx Tính nguyên hàm: (a) T1 (sin x cos x)dx sin x cos x (b) T2 cos 2xdx sin x cos x (b) T2 tan5 xdx (b) T2 sin x.sin 2x cos 5xdx Tính nguyên hàm: (a) T1 sin2 x dx Tính nguyên hàm: (a) T1 sin(x (c) T3 cos2 x cos 2xdx (d) T4 cos3 x.cos5xdx (e) T5 sin2 x cos2 2xdx (f) T6 sin x cos x(1 cos x)2 dx )(2 sin 2x)dx htttp://tuhoc.edu.vn/blog HDedu - Page 322 www.tuhoc.edu.vn T1 cos3x+2sin2x+C T2 1 x sin(2 - 4x)+C T3 1 x sin2x+ sin4x+C 32 T4 1 cos(2x-1)- cos3 (2x 1)+C T5 x3 1 cos(2x-1)+ cos2 (2x-1) cos5 (2x-1)+C 2 10 T6 1 1 sin3x+ sin3 3x+ cos2x - cos3 2x+C 6 T7 1 cos3x - cos x+C T8 x T9 cot x+C T10 T11 T12 sin 4x cos2 2x tan3 2x sin 6x sin2x +C ln sin 2x +C tan 2x cot3 (3x 1) x +C cot(3x 1) x+C T1 sin 2x 16 sin6x+C 48 T2 sin 2x 16 sin 4x 32 T3 x+ sin4x+C 32 T4 sin x sin x 1 x+ sin6x+C 48 sin x 3x sin 2x sin 4x +C 32 htttp://tuhoc.edu.vn/blog HDedu - Page 323 www.tuhoc.edu.vn (sin x cos x) sin x nên: cos x d(sin x cos x) sin x cos x T1 ln|sinx + cosx| C (b) Vì cos2x = cos2x – sin2x nên T2 T2 (cos x sin x)dx sin x cos x C (a) T1 (x sin x) C tan3 x tan2 xdx T2 tan3 x tan3 xd(tan x) tan x T2 cos2 x dx tan x tan2 xdx tan2 x ln cos x C (a) T1 = [ cos x (b) T2 1 sin 6x (c) T3 sin2x (d) T4 sin 8x 8 (e) T5 x (f) T6 cos 4x x 4 cos2x ] C C C sin6x sin 2x 2cos3 x sin 3x cos 8x sin 4x 16 sin2x sin x cos2 x sin x sin 4x sin 6x 12 cos x C C C htttp://tuhoc.edu.vn/blog HDedu - Page 324 HDedu - Page 325 ... 22 HDedu - Page 23 HDedu - Page 24 HDedu - Page 25 HDedu - Page 26 HDedu - Page 27 HDedu - Page 28 HDedu - Page 29 HDedu - Page 30 HDedu - Page 31 HDedu - Page 32 HDedu - Page 33 HDedu - Page... - Page 12 HDedu - Page 13 HDedu - Page 14 HDedu - Page 15 HDedu - Page 16 HDedu - Page 17 HDedu - Page 18 HDedu - Page 19 HDedu - Page 20 HDedu - Page 21 HDedu - Page 22 HDedu - Page 23 HDedu... 36 HDedu - Page 37 HDedu - Page 38 HDedu - Page 39 HDedu - Page 40 HDedu - Page 41 HDedu - Page 42 HDedu - Page 43 HDedu - Page 44 HDedu - Page 45 HDedu - Page 46 HDedu - Page 47 HDedu - Page 48