1. Trang chủ
  2. » Giáo án - Bài giảng

20 đề thi ĐH nam 2010

20 422 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 20
Dung lượng 703 KB

Nội dung

®Ò thi thö ®¹i häc sè 1. Thêi gian: 180 phót I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH. (7 điểm) Câu I.(2 điểm) Cho hàm số y = x 3 + mx + 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1) khi m = -3. 2. Tìm m để đồ thị hàm số (1) cắt trục hòanh tại một điểm duy nhất. Câu II. (2 điểm) 1. Giải hệ phương trình :      =++ =+ 22 1 322 33 yxyyx yx 2. Giải phương trình: xxx tansin2) 4 (sin2 22 −=− π . Câu III.(1 điểm) Tính tích phân I = ∫ − 2 1 2 4 dx x x Câu IV.(1 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA = h vuông góc mặt phẳng (ABCD), M là điểm thay đổi trên CD. Kẻ SH uông góc BM. Xác định vị trí M để thể tích tứ diện S.ABH đạt giá trị lớn nhất. Tính giá trị lớn nhát đó. Câu V.(1 điểm) Tìm m để phương trình sau có nghiệm thực: mxx =−+ 4 2 1 II. PHẦN RIÊNG. (3 điểm) 1.Theo chương trình chuẩn. Câu VI a.(2 điểm) 1.Trong mặt phẳng với hệ tọa độ Oxy, cho hai đường thẳng d 1 : x – 2y + 3 = 0, d 2 : 4x + 3y – 5 = 0. Lập phương trình đường tròn (C) có tâm I trên d 1 , tiếp xúc d 2 và có bán kính R = 2. 2.Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d 1 : 211 zyx == , d 2 :      += = −−= tz ty tx 1 21 và mặt phẳng (P): x – y – z = 0. Tìm tọa độ hai điểm M 1 d ∈ , N 2 d ∈ sao cho MN song song (P) và MN = .2 Câu VII a.(1 điểm) Tìm số phức z thỏa mãn : 1 4 =       − + iz iz 2.Theo chương trình nâng cao. Câu VI b.(2 điểm) 1. Trong mặt phẳng với hệ tọa độ Oxy, cho hình chữ nhật ABCD có cạnh AB: x – 2y – 1 = 0, đường chéo BD: x – 7y + 14 = 0 và đường chéo AC qua điểm M(2 ; 1). Tìm tọa độ các đỉnh của hình chữ nhật. 2. Trong không gian với hệ tọa độ Oxyz cho ba điểm O(0 ; 0 ; 0), A(0 ; 0 ; 4), B(2 ; 0 ; 0) và mặt phẳng (P): 2x + 2y – z + 5 = 0. Lập phương trình mặt cầu (S) đi qua ba điểm O, A, B và có khỏang cách từ tâm I đến mặt phẳng (P) bằng 3 5 . Câu VII b.(1điểm) Giải bất phương trình: 3log3log 3 xx < 1 ®Ò thi thö ®¹i häc sè 2. Thêi gian: 180 phót I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm). Cho hàm số y = x 3 – 3x + 1 có đồ thị (C) và đường thẳng (d): y = mx + m + 3. 1/ Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số. 2/ Tìm m để (d) cắt (C) tại M(-1; 3), N, P sao cho tiếp tuyến của (C) tại N và P vuông góc nhau. Câu II. (2 điểm) 1/ Giải hệ phương trình:    =−−−+ =−+−− 0322 6)2)(1)(1( 22 yxyx yxyx 2/ Giải phương trình : tan2x + cotx = 8cos 2 x . Câu III.(1 điểm) Tính diện tích hình phẳng giới hạn bởi đồ thị các hàm số y = 2 x , y = 3 – x , trục hòanh và trục tung. Câu IV.(1 điểm) Cho hình chóp tứ giác đều S.ABCD, O là giao điểm của AC và BD. Biết mặt bên của hình chóp là tam giác đều và khỏang cách từ O đến mặt bên là d. Tính thể tích khối chóp đã cho. Câu V. (1 điểm) Chứng minh rằng trong mọi tam giác ta đều có: 2 sin. 2 sin. 2 sin 4 sin. 4 sin. 4 sin CBACBA ≥       −       −       − πππ II. PHẦN RIÊNG. (3điểm) 1.Theo chương trình chuẩn. Câu VI a.(2 điểm) 1/ Trong mặt phẳng với hệ tọa Oxy ,cho elip (E): 1 46 22 =+ yx và điểm M(1 ; 1) . Viết phương trình đường thẳng (d) qua M và cắt (E) tại hai điểm A, B sao cho M là trung điểm AB. 2/ Trong không gian với hệ tọa độOxyz,viết phương trình mặt phẳng (P) chứa trục Oz và tạo với mặt phẳng (Q): 2x + y - 3 z = 0 một góc 60 0 Câu VII a.(1 điểm) Tìm m để phương trình sau có nghiệm: 4 x – 4m(2 x – 1) = 0 2. Theo chương trình nâng cao. Câu VI b.(2 điểm) 1/ Trong mặt phẳng với hệ tọa độOxy, cho hai điểm A(1 ; 2), B(1 ; 6) và đường tròn (C): (x - 2) 2 + (y - 1) 2 = 2. Lập phương trình đường tròn (C’) qua B và tiếp xúc với (C) tại A. 2/ Trong không gian với hệ tọa độ Oxyz, cho ba điểm A(a; 0; 0), B(0; b; 0), C(0 ; 0 ; c) với a, b, c là những số dương thay đổi sao cho a 2 + b 2 + c 2 = 3. Xác định a, b, c để khỏang cách từ O đến mp(ABC) lớn nhất. Câu VI b.(1 điểm) Tìm m để phương trình: ( ) 0loglog4 2 1 2 2 =+− mxx có nghiệm trong khỏang (0 ; 1). 2 Đề Thi thử đại học số 3 Thời gian: 180 phút Phần chung cho tất cả thí sinh Câu I (2 điểm) 1. Khảo sát và vẽ đồ thị hàm số y = x 3 - 3x 2 + 2. 2. Biện luận theo tham số m, số nghiệm thực của phơng trình: 3 2 x - 3x + 2 = 3 2 - 3 + 2m m . Câu II (3 điểm). Giải các phơng trình sau, với ẩn x Ă . 1. 2 2 2 1 2 2 4 1 2 2 2 4 2 log .log .log 6 2 2 2 x x x x x x + + + + + + + = . 2. cos 2 x + cos 2 2x + cos 2 3x = 3. 3. 2 2 2 2 1x x x + = . Câu III (2 điểm). Trong không gian với hệ trục Oxyz cho điểm E(1; 1; 1) và đờng thẳng d có phơng trình tham số là 0x y t z t = = = . 1. Lập phơng trình đờng thẳng đi qua điểm E, vuông góc và cắt đờng thẳng d. 2. Lập phơng trình mặt phẳng đi qua E, song song với đờng thẳng d và khoảng cách giữa đờng thẳng d với mặt phẳng đó bằng 3 3 . Câu IV (2 điểm) 1. Tính tích phân I = 2 2 2 ln 2ln e e x x x dx x . 2. Cho a, b, c là ba số thực dơng. Chứng minh rằng 2 2 2 2 3 3 3 3 3 ( ) ( ) ( ) 4 ( )a b b c c a a b c+ + + + + > + + . Phần riêng (Thí sinh chỉ đợc chọn một phần riêng thích hợp để làm bài) Câu Va (Theo chơng trình nâng cao) Trong không gian, cho tứ diện ABCD, có AB, BC, BD đôi một vuông góc với nhau và AB = 1 cm, BC = BD = 2 cm. Gọi M, N lần lợt là trung điểm của BC, CD. Tính khoảng cách giữa hai đờng thẳng AM và BN. Câu Vb (Theo chơng trình chuẩn) 3 Hình chóp S.ABC có AB = 2 cm, góc SAB bằng 60 0 . Có một mặt cầu tiếp xúc với các cạnh bên SA, SB, SC và tiếp xúc với ba cạnh AB, BC, CA tại trung điểm của mỗi cạnh. Tính thể tích khối chóp đó. Đề Thi thử đại học số 4 Thời gian: 180 phút Câu 1 (2 điểm) Cho hàm số 2 1 x y x + = a) Khảo sát và vẽ đồ thị hàm số b) Cho điểm A(0; a). Xác định a để từ A kẻ đợc hai tiếp tuyến đến (C) sao cho hai tiếp điểm tơng ứng nằm về hai phía của trục hoành Câu 2 (2 điểm). Giải các phơng trình sau, với ẩn x Ă . 1. 2 2 2 log 6 log 4 2 4log 2 2.3 x x x = 2. 2 5 1 2 1x x x x + = + + Câu 3: (2 điểm) 1.Lập phơng trình đờng tròn đi qua gốc toạ độ và tiếp xúc với 2 đờng thẳng 2x + y -1 = 0 ; 2x y +2 = 0 2. Tìm a để hệ sau đây có nghiệm duy nhất ( ) ( ) 2 2 1 1 x y a y x a + = + + = + Câu 4(2 điểm): 1. Tính tích phân sau: 1 5 3 0 1x x dx 2.Chứng minh rằng 1 2 3 1 1 2 3 3 2 3 3 3 . 4 n n n n n n n n n C C C n C n + + + + = Trong đó n là số tự nhiên lớn hơn bằng 1 Câu 5 (2 điểm): Trong không gian với hệ trục Oxyz cho hai điểm S (0; 0;1); A(1;1;0). Hai điểm M(m;0;0); N(0; n;0) thay đổi sao cho m +n = 1 và m > 0; n > 0 a) Chứng minh rằng thể tích hình chóp S.OAMN không phụ thuộc vào m; n b) Tính khoảng cách từ A đến (SMN). Từ đó suy ra (SMN) tiếp xúc với mặt cầu cố định 4 Đề Thi thử đại học số 5 Thời gian: 180 phút Phần chung cho tất cả thí sinh Câu I (2 điểm) Cho hàm số y = 2x 3 - 3x 2 -1 (C) 3. Khảo sát và vẽ đồ thị (C) 4. Gọi (d) là đờng thẳng qua M(0; 1) và có hệ số góc k.Tìm k để (d) cắt (C) tại 3 điểm phân biệt Câu II (2 điểm). 1.Giải phơng trình sau : sin 3 x + cos 3 x = cos2x ( 2cosx sinx) 2. Giải bất phơng trình: ( ) ( ) 2 3 3 2 log 1 log 1x x > + + Câu III (1 điểm).Tính diện tích hình phẳng giới hạn bởi 2 2y x= + và y = -x 2 - 2x + 2 Câu IV (1 điểm) Cho hình hộp chữ nhật ABCD.A B C D có AB = a; BC = 2a;AA = a. Lấy điểm M trên cạnh AD sao cho AM = 3MD.Tính thể tích khối chóp M.AB C và khoảng cách từ M đến mp (AB C) Câu V (1điểm) Cho x,y,z là 3 số thực thoả mãn x +y +z = 0 và x+1 > 0; y+1>0; z+1> 0 Tìm giá trị lớn nhất của biểu thức 1 1 1 x y z Q x y z = + + + + + Phần riêng (Thí sinh chỉ đợc chọn một phần riêng thích hợp để làm bài) Câu Va (Theo chơng trình nâng cao) 1.Cho đờng tròn x 2 + y 2 -2x -6y +6 = 0 và điểm M(2;4).Viết phơng trình đờng thẳng đi qua M cắt đờng tròn tại hai điểm A; B sao cho M là trung điểm của AB 2. Trong không gian với hệ trục Oxyz cho mặt phẳng (P): 2x y - 2z +3 = 0 và mặt phẳng (Q): 2x - 6y + 3z -4 = 0.Viết phơng trình mặt cầu (S) có tâm nằm trên đờng thẳng (d): 3 1 1 2 y x z + = = đồng thời tiếp xúc với (P); (Q) 3. Cho 3 số dơng x, y, z và x.y.z = 1. Chứng minh rằng: 2 2 2 3 1 1 1 2 x y z y z x + + + + + Câu Vb (Theo chơng trình chuẩn) 5 1. Cho đờng thẳng (d): x -2y 2 = 0 và A(0; 1), B(3; 4). Tìm điểm M trên (d) sao cho 2MA 2 + MB 2 nhỏ nhất 2. Trong không gian với hệ trục Oxyz cho A(6; -2; 3) B(0;1;6) C(2; 0;-1); D(4;1;0). Chứng minh 4 điểm A,B,C,D không đồng phẳng.Tính chiều cao DH của tứ diện 3. Tìm số hạng không chứa x của khai triển sau: 17 3 4 2 1 ; #0x x x + ữ ữ Đề Thi thử đại học số 6 Thời gian: 180 phút Phần chung cho tất cả thí sinh Câu 1 (2 điểm) Cho hàm số 2 1 x y x = (H) a) Khảo sát và vẽ đồ thị hàm số b) Chứng ming rằng với mọi m # 0, đờng thẳng y = mx 3m cắt (H) tại 2 điểm phân biệt, trong đó ít nhất 1 giao điểm có hoành độ lớn hơn 2 Câu 2 (2 điểm). 1. Giải các phơng trình 2 2 2sin 2sin 4 x x tanx = ữ 2. Giải hệ 3 3 2 2 3 1 2 2 x y x y xy y + = + + = Câu 3: (2 điểm) Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a; SA = h; SA vuông góc với đáy. M là điểm thay đổi trên CD. gọi H là hình chiếu của S trên BM. Xác định M để thể tích S.ABH đạt giá trị lớn nhất. Tìm giá trị đó Câu 4(1 điểm): Tính tích phân sau: 2 2 1 4 x dx x Câu 5 (1 điểm): Tìm m để phơng trình sau có nghiệm thực 2 4 1x x m+ = Phần riêng (Thí sinh chỉ đợc chọn một phần riêng thích hợp để làm bài) Câu VIa (Theo chơng trình chuẩn) 1. Cho (d) x - 2y +3 = 0 và (d) 4x + 3y 5 = 0 Lập phơng trình đờng tròn tâm thuộc (d) và tiếp xúc với (d); bán kính R= 2 2. Trong không gian với hệ trục Oxyz cho 1 d : 1 1 2 x y z = = ; 2 1 2 : 1 x t d y t z t = = = + và (P): x y z = 0. Tìm 1 2 ;M d N d sao cho MN // (P) và MN = 2 3. Tìm số phức z biết : 4 1 z i z i + = ữ Câu VIb (Theo chơng trình nâng cao) 6 1. Cho hình chữ nhật ABCD có cạnh AB: x- 2y 1 = 0. Đờng chéo BD: x -7y +14 = 0. cạnh AC qua M(2;1). Tìm toạ độ các đỉnh của hình chữ nhật 2. Trong không gian với hệ trục Oxyz cho A(0;0;4), B(2;0;0) và (P): 2x + 2y z +5 = 0. Lập phơng trình mặt cấu (S) qua 3 điểm O; A; B và khoảng cách từ tâm đến (P) bằng 5 3 3. Giải bất phơng trình: 3log x > 3log 3 x . Đề Thi thử đại học số 7 Thời gian: 180 phút Phn chung cho tt c cỏc thớ sinh: (7.0 im) Cõu 1. (2 im) Cho hm s ( ) 3 2 1 5 4 2 3 y x mx m x= + + (C m ) 1. Kho sỏt s bin thiờn v v th (C o ) ca hm s khi m = 0. 2. Tỡm m hm s cú cc tiu v cc i. Khi ú, lp phng trỡnh ng thng i qua cỏc cc tr. Cõu 2. (2 im) 1. Gii phng trỡnh sau: cos2 3 sin 2 2 cos2 3 cos 3 cos sin x x x x x x + = + 2. Gii phng trỡnh sau ( ) 2 2 5 3 2 27 3 1 2x x x x x+ + = + + + Cõu 3. (1 im). Tớnh gii hn: ( ) 1 ln 3 2 lim 1 x x x Cõu 4. (1 im). Cho t din S.ABC cú ỏy ABC l tam giỏc vuụng ti B, SA (ABC). Cho bit AB a = , 2BC a = , gúc gia cnh bờn SB v mp(ABC) bng 60 0 . M l trung im ca cnh AB. 1. Tớnh th tớch khi t din S.ABC. 2. Tớnh khong cỏch t S n ng thng CM. Phn riờng dnh cho tng ban (3.0 im) Chng trỡnh nõng cao Cõu 5A. (1 im)Cho x, y, z l ba s dng tha món 3 2 1 1 x y z + + = . Tỡm giỏ tr nh nht ca biu thc T x y z= + + . Cõu 6A. (2 im) 1. Trong mpOxy, cho ABC cú trc tõm H 13 13 ; 5 5 ữ , phng trỡnh cỏc ng thng AB v AC ln lt l: 4 3 0x y = , 7 0x y+ = . Vit pt ng thng cha cnh BC. 2. Gii h phng trỡnh: 2 : 1:3 : 1: 24 x x y y x x y y C C C A + = = Chng trỡnh chun Cõu 6B. (3 im) 7 1.Tỡm m tim cn xiờn ca th hm s 2 ( 2) 2 2 2 y x m x m x + + + + + = tip xỳc vi th 3 2 ( ) : 3 8C y x x x= . 2. Gii h phng trỡnh: 2 2 2 2 2 3 7 6 0 (1) 3 3 lg(3 ) lg( ) 4lg 2 0 (2) x y x y x y y x + = ữ ữ + + = Đề Thi thử đại học số 8 Thời gian: 180 phút Câu I(2,5 điểm ): Cho hàm số ( ) ( ) 3 2 2 3 1 6 2 1y x m x m= + + . ( ) m C a) Khảo sát sự biến thiên và vẽ đồ thị khi 2m = . Kí hiệu đồ thị là ( ) 2 C . b) Hãy viết phơng trình tiếp tuyếnvới ( ) 2 C biết tiếp tuyến đó đi qua điểm ( ) 0; 1A . c) Với giá trị nào của m thì ( ) m C có các điểm cực đại , cực tiểu và đờng thẳng đi qua các điểm cực đại , cực tiểu song song với đờng thẳng 4y x= Câu II(2 điểm) a) Giải phơng trình: 3 3 1 1 12 2 6 2 1 2 2 x x x x( ) . + = b) Giải hệ phơng trình: 2 2 3 2 16 2 4 33 xy x y x y R x y x y ( , ) = + = Câu III(1,5 điểm ): a) Giải phơng trình: ( ) 2 sin3 cos .cos2 tan tan 2x x x x x = + b) Tìm a sao cho phơng trình sau có nghiệm 3 ; 4 4 x : 3sin 4cos 0x x a + = Câu IV(1,5 điểm ): a) Cho khai triển : 0 2 2 . . 5 5 5 5 n n k k n k n k x x C = + = ữ ữ ữ . Biết số hạng thứ 9 của khai triển có hệ số lớn nhất. Hãy tìm n. b) Tính các tích phân : 2 2 2 0 cos .cos 2 .I x x dx = và 2 2 2 0 sin .cos 2 .J x x dx = Câu V (2,5 điểm ): 1.Trong không gian với hệ tọa độ Oxyz, cho họ đờng thẳng ( k d ) có phơng trình: x - 3 y +1 z +1 = = k +1 2k + 3 1- k , k Ă là tham số . 8 a) Chứng minh rằng khi k biến thiên ( k d ) thuộc một mặt phẳng cố định. Viết phơng trình mặt phẳng đó. b) Xác định k để ( k d ) song song với hai mặt phẳng : ( ) ( ) : 2 3 0 : 6 3 13 0 Q x y z P x y z + = = 2. Cho hình chóp S.ABC có SA = x, BC = y các cạnh còn lại đều bằng 1. a) Tính thể tích của hình chóp S.ABC theo x và y. b) Tìm x và y để thể tích của hình chóp S.ABC lớn nhất. Đề Thi thử đại học số 9 Thời gian: 180 phút I. PHN CHUNG CHO TT C TH SINH (7 im) Cõu I (2 im)Cho hm s 4 2 2 1y x mx m= + (1) , vi m l tham s thc. 1) Kho sỏt s bin thiờn v v th hm s (1) khi 1m = . 2) Xỏc nh m hm s (1) cú ba im cc tr, ng thi cỏc im cc tr ca th to thnh mt tam giỏc cú bỏn kớnh ng trũn ngoi tip bng 1 . Cõu II (2 im) 1) Gii phng trỡnh ( ) 2 2sin 2 3 sin cos 1 3 cos 3sinx x x x x + + = + . 2) Gii phng trỡnh 2 2 log 2 2log 4 log 8 x x x + = . Cõu III (1 im)Tỡm giỏ tr ln nht v giỏ tr nh nht ca hm s ( ) 2 1 1y x x= + . Cõu IV (1 im) Trong khụng gian cho lng tr ng 1 1 1 .ABC A B C cú 1 , 2 , 2 5AB a AC a AA a= = = v ã 120BAC = o . Gi M l trung im ca cnh 1 CC . Hóy chng minh 1 MB MA v tớnh khong cỏch t A ti mt phng ( 1 A BM ). Cõu V (1 im)Xỏc nh m phng trỡnh sau cú ỳng mt nghim thc: ( ) 4 4 13 1 0x x m x m + + = Ă . II. PHN RIấNG (3 im) Thớ sinh ch c lm mt trong hai phn (phn 1 hoc 2) 1. Theo chng trỡnh Chun Cõu VI.a (1 im)Trong mt phng vi h to Oxy , tỡm im A thuc trc honh v im B thuc trc tung sao cho A v B i xng vi nhau qua ng thng :2 3 0d x y + = . Cõu VII.a (1 im)Tỡm s hng khụng cha x trong khai trin nh thc Niutn ca ( ) 18 5 1 2 0x x x + > ữ . Cõu VIII.a (1 im)Vit phng trỡnh tip tuyn ca th hm s 2 1 1 x y x + = ti giao im ca th vi trc honh. 2. Theo chng trỡnh Nõng cao. Cõu VI.b (1 im) 9 Trong mặt phẳng với hệ toạ độ Oxy cho tam giác ABC vuông ở A . Biết ( ) ( ) 1;4 , 1; 4A B− − và đường thẳng BC đi qua điểm 1 2; 2 M    ÷   . Hãy tìm toạ độ đỉnh C . Câu VII.b (1 điểm) Tìm hệ số của 8 x trong khai triển nhị thức Niutơn của ( ) 2 2 n x + , biết 3 2 1 8 49 n n n A C C− + = . ( k n A là số chỉnh hợp chập k của n phần tử, k n C là số tổ hợp chập k của n phần tử). Câu VIII.b (1 điểm)Cho hàm số 2 4 3 2 x x y x − + + = − . Chứng minh rằng tích các khoảng cách từ một điểm bất kỳ trên đồ thị hàm số đến hai đường tiệm cận của nó luôn là một hằng số. §Ò Thi thö ®¹i häc sè 10 Thêi gian: 180 phót I PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7điểm). Câu I . (2 điểm). 1. Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số 4 2 2= − +y x x 2. Tìm m để phương trình 4 2 2 0− + =x x m có bốn nghiệm thực phân biệt (2 điểm) Câu II. (2 điểm). 1/ Giải phương trình : 61224 3 =−++ xx . 2/ Cho phương trình : mxx =+ sin2cos3 2 (1). a) Giải (1) khi m = 2 b) Tìm m để (1) có ít nhất một nghiệm       −∈ 4 ; 4 ππ x . Câu III. (1 điểm). Tính tích phân I = ∫ ++ 2 0 sincos1 π xx dx . Câu IV. (1 điểm).Cho hình nón có bán kính đáy R và thiết diện qua trục là tam giác đều. Một hình trụ nội tiếp hình nón có thiết diện qua trục là hình vuông . Tính thể tích của khối trụ theo R. Câu V. (1 điểm). Cho ba số thực không âm x, y, z thỏa x + y + z = 1. Tìm giá trị lớn nhất của biểu thức P = zyx zx zyx yz zyx xy ++ + ++ + ++ 222 II. PHẦN RIÊNG.(3 điểm) 1.Theo chương trình chuẩn. Câu VI a. (2 điểm) 1/ Trong mặt phẳng với hệ tọa độ Oxy cho hai đường tròn (C 1 ): x 2 + y 2 = 13 và (C 2 ): (x -6) 2 + y 2 = 25 cắt nhau tại A(2 ; -3). Lập phương trình đường thẳng đi qua A và cắt hai đường tròn theo hai dây cung có độ dài bằng nhau. 2/ Trong không gian với hệ tọa độ Oxyz cho hai đường thẳng d 1 : 21 1 1 2 zyx = − − = − và d 2 :      = = −= tz y tx 3 22 . a) Lập phương trình mặt phẳng (P) song song cách đều d 1 và d 2 . b) Lập phương trình mặt càu (S) tiếp xúc với d 1 và d 2 lần lượt tại A(2 ; 1 ; 0), B(2 ; 3 ; 0). Câu VII a.(1 điểm). Tìm giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = 13 3 +− xx trên đọan [ -3 ; 0 ]. 2. Theo chương trình nâng cao. Câu VI b. (2 điểm) 10 [...]... gian Oxyz cho mp(P): x+y+z+3=0 và các điểm uu uuu ur u ur uu uu r A(3;1;1),B(7;3;9),C(2;2;2).Tìm M trên (P) sao cho MA + 2 MB + 3 MC nhỏ nhất Câu VIIb.(1đ) 0 1 2 3 1999 Tính tổng S = C2009 − C2009 + C2009 − C2009 + − C2009 ĐỀ 19 Câu I.(2đ) 4 2 Cho hàm số y = ( m − 1) x − 3mx + 5 1.Khảo sát với m=2 2.Tìm m để hàm số có cực đại mà không có cực tiểu Câu II.(2đ) 18 1.Giải phương trình: 2sinx+cotx=2sin2x+1... x-2y-2z-6=0.Lập phương trình mặt cầu đi qua các điểm A,B có tâm thuộc mp(Oxy) và tiếp xúc với mp(P) Câu VII.(1đ) 7 Khai triển đa thức P(x)= ( 1 + x 2 + x 3 ) ta có P(x)= a21 x 21 + a20 x 20 + + a1 x + a0 Tìm hệ số a11 ĐỀ 20 I.PHẦN CHUNG: Câu I.(2đ) 3 2 Cho hàm số y = x − 3x + 3 ( 1 − m ) x + 1 + 3m 1.Khảo sát với m=1 2.Tìm m để đồ thị hàm số cắt trục hoành tại 3 điểm phân biệt Câu II.(2đ) 1.Giải phương... 2 z −1 = = 1 1 1 Tìm trên (d) hai điểm A và B sao cho tam giác MAB đều 11 Câu VII b (1 điểm) Giải bất phương trình sau: log 1 log 5 3 ( ) x 2 + 1 + x > log 3 log 1 5 ( x2 +1 − x ) §Ò Thi thö ®¹i häc sè 12 Thêi gian: 180 phót I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y = x(x – 3)2 (1) 1/ Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1) 2/ Tìm tất cả các giá trị của a để... 3   ( ) Câu III.(1đ) 1 Tính I = ∫ x ln ( x 2 + x + 1) dx 0 Câu IV.Cho hình lă ng trụ ABC.A’B’C’ có đáy là tam giác đề u cạ nh a.Hình chiế u vuông góc của A’ lên mặt phẳng (ABC) trùng với tâm O của tam giác ABC.Một mặt phẳng (P) chứa BC và vuông góc với AA’ cắt lăng trụ theo một thi t diện có diện tích bằng a2 3 Tính thể tích lăng trụ ABC.A’B’C’ 8 B.Phần riêng cho các thí sinh: PHẦN I: Câu VIa:(2đ)... là nghiệm nhỏ nhất x  0 1 n của bất phương trình: Cn + Cn + + Cn > 512 Câu V.(1đ) 15 Cho tứ diện ABCD có các cạnh thay đổi sao cho AB>1 còn tất cả các cạnh còn lại đều nhỏ hơn hoặc bằng 1.Tìm giá trị lớn nhất của thể tích tứ diện đó ĐỀ 16 A.Phần chung cho các thí sinh: Câu I:(2đ) Cho hàm số y = x 4 − 4 x 2 + 3 1.Khảo sát 2.Tính diện tích hình phẳng giới hạn bởi (C) với trục hoành Câu II.(2đ) e x... Cho hình chóp SABC có góc giữa hai mặt phẳng (SBC) và (ABC) bằng 600,ABC và SBC là các tam giác đều cạnh a.Tính theo a khoảng cách từ B đến (SAC) Câu V.(1đ)  2sin A  sin B + 4 sin A = 1 + 4 sin B 2 Cho tam giác ABC có các góc A,B,C thoả mản:  sin B CMR tam giác 2 + 4 sin B = 1 + 4 sin C  2sin C  ABC đề u II.Phần riêng:(3đ) 1.Theo chương trình chuẩn: Câu VIa.(2đ) 1.Trong mặt phẳng Oxy cho đườ ng... mặt phẳng tọa độ 3 2 Câu VII b (1 điểm) Giải phương trình log 7 x = log 3 x + 2 thành một tứ diện có thể tích bằng ( ) §Ò Thi thö ®¹i häc sè 11 Thêi gian: 180 phót I.PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7 điểm) Câu I (2 điểm) Cho hàm số y = x4 – 2(2m2 – 1)x2 + m (1) 1/ Khảo sát sự biến thi n và vẽ đồ thị của hàm số (1) khi m = 1 2/ Tìm m để đồ thị của hàm số (1) tiếp xúc với trục hòanh Câu II (2 điểm) 1/... điểm A, B sao cho AB = 6 Viết phương trình của mặt cầu (S) 12 Câu VIIb.(1 điểm) Giải bất phương trình : 2 x + 2 x ≥ 2 2 §Ò Thi thö ®¹i häc sè 13 Thêi gian: 180 phót A PHẦN CHUNG CHO CÁC THÍ SINH (7điểm): Câu I: Cho hàm số y = x3 − 3mx 2 − 3x + 3m + 2 (Cm) a) Khảo sát sự biến thi n và vẽ đồ thị hàm số khi m = 1 3 b) Tìm m để (Cm) cắt trục hoành tại 3 điểm phân biệt có hoành độ là x1, x2 , x3 thỏa... 1.Cho parabol (P): y 2 = 4 x và điểm I(0;1).Tìm A,B trên (P) sao cho: IA = 4 IB 2 e2009 x cos 2 x − 1 2.Tính lim x →0 x2 Câu VIb.(1đ) Gọi M là tập hợp các số tự nhiên gồm 5 chữ số khác nhau được lập thành từ tập X={0;1;2;3;4;5}.Lấy ngẫu nhiên 2 phần tử của M.Tính xác suất để có ít nhất 1 tromh hai phần tử chia hết cho 3 20 ... bên (SBC) vuông góc với mặt đáy,các cạnh bên SA=SB=a,SC=x.Hãy tính thể tích khối chóp SABC theo a,x 2.Cho tam giác ABC có ba góc nhọn.CMR ( sin A ) 2sin B + ( sin B ) 2sin C + ( sin C ) 2sin A > 2 16 ĐỀ 17 Câu I.(2đ) Cho hàm số y = x 3 − 3x 2 + 2 1.Khảo sát và vẽ đồ thị (C) của hàm số 2.Tim những điểm nằm trên trục hoành mà từ đó kẻ được 3 tiếp tuyến phân biệt đến đồ th ị (C) Câu II.(2đ)  x 2 − 2 . nh t.ỏ ấ Câu VIIb.(1 )đ Tính t ng ổ 0 1 2 3 1999 200 9 200 9 200 9 200 9 200 9 .S C C C C C= − + − + − 19ĐỀ Câu I.(2 )đ Cho h m s à ố ( ) 4 2 1 3 5y m x mx=. c P(x)=ể đ ứ ( ) 7 2 3 1 x x+ + ta có P(x)= 21 20 21 20 1 0 .a x a x a x a+ + + + . Tìm h s ệ ố 11 a 20 Ề I.PH N CHUNGẦ : Câu I.(2 )đ Cho h m s à ố (

Ngày đăng: 20/10/2013, 12:11

TỪ KHÓA LIÊN QUAN

w