1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Goldstein calculus and its applications 13th ed 2014 solutions

377 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 377
Dung lượng 9,62 MB

Nội dung

INSTRUCTOR'S SOLUTIONS MANUAL INSTRUCTOR’S SOLUTIONS MANUAL BEVERLY FUSFIELD C ALCULUS & I TS A PPLICATIONS and B RIEF C ALCULUS & I TS A PPLICATIONS THIRTEENTH EDITION Larry J Goldstein David C Lay Goldstein Educational Technologies University of Maryland David I Schneider Nakhlé Asmar University of Maryland University of Missouri dumperina Boston Columbus Indianapolis New York San Francisco Upper Saddle River Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo The author and publisher of this book have used their best efforts in preparing this book These efforts include the development, research, and testing of the theories and programs to determine their effectiveness The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs Reproduced by Pearson from electronic files supplied by the author Copyright © 2014, 2010, 2007 Pearson Education, Inc Publishing as Pearson, 75 Arlington Street, Boston, MA 02116 All rights reserved No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher Printed in the United States of America ISBN-13: 978-0-321-87879-3 ISBN-10: 0-321-87879-5 www.pearsonhighered.com CONTENTS Chapter Functions Chapter The Derivative 26 Chapter Applications of the Derivative 77 Chapter Techniques of Differentiation 115 Chapter The Exponential and Natural Logarithmic Functions 141 Chapter Applications of the Exponential and Natural Logarithm Functions 168 Chapter The Definite Integral 182 Chapter Functions of Several Variables 215 Chapter The Trigonometric Functions 245 Chapter Techniques of Integration 263 Chapter 10 Differential Equations 302 Chapter 11 Taylor Polynomials and Infinite Series 334 Chapter 12 Probability and Calculus 356                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    ...INSTRUCTOR’S SOLUTIONS MANUAL BEVERLY FUSFIELD C ALCULUS & I TS A PPLICATIONS and B RIEF C ALCULUS & I TS A PPLICATIONS THIRTEENTH EDITION Larry J Goldstein David C Lay Goldstein Educational Technologies... effectiveness The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book The author and publisher shall... Reproduced by Pearson from electronic files supplied by the author Copyright © 2014, 2010, 2007 Pearson Education, Inc Publishing as Pearson, 75 Arlington Street, Boston, MA 02116 All rights reserved

Ngày đăng: 15/09/2020, 16:34