ĐỀ THI HỌC KỲ I NĂM HỌC 2010 – 2011 MÔN TOÁN LỚP 10 (Chương trình cơ bản) Thời gian: 90 phút (Không kể thời gian giao đề) Câu 1: (1.5 điểm) Giải và biện luận theo tham số m phương trình: 2 3 1 9m x m x − = − Câu 2 : (2 điểm) Cho hàm số ( ) 2 0y ax bx c a = + + ≠ a. Biết đồ thị của hàm số đã cho có đỉnh S(1; 4) và cắt trục tung tại điểm có tung độ bằng 3, tìm các hệ số a, b, c. b. Khảo sát sự biến thiên và vẽ đồ thị hàm số ở câu a vừa tìm được. Câu 3: (2 điểm) Giải các phương trình sau: a. 3 4 2x x − = − b. 2 5 4x x − − = Câu 4: (1 điểm) Cho hai số dương a và b. Chứng minh (a + b)( 1 1 a b + ) ≥ 4 . Dấu “ = ” xảy ra khi nào ? Câu 5: (3.5 điểm) Trong mặt phẳng tọa độ Oxy cho tam giác ABC có A(0; 2), B(6; 4), C(1; -1) a. Chứng minh rằng: Tam giác ABC vuông. b. Gọi E (3; 1), chứng minh rằng : Ba điểm B, C, E thẳng hàng. c. Tìm tọa độ điểm D để tứ giác ABCD là hình bình hành. d. Tìm tọa độ tâm I của đường tròn ngoại tiếp ABC ∆ và tìm bán kính đường tròn đó. ------------------------------------ HẾT ------------------------------------ Thí sinh:………………………………………… Lớp: 10…… Số báo danh:…………… (Thí sinh không được sử dụng tài liệu, cán bộ coi thi không giải thích gì thêm) ĐÁP ÁN: ( Môn TOÁN lớp 10 năm học 2010- 2011) Câu 1: (1.5điểm) 2 3 1 9m x m x − = − 2 (9 1) 1 3 (0.25) (3 1)(3 1) (3 1) (*) (0.25) m x m m m x m ⇔ − = − ⇔ − + = − − - Nếu 1 3 m ≠ ± thì pt(*) có nghiệm duy nhất 1 3 1 x m − = + (0,25) - Nếu 1 3 m = thì pt(*) trở thành 0x = 0, pt(*) có vô số nghiệm (0,25) - Nếu 1 3 m = − thì pt(*) trở thành 0x = 2, pt(*) vô nghiệm (0,25) Vậy phương trình đã cho: - Có nghiệm duy nhất 1 3 1 x m − = + khi 1 3 m ≠ ± - Có vô số nghiệm khi 1 3 m = - Vô nghiệm khi 1 3 m = − (0,25) Câu 2: (2điểm) a/ Giao điểm của (P) và trục Oy có tọa độ (0; 3), nên A ∈ (P) ⇒ c = 3 (0,25) 2 1 2 ( ) (0,25) 4 4 2 1 (0,25) 2 12 16 S S b x a S p y a b a a b b a a = − = ∈ ⇔ ∆ = − = = − = − ⇔ ⇔ = − + = Vậy (P) là: y = -x 2 + 2x +3 (0,25) b/ Theo câu a/ ta có (P) : y = -x 2 + 2x +3. - TXĐ : D R = - Tọa độ đỉnh S (1 ; 4). - Trục đối xứng x = 1 - (P) cắt Oy tại A(0; 3), cắt Ox tại hai điểm B(-1; 0) và C(3; 0). Điểm D(2; 3) ∈ (P) (0,25) * Bảng biến thiên : x −∞ 1 + ∞ y 4 - ∞ - ∞ Hàm số đã cho đồng biến ( −∞ ; 1) và nghịch biến (1; + ∞ ) (0,25) Vẽ: (Chính xác đồ thị và đẹp ) (0,5) 4 2 -2 5 D X = 1 0 3 32 1 -1 C S A B Câu 3:(2điểm) Giải các phương trình sau: a. 3 4 2x x − = − (1) 2 0 (1) (0.25) 3 4 2 3 4 2 2 (0.25) 3 4 2 3 4 2 2 1 (0.25) 3 2 x pt x x x x x x x x x x x x − ≥ ⇔ − = − − = − ≤ ⇔ − = − − = − ≤ = ⇔ = Vậy pt đã cho có hai nghiệm 3 1, 2 x x= = (0,25) b. 2 5 4x x − − = (2) 2 2 (2) 2 5 4 4 0 (0,25) 2 5 ( 4) 4 (0,25) 2 5 8 16 4 (0,25) 7 3 pt x x x x x x x x x x x x ⇔ − = − − ≥ ⇔ − = − ≥ ⇔ − = − + ≥ ⇔ = = Đối chiếu điều kiện, pt có nghiệm duy nhất x = 7. (0,25) Câu 4: (1điểm) Chứng minh: (a + b)( 1 1 a b + ) ≥ 4 (3) Áp dụng bất đẳng thức Cô- si, ta có: a + b ≥ 2 ab , dấu “=” xảy ra khi và chỉ khi a = b. (1) (0,25) ba 11 + ≥ 2 ab 1 , dấu “=” xảy ra khi và chỉ khi a = b. (2) (0,25) Từ (1) và (2) suy ra: (a + b)( ba 11 + ) ≥ 4. (0,25) Dấu “=” xảy ra khi và chỉ khi a = b. (0,25) (Lưu ý: Học sinh có thể giải theo cách khác củng đạt điểm tối đa) ----------------------------------- ------------------------------------ . ĐỀ THI HỌC KỲ I NĂM HỌC 2010 – 2011 MÔN TOÁN LỚP 10 (Chương trình cơ bản) Thời. tung tại điểm có tung độ bằng 3, tìm các hệ số a, b, c. b. Khảo sát sự biến thi n và vẽ đồ thị hàm số ở câu a vừa tìm được. Câu 3: (2 điểm) Giải các phương