1. Trang chủ
  2. » Giáo Dục - Đào Tạo

A two-dimensional market model

6 281 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 6
Dung lượng 126,07 KB

Nội dung

Chapter 19 A two-dimensional market model Let B t=B 1 t;B 2 t; 0  t  T; be a two-dimensional Brownian motion on ; F ; P .Let F t; 0  t  T; be the filtration generated by B . In what follows, all processes can depend on t and ! , but are adapted to F t; 0  t  T .To simplify notation, we omit the arguments whenever there is no ambiguity. Stocks: dS 1 = S 1  1 dt +  1 dB 1  ; dS 2 = S 2   2 dt +  2 dB 1 + q 1 ,  2  2 dB 2  : We assume  1  0; 2 0;,11: Note that dS 1 dS 2 = S 2 1  2 1 dB 1 dB 1 =  2 1 S 2 1 dt; dS 2 dS 2 = S 2 2  2  2 2 dB 1 dB 1 + S 2 2 1 ,  2  2 2 dB 2 dB 2 =  2 2 S 2 2 dt; dS 1 dS 2 = S 1  1 S 2  2 dB 1 dB 1 =  1  2 S 1 S 2 dt: In other words,  dS 1 S 1 has instantaneous variance  2 1 ,  dS 2 S 2 has instantaneous variance  2 2 ,  dS 1 S 1 and dS 2 S 2 have instantaneous covariance  1  2 . Accumulation factor:  t = exp  Z t 0 rdu  : The market price of risk equations are  1  1 =  1 , r  2  1 + q 1 ,  2  2  2 =  2 , r (MPR) 203 204 The solution to these equations is  1 =  1 , r  1 ;  2 =  1  2 , r ,  2  1 , r  1  2 p 1 ,  2 ; provided ,1 1 . Suppose ,1 1 . Then (MPR) has a unique solution  1 ; 2  ;wedefine Z t = exp  , Z t 0  1 dB 1 , Z t 0  2 dB 2 , 1 2 Z t 0  2 1 +  2 2  du  ; f IP A= Z A ZTdIP; 8A 2F: f IP is the unique risk-neutral measure. Define e B 1 t= Z t 0  1 du + B 1 t; e B 2 t= Z t 0  2 du + B 2 t: Then dS 1 = S 1 h rdt+ 1 d e B 1 i ; dS 2 = S 2  rdt+ 2 d e B 1 + q 1 ,  2  2 d e B 2  : We have changed the mean rates of return of the stock prices, but not the variances and covariances. 19.1 Hedging when ,1 1 dX = 1 dS 1 + 2 dS 2 + rX ,  1 S 1 ,  2 S 2  dt d  X   = 1  dX , rX dt = 1   1 dS 1 , rS 1 dt+ 1   2 dS 2 , rS 2 dt = 1   1 S 1  1 d e B 1 + 1   2 S 2   2 d e B 1 + q 1 ,  2  2 d e B 2  : Let V be F T  -measurable. Define the f IP -martingale Y t= f IE  V T     Ft  ; 0tT: CHAPTER 19. A two-dimensional market model 205 The Martingale Representation Corollary implies Y t=Y0 + Z t 0  1 d e B 1 + Z t 0  2 d e B 2 : We have d  X   =  1   1 S 1  1 + 1   2 S 2  2  d e B 1 + 1   2 S 2 q 1 ,  2  2 d e B 2 ; dY =  1 d e B 1 +  2 d e B 2 : We solve the equations 1   1 S 1  1 + 1   2 S 2  2 =  1 1   2 S 2 q 1 ,  2  2 =  2 for the hedging portfolio  1 ;  2  . With this choice of  1 ;  2  and setting X 0 = Y 0 = f IE V  T  ; we have X t=Yt; 0t T; and in particular, X T = V: Every F T  -measurable random variable can be hedged; the market is complete. 19.2 Hedging when  =1 The case  = ,1 is analogous. Assume that  =1 .Then dS 1 = S 1  1 dt +  1 dB 1  dS 2 = S 2  2 dt +  2 dB 1  The stocks are perfectly correlated. The market price of risk equations are  1  1 =  1 , r  2  1 =  2 , r (MPR) The process  2 is free. There are two cases: 206 Case I:  1 ,r  1 6=  2 ,r  2 : There is no solution to (MPR), and consequently, there is no risk-neutral measure. This market admits arbitrage. Indeed d  X   = 1   1 dS 1 , rS 1 dt+ 1   2 dS 2 , rS 2 dt = 1   1 S 1  1 , r dt +  1 dB 1 + 1   2 S 2  2 , r dt +  2 dB 1  Suppose  1 ,r  1   2 ,r  2 : Set  1 = 1  1 S 1 ;  2 = , 1  2 S 2 : Then d  X   = 1    1 , r  1 dt + dB 1  , 1    2 , r  2 dt + dB 1  = 1    1 , r  1 ,  2 , r  2  | z  Positive dt Case II:  1 ,r  1 =  2 ,r  2 : The market price of risk equations  1  1 =  1 , r  2  1 =  2 , r have the solution  1 =  1 , r  1 =  2 , r  2 ;  2 is free; there are infinitely many risk-neutral measures. Let f IP be one of them. Hedging: d  X   = 1   1 S 1  1 , r dt +  1 dB 1 + 1   2 S 2  2 , r dt +  2 dB 1  = 1   1 S 1  1  1 dt + dB 1 + 1   2 S 2  2  1 dt + dB 1  =  1   1 S 1  1 + 1   2 S 2  2  d e B 1 : Notice that e B 2 does not appear. Let V be an F T  -measurable random variable. If V depends on B 2 , then it can probably not be hedged. For example, if V = hS 1 T ;S 2 T; and  1 or  2 depend on B 2 , then there is trouble. CHAPTER 19. A two-dimensional market model 207 More precisely, we define the f IP -martingale Y t= f IE  V T     Ft  ; 0tT: We can write Y t=Y0 + Z t 0  1 d e B 1 + Z t 0  2 d e B 2 ; so dY =  1 d e B 1 +  2 d e B 2 : To get d  X   to match dY ,wemusthave  2 =0: 208 [...]... choice of 1 ; 2 and setting f V X 0 = Y 0 = IE T  ; we have X t = Y t; 0  t  T; and in particular, X T  = V: Every F T -measurable random variable can be hedged; the market is complete 19.2 Hedging when The case =1 = ,1 is analogous Assume that = 1 Then dS1 = S1 1 dt + dS2 = S2 2 dt + 1 dB1 2 dB1 The stocks are perfectly correlated The market price of risk equations are 1 1 = 1 ,... be an F T -measurable random variable If V depends on B2 , then it can probably not be hedged For example, if V = hS1 T ; S2T ; and 1 or 2 depend on B2 , then there is trouble CHAPTER 19 A two-dimensional market model 207 f More precisely, we define the I -martingale P   f V Y t = IE T  F t ; We can write Y t = Y 0 + Zt 0 e 1 dB1 + so dY = e e 1 dB1 + 2 dB2 : To get d X to match... 2 2 2 1 f Let V be F T -measurable Define the I -martingale P   f V Y t = IE T  F t ; 0  t  T: 2 2  e2 : dB CHAPTER 19 A two-dimensional market model 205 The Martingale Representation Corollary implies Y t = Y 0 + We have Zt 0 e 1 dB1 + Zt 0 e 2 dB2: X 1 1  S dB = 1 S1 1 + 2 2 2 e1 d q e + 1 2S2 1 , 2 2 dB2 ; e e dY = 1 dB1 + 2 dB2 : We solve the equations 1 S + 1 S 1 1 1 2 2...2 dB2 , 1 2 Zt 8A 2 F : Z T  dIP; A Zt 0 2 2  1 + 2  du ; f IP is the unique risk-neutral measure Define e B1 t = e B2 t = Then Zt Z0 0 t 1 du + B1 t; 2 du + B2 t: h  dS1 = S1 r dt + dS2 = S2 r dt + e 1 dB1 i ; q e 2 dB1 + 1 , 2 2 dB2 e  : We have changed the mean rates of return of the stock prices, but not the variances and covariances 19.1 Hedging when ,1 1 dX X =... Positive Case II: 1 ,r 1 =  ,r : The market price of risk equations 2 2 1 1 2 1 have the solution = 1 , r = 2 , r 1 = 1 , r = 2 , r ; 1 2 f 2 is free; there are infinitely many risk-neutral measures Let IP be one of them Hedging: X 1 d = 1S1 1 , r dt + 1 dB1 + 1 2S2 2 , r dt + 2 dB1 = 1 1S1 1 1 dt + dB1 + 1 2 S2 2 1 dt + dB1 1 1  S dB : = 1 S1 1 + 2 2 2 e1 e Notice that B2 does not appear... stocks are perfectly correlated The market price of risk equations are 1 1 = 1 , r 2 1 = 2 , r The process 2 is free There are two cases: (MPR) 206 Case I: 1 ,r 6= 2 ,r : There is no solution to (MPR), and consequently, there is no risk-neutral 1 2 measure This market admits arbitrage Indeed X 1 = 1dS1 , rS1 dt + 1 2 dS2 , rS2 dt d = 1 1S1 1 , r dt + Suppose 1 ,r 1 1 dB1 + 1 2S2 2 , r... market model 207 f More precisely, we define the I -martingale P   f V Y t = IE T  F t ; We can write Y t = Y 0 + Zt 0 e 1 dB1 + so dY = e e 1 dB1 + 2 dB2 : To get d X to match dY , we must have 2 = 0: 0  t  T: Zt 0 e 2 dB2 ; 208 . 1 has instantaneous variance  2 1 ,  dS 2 S 2 has instantaneous variance  2 2 ,  dS 1 S 1 and dS 2 S 2 have instantaneous covariance  1  2 . Accumulation.  -measurable. Define the f IP -martingale Y t= f IE  V T     Ft  ; 0tT: CHAPTER 19. A two-dimensional market model 205 The Martingale Representation

Ngày đăng: 18/10/2013, 02:20