1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Climate change a wicked problem complexity and uncertainty at the intersection of science economics politics

380 18 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 380
Dung lượng 23,24 MB

Nội dung

www.ebook3000.com www.ebook3000.com CLIMATE CHANGE: A WICKED PROBLEM Under one cover, Frank Incropera provides a comprehensive, objective, and critical assessment of all issues germane to the climate change debate: science, technology options, economic ramifications, cultural and behavioral issues, the influence of special interests and public policy, geopolitics, and ethical dimensions The underlying science is treated in depth, but in an approachable and accessible manner A strong case is made for the reality of anthropogenic climate change, while confronting the range of issues that remain uncertain and deconstructing opposing views Incropera assesses the strengths and weaknesses of technology options for mitigating the effects of climate change, analyzes nontechnical factors – economic, cultural, and political – and provides an in-depth treatment of ethical implications This book is intended for those wishing to become fully informed about climate change and is designed to provide the reader with a firm foundation for drawing his or her own conclusions Frank P.  Incropera is Clifford and Evelyn Brosey Professor of Mechanical Engineering at the University of Notre Dame, where he also served as Dean of Engineering from 1998 until 2006 He spent a majority of his career at Purdue University, and among his many honors he has received the American Society of Engineering Education (ASEE) Ralph Coats Roe Award for excellence in teaching (1982), the ASEE George Westinghouse Award for contributions to education (1983), the American Society of Mechanical Engineers (ASME) Heat Transfer Memorial Award (1988), the Melville Medal for the best original paper published by ASME (1988), and the Worcester Reed Warner Medal of ASME (1995) He received the Senior Scientist Award from the Alexander von Humboldt Foundation of the Federal Republic of Germany in 1988 and in 1996 was elected to the U.S National Academy of Engineering In 2001, he was named by the Institute for Scientific Information as one of the 100 most frequently cited engineering researchers in the world He is a Fellow of ASME and the American Association for the Advancement of Science (AAAS) Professor Incropera has had a long-standing interest in transport phenomena and in recent years has turned his attention to the broad range of technical and nontechnical issues associated with transition to a sustainable energy future www.ebook3000.com www.ebook3000.com Climate Change: A Wicked Problem Complexity and Uncertainty at the Intersection of Science, Economics, Politics, and Human Behavior Frank P. Incropera University of Notre Dame www.ebook3000.com 32 Avenue of the Americas, New York, NY 10013-2473, USA Cambridge University Press is part of the University of Cambridge It furthers the University’s mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence www.cambridge.org Information on this title: www.cambridge.org/9781107521131 © Frank P. Incropera 2016 This publication is in copyright Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press First published 2016 Printed in the United States of America A catalog record for this publication is available from the British Library Library of Congress Cataloging in Publication Data Incropera, Frank P Climate change: a wicked problem: complexity and uncertainty at the intersection of science, economics, politics, and human behavior / Frank P Incropera, University of Notre Dame â•…pagesâ•…cm Includes bibliographical references and index ISBN 978-1-107-10907-0 (hardback) – ISBN 978-1-107-52113-1 (pbk.) 1.╇ Climatic changes – Environmental aspects.â•… 2.╇ Climatic changes – Social aspects.â•… 3.╇ Greenhouse effect, Atmospheric.â•… 4.╇ Energy consumption – Environmental aspects.â•… I.╇ Title QC903.I475â•…2016 363.738′74–dc23â•…â•…â•…2015016109 ISBN 978-1-107-10907-0 Hardback ISBN 978-1-107-52113-1 Paperback Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party Internet Web sites referred to in this publication and does not guarantee that any content on such Web sites is, or will remain, accurate or appropriate www.ebook3000.com To Andrea, who would rather I had spent my time in other ways, and to our grandchildren, Wally, Michael, Mallory, Brandon, and Kyle May they have the wisdom and resilience to meet the challenges that await them www.ebook3000.com www.ebook3000.com Contents Foreword by Anthony F. Earley Jr page xi xv Foreword by G.P “Bud” Peterson Foreword by Arun Majumdar xvii Preface xxi Acknowledgments xxvii Abbreviations xxix Energy, economics, and climate change .å°“ 1.1 Energy: an indispensable resource 1.2 Energy 101: a taxonomy 1.3 Energy and economic growth 1.4 Energy, greenhouse gases, and the environment 1.5 Energy, economy, the environment, and sustainability 11 1.6 A wicked problem 13 1.7 Summary 15 The Earth’s climate system╇ å°“ 2.1 Weather and climate 2.2 Natural agents of climate change 2.3 Earth’s global energy budget and the greenhouse effect 2.4 Summary 18 18 20 23 29 Greenhouse gases .å°“ 30 3.1 Distinguishing features 30 Atmospheric concentrations 31 Atmospheric lifetimes and global warming potentials 36 Radiative forcings 37 3.2 Greenhouse gas emissions: recent trends 42 vii www.ebook3000.com viii Contents 3.3 A macro view of contributing factors 3.4 Whither emissions? 3.5 The carbon cycle 3.6 Summary 45 47 51 53 Global warming å°“ å°“ 55 4.1 The Earth’s temperature history 55 Proxy and instrument records 55 Not without controversy 59 The CO2–temperature linkage 61 Temperature stasis 62 The instrument record redux 67 4.2 Climate models and future warming 71 4.3 Feedback mechanisms 74 Effect of atmospheric water vapor 74 Effect of ice cover on the Earth’s albedo 75 Decomposition of organic matter 76 4.4 Summary 77 Consequences of global warming╇ å°“ 80 5.1 The Arctic: canary in a mine shaft 80 5.2 Changing sea levels 83 The effect of glaciers 83 The effect of ice sheets 84 Rising seas 87 5.3 Extreme weather events 90 5.4 The built environment 94 5.5 The natural environment 96 5.6 Food production 98 5.7 Human health and security 101 5.8 Abrupt climate change 102 5.9 Summary 105 Mitigation, adaptation, and geoengineering 108 6.1 Energy efficiency and conservation 109 6.2 Decarbonization of electric power: coal – the 800-pound gorilla 111 The natural gas conundrum 111 Nuclear and renewable energy 116 6.3 Decarbonization of transportation 120 Electric vehicles: back to the future 121 Biofuels: some better than others 122 www.ebook3000.com 332 References Winfield, K (2007) Europe’s Carbon Con Job The Wall Street Journal, August 21, A14 Wong, E (2014) In Step to Lower Carbon Emissions, China Will Place a Limit on Coal Use in 2020 The New York Times, November 21, A4 WorleyParsons (2009) Strategic Analysis of the Global Status of Carbon Capture and Storage_Report 5:  Synthesis Report Global CCS Institute (www globalccsinstitute.com) Yohe, G (2010) Risk Assessment and Risk Management for Infrastructure Planning and Investment The Bridge, U.S National Academy of Engineering, Fall Issue, 14–21 Young, R., et al (2014) 2014 International Energy Efficiency Scorecard American Council for an Energy-Efficient Economy (www.aceee.org/research-report/ e1402) Yuan, H (2014) Bloomberg News (www.bloomberg.com/news/2014-09-01/chinaseeks-pollution-cut-with-national-carbon-market.html) Zeller, T Jr (2010) Is It Hot in Here? Must Be Global Warming The New York Times, August 1, A4 â•… (2011) Studies say Natural Gas Has Its Own Environmental Problems The New York Times, April 12, B1, B6 Zeng, N., et al (2008) Climate Change-the Chinese Challenge Science 319, 730–1 Zhang, X., et  al (2013) Attributing Intensification of Precipitation Extremes to Human Influence Geophys Res Lett 40, 5251–7 Zimov, S.A., et al (2006) Permafrost and the Global Carbon Budget Science 312, 1612–13 Zoback, M.D and D.J Arent (2014) Shale Gas Development: Opportunities and Challenges The Bridge, U.S National Academy of Engineering, Winter Issue, 16–23 Index AB 32, See Global Warming Solutions Act abrupt climate change, 102–5, 153 acidification (ocean), 97–8, 142, 144, 220 adaptation (climate), 93, 99, 108, 137–41, 145, 147, 150, 174–5, 196, 211, 215, 219, 222, 226, 234, 238–40, 250–1, 303 built environment, 94, 105–6 aerosols, 24–5, 39–41, 64, 141–2, 144, 286 afforestation/reforestation, 52, 131, 143, 249 agriculture, See food production albedo, 25, 41, 75–6 Amazon, 97 American Baptist Church, 231 American Legislative Exchange Council (ALEC), 191 American Petroleum Institute (API), 191, 194, 199, 201, 249 Antarctic, 53, 61–2, 83, 162, 297 Anthropocene, 212 Arctic, 76–7, 80–3 amplification, 81 Aristotelean ethics/virtues, 217, 222–3, 225–6, 230, 241, 255–6 Aristotle, 222, 225–6, 228, 241, 301 Atlantic Meridional Overturning Circulation (AMOC), 66–7, 70, 104 atmosphere, 71, 74 atmospheric lifetime, 32, 36–7 Atmospheric-Ocean General Circulation Models, See climate, models Bayes’ theorem, 301 Bingaman-Specter Low Carbon Economy Act, 178 biodiversity, 98, 103 biofuels, See energy biosphere, 19, 71, 74 black carbon, 39–40, 76, 264, 271 black swan, 116 Boxer-Kerry Clean Energy Jobs and American Power Act, 179–80 Brundtland commission, 11 Buddhism, 231 cap-and-trade, 148–50, 154–6, 166–7, 169–70, 173, 177–80, 186, 188–90, 192–4, 196, 252–3, 298, 299 carbon capture/sequestration (CCS), 109, 124–9, 135, 147, 169, 178, 182–3, 192–3, 247–8, 250, 275–82, 295–7 carbon content, 7, 43, 46–7, 51–2, 77, 262–3, 299 carbon cycle, 51–3 carbon dioxide, See greenhouse gases carbon dioxide equivalent, 37 carbon intensity, 46, 111, 174, 185–6, 246–7, 263–4, 279, 293 carbon stabilization triangle, 130, 134 carbon tax, 150–6, 157, 193–4, 238, 253, 299–300, 303 categorical imperatives, 217–8, 227, 240 Chamber of Commerce (US), 191, 194 Chernobyl, 116–7, 248 China, 6–7, 44–5, 47, 110–1, 117, 132, 135, 163, 167–8, 170–1, 173–4, 176–7, 180, 184–6, 194, 196–7, 216, 235–8, 243–5, 247, 250, 262, 299, 302–3 chlorofluorocarbons (CFCs), 31, 36, 162, 201, 227, 272, 284–5, 297–8 clathrates, 105, 269–70 Clean Air Act (CAA), 179–181, 187, 264, 300 333 334 Index Clean Development Mechanism (CDM), 166–8 climate, 18 attribution, 92–3 feedback mechanisms, 74–9, 104–5, 107, 290–1 models, 71–2, 74, 91, 140, 151, 153 refugees, 80, 139–40, 220 resilience, 93, 108 sensitivity, 290 Climate Research Unit (CRU), University of East Anglia, 68–9, 206–7, 290–1 clouds, 24, 26, 40–1, 75, 291 coal, See energy Committee for a Constructive Tomorrow, 203 Competitive Enterprise Institute (CEI), 191, 199, 201–2 Conference of Parties (COP), 163–5, 169, 171, 174–5, 177, 196–7, 245 conservation, See energy Copenhagen, 172–5, 180, 185, 197 coral reefs, 97 Cornwall Alliance, 232–3 corporate average fuel economy (CAFE) standards, 148, 156–7, 182, 187, 297, 300 creation, 228–9, 231, 233 cryosphere, 19, 71, 74, 75–6 Daly, Hermann E., 10, 12, 223 decarbonization, 108–9, 111–2, 114–6, 120–4, 246, 250 deforestation, 10, 31, 41, 97, 100, 131, 149, 173, 287, 289, 299 deglaciation, 62, 185 Department of Defense (US), 101 discount rate, 152, 219–20 dispatchable power, See power plants/ base-load Dyson, Freeman, 205–6 Eastern Orthodox Church, 231 ecosystems, 96–8, 106 efficiency, See energy electric grid, 118–20, 133–4, 137, 159, 248 electric power, 131–7, 246–9 base-load, 116–7, 248 demand response, 120, 159 intermittent, 119 net metering, 120, 137, 159 transmission, 119, 157–8, 248 electric vehicles, See transportation El Niño, 22, 56–7, 63, 70, 284, 292 emissions luxury, 238, 240, 255 shared, 235, 237, 250 subsistence, 238, 255 emission/carbon credits/allowances, 164, 166–9, 171, 173, 188–90, 196, 298 Emissions Trading Scheme (ETS), 166–9, 171–2, 188–9, 252, 299 energy bio/biofuel, 3, 109, 121, 122–4, 131, 134, 249, 250, 262, 289 carrier, 2 chemical, 4 conservation, 110–1, 134, 146–7, 240, 253, 255–6 efficiency, 109–10, 124, 134, 146, 157, 159, 178, 184, 186–7, 189, 193, 211, 240, 246, 248, 250, 252–3, 256, 276, 279, 299, 303 fossil, 2–3, 5, 7–8, 10, 15–6, 109, 118, 250, 257, 272, 293, 297, 302, 303 coal, 2, 3, 109–10, 111–4, 116, 120, 124–8, 132, 135, 147, 176, 183–4, 197, 246–7, 262–4, 275–82, 294–5, 299–300, 303 natural gas, 2, 3, 111–6, 132, 135–6, 147, 183, 247–8, 262–4, 267–9, 293–5 oil/petroleum, 2, 3, 111–2, 120, 134, 147, 156, 262–4, 293 geothermal, 3, 109, 120 hydro, 3, 5, 120, 133, 186 intensity, 6, 46–7, 302 nonrenewable, 2–5 nuclear, 2–4, 109, 116–7, 133–7, 147, 186, 248–9, 250, 252 primary (source of), 2, 3, 8 renewable, 3, 5, 109, 116, 118–20, 133–7, 159, 183, 185, 188, 248, 250, 252, 299 solar, 3–5, 109, 116, 118, 133, 147, 186, 193, 248, 252 photovoltaic, 3, 5, 133, 136–7 thermal, 3, 5, 137 storage, 119, 133–4, 137, 147, 159, 248 tidal, 120 wave, 3, 5, 120 wind, 3, 5, 109, 116, 118, 133–7, 147, 186, 193, 248, 252 enhanced oil recovery (EOR), 127–9, 182, 281–2, 295–6 ENSO, 22–3, 56, 63, 66, 284, 290 Index Environmental Protection Agency (EPA), 179–84, 187, 253, 264–5, 300 Clean Power Plan (CPP), 183–4 New Source (GHG) Performance Standards, 182 feedback mechanisms, See climate feed-in tariff, 158, 160, 252 food production, 98–103, 106, 123, 138–40, 151, 185, 191, 215, 220 forestation, 131, 149 fossil fuels, See energy fracking, See hydraulic fracturing Framework Convention for Climate Change (FCCC), 162–3, 172, 175, 196–7 fuel economy, 121, 252–3 Fukushima, 116–7, 174, 248 FutureGen, 127 Gardiner, Stephen M., 216–7, 218, 220 Garvey, James, 106, 215, 226, 235, 238, 240–1 generational ethics, 216–7, 220, 226, 239, 301 Genesis (Book of), 229, 233 geoengineering, 108, 141–5, 147, 211, 239, 251 glaciers, 83–4, 106, 220 outlet, 84–7, 291 Global Climate Coalition (GCC), 199 global energy budget, 26–9, 55 global warming, 19, 38, 40, 144 potential, 32–3, 36–7, 40, 168, 286, 298 Global Warming Solutions Act (AB 32), 188–9 Goddard Institute of Space Sciences, 68–9 Gore, Albert, 61 great ocean conveyor belt, See Atlantic Meridional Overturning Circulation greenhouse gases, 8–11, 13, 16, 23, 25–6, 30–1, 36–40, 42–8, 55, 63, 78, 98, 107–8, 111–2, 117, 135, 137–8, 141–2, 144–5, 148–54, 155, 161–4, 166, 172–80, 196, 198, 216, 219, 226–7, 234, 235–40, 249–50, 254, 272–3, 285–7, 300, 302, 303 carbon dioxide, 9–11, 30–9, 42–6, 49–51, 53–4, 61–2, 73–4, 76–7, 120–1, 123–9, 141–3, 157, 163, 172, 181–2, 184–6, 205, 215, 245, 246–7, 272–3, 285–9, 295–6, 302 removal, See geoengineering halocarbons, 31–2, 35–6, 38–9, 181, 284–5 335 methane, 9, 30–3, 35–40, 42–3, 77, 105, 115, 181, 267, 269–70, 286–8 nitrous oxide, 9, 30–3, 35–9, 42, 181, 287 greenhouse gas intensity, 165 greenwashing, 192, 195 gross domestic product (GDP), 5, 6, 46–7, 171, 174, 283, 302 gross world product (GWP), 5, 237, 302 Hadley Centre, UK Meteorological Office, 68–9 halocarbons/halogens, See greenhouse gases Hawken, Paul, 12, 151, 195–6, 223 Heartland Institute, 191, 194, 202, 299 heating value (HV) higher (HHV), 262–3 lower (LHV), 262–3 Highway Trust Fund, 303 Himalayan Mountains, 83–4, 106 Hinduism, 231 hockey stick, 59–60, 63, 200, 206 Holland, 94 Holocene, 20, 31, 35, 60, 212, 257 Human Development Index, 13, 236 human health, 101–2, 106, 138–9 hurricanes Katrina, 91, 95 Rita, 91 Sandy, 91–2, 95–6, 140, 292 Wilma, 91 hydraulic fracturing, 114–6, 262, 268, 294 hydrochlorofluorocarbons, 31, 36, 162, 168, 285 hydrofluorocarbons, 36, 42, 298 hydrogen fuel cell, 121, 175, 295 hydropower, See energy hydrosphere, 19, 71, 74 ice sheets, 75, 83–7 Antarctic, 83, 86–7 Greenland, 83, 85–7, 292 ice shelves, 84–7 Immelt, Jeffrey, 159 India, 6–7, 44–5, 47, 110–1, 117, 132, 135, 161, 163, 170, 174, 197–8, 235–8, 244–5, 247, 250, 262, 302–3 Intergovernmental Panel on Climate Change (IPCC), 35, 48, 72, 162, 175, 196, 199, 202, 207–8, 215, 227 Internal combustion engine, 121 Islam, 231 336 Index Jamieson, Dale, 197–8 Judaism, 231 Kerry-Liebermann American Power Act, 180 Kyoto Protocol (KP), 163–172, 174–5, 177, 186, 196–7, 203, 227, 234, 240, 243, 298 La Niña, 22–3, 56–7, 63, 284, 292 Lieberman-Warner Climate Security Act, 177–8 light duty vehicles (LDVs), 156, 182, 297 liquefied natural gas (LNG), 113, 267 lithosphere, 19 little ice age, 59–60 Mann, Michael, 206 Mauna Loa Observatory, 34 Maunder Minimum, 22 Medieval warm period, 59 methane, See greenhouse gases hydrates, 77 Milankovitch theory, 20–1 mitigation, 108–9, 137–8, 141, 145–7, 150, 152, 160, 166, 174–5, 196, 211, 213, 219, 222, 226–7, 234, 246–50, 251, 272, 299, 303 Montreal Protocol, 38, 162, 168, 226–7, 272, 284–5, 297–8 moulin, 85, 291 National Aeronautics and Space Administration (NASA), 68–9 National Association of Evangelicals (NAE), 200, 232 National Association of Manufacturers, 194 National Flood Insurance Program, 95–6, 292 National Oceanic and Atmospheric Administration (NOAA), 68–9 natural environment, See ecosystems natural gas, See energy NIMBY, 157 nitrous oxide, See greenhouse gases Nordhaus, William, 153, 193 objectivism, 224–5 offsets, 149, 166–7, 171, 178–9, 189, 196 OPEC, 171 ozone stratospheric, 31, 35, 38–9, 71, 144, 162, 201, 284, 297 tropospheric, 38–40 Paris, 175–6, 197, 245, 299 Paulson, Henry, 176 peat, 76–7 permafrost, 77, 82, 104, 269 Petition Project, 203 Pew Center, 95 Pigou, Arthur, 151 Pigovian tax, 151, 219 Pleistocene, 20 Pliocene, 20 political instability, 101–2, 106 Pooley, Eric, 180, 202 population, 2, 10, 12, 18, 43, 46–8, 252, 257, 288, 302 power plants base-load, 116–7, 244, 249 capacity factor, 118 coal-fired, 109–10, 124–9, 132–5, 141, 143, 145–7, 182–4, 194, 247, 253, 275–82, 296–7, 300 subcritical, 110, 276–81, 292–3 supercritical, 110, 253, 276–81, 293 ultra-supercritical, 110, 253, 276–81, 293 combined cycle natural gas, 111–2, 125–6, 132–5, 182 integrated gasification combined cycle, 125–8, 143, 192–3, 277–82 nameplate capacity, 118 nuclear, 116–8, 133–6 oxy-fuel combustion, 125, 127, 143, 277–82 renewable, 133–7, 157–8, 185–6 Precautionary Principle, 226–7 products of combustion (POC), 264–5, 275–7 purchasing power parity (PPP), 5, 237, 283 Quaternary, 20, 212 radiative forcing, 32, 37–41, 78, 286, 290 Rand, Ayn, 222–6, 237, 241, 301 readiness, 139 Regional Greenhouse Gas Initiative (RGGI), 189–90 renewable energy credits, 157–8 renewable portfolio standards, 148, 157, 187, 189, 252, 299 Index Representative Concentration Pathways (RCP), 50, 73 resilience, xx, 93, 108, 138–9, 147, 223, 238, 303 Sayre, Kenneth, 221 sea ice, 76 perennial, 81–3 sea level, 83, 87–90, 138, 151, 185, 216, 291–2 eustatic change, 83 steric change, 83, 90 Seventh Generation Principle, 220 shale gas, See energy/natural gas smart grid, 120, 137, 147 social justice, 215–6, 226, 239 solar constant, 23, 284 solar irradiance, 22, 284 solar radiation, 23–8, 38 management, See geoengineering soot, See black carbon Stern, Nicholas, 153 Stern Review, 152, 171, 219 sulfates, 39–40, 64, 144, 295 sulfur hexafluoride, 42, 181, 189 sunspots, 21–2, 64, 284 sustainability, 11–3, 16, 106, 218, 255 tax credit, 148 investment (ITC), 158, 252 production (PTC), 158, 252 temperature Arctic, 81 future trends, 72–4 record, 56–63, 67–70, 289 sea surface, 91 stasis, 62–7 temperature measurements homogenization, 56 instrument, 55–6, 206 proxy, 55–6, 58–60, 78, 206 337 terrestrial radiation, 24–8, 38 Texas Clean Energy Project, 127 thermohaline circulation, See Atlantic Meridional Overturning Circulation time scales, xvii, 16, 19, 21, 52–4, 56, 65, 72, 78, 89, 103, 106, 205, 211–2, 214, 271–3, 297, 302 tragedy of the commons, 301–2 transportation, 120–4, 134, 146, 159, 246, 249, 250, 253, 255, 262 electric vehicles, 121–2, 131, 249, 262 hybrid vehicles, 121–2, 249 light-duty vehicles, 121, 130 vehicle efficiency, 121 vehicle miles traveled, 121, 131 tropopause, 37 typhoon Haiyan, 91–2 United States Climate Action Partnership, 194 United States Conference of Catholic Bishops (USCCB), 230–1 Unruh, Bob, 203–4 utilitarianism, 217, 219–20, 227 values, 220–3, 225, 228, 241 consumer, 221, 255 social, 221–2, 255–6 survival, 221–2, 255 virtues, 221, 222–5 water vapor, 74–5, 290–1 Waxman-Markey American Clean Energy and Security Act, 178–9 weather, 18–9, 283–4 extreme events, 90–3, 151, 220 wedges, 130, 132–4, 145 wicked problem, xvii-xviii, 13–5 Global energy flows W m–2 102 Reflected solar radiation 101.9 W m–2 Incoming solar radiation 341.3 W m–2 341 Reflected by clouds and atmosphere 79 Outgoing longwave radiation 238.5 W m–2 239 79 Emitted by atmosphere 40 169 Atmospheric window 30 Greenhouse gases Absorbed by 78 atmosphere 17 Latent 80 Heat Reflected by surface 23 356 161 Absorbed by surface 80 17 Thermals Evapotranspiration 396 Surface radiation 40 333 Back radiation 333 Absorbed by surface Net absorbed 0.9 W m–2 Figure 2.3.╇ Mean global energy fluxes in watts per square meter (W/m2) from March 2000 to May 2004 for the Earth-atmosphere system From Trenberth et al (2009) (a) Concentrations of greenhouse gases form to 2005 400 2000 Carbon dioxode (CO2) 1800 Nitrous oxide (N2O) 1600 350 1400 1200 CH4 (ppb) CO2 (ppm), N2O (ppb) Methane (CH4) 300 1000 800 250 500 (b) 1000 Year 1500 2000 600 Atmospheric CO2 at Manua Loa Observatory 400 Scripps Institution of Oceanography NOAA Earth System Research Laboratory 360 340 March 2015 Parts per million 380 320 1960 1970 1980 1990 Year 2000 2010 Figure 3.1.╇ Atmospheric greenhouse gas concentrations: (a) Variations in the concentrations of CO2, CH4 and N2O over the last two millennia (IPCC, 2007b) (b) Variation in the CO2 concentration measured at the Mauna Loa Observatory from 1958 to December 2013 (NOAA, 2014a) (a) (b) 400 380 325 Carbon dioxide (CO2) 370 360 350 340 Parts per billion (ppb) Parts per million (ppm) 390 330 1975 1980 1985 1990 1995 2000 2005 2010 2015 (c) Nitrous oxide (N2O) 315 310 305 300 295 1975 1980 1985 1990 1995 2000 2005 2010 2015 (d) 600 1750 Methane (CH4) 1700 1650 1600 1550 1975 1980 1985 1990 1995 2000 2005 2010 2015 Parts per trillion (ppt) 1800 Parts per billion (ppb) 320 500 400 CFC-12 300 200 100 CFC-11 HCFC-22 HFC-134a 1975 1980 1985 1990 1995 2000 2005 2010 2015 Figure 3.2.╇ Variations in the atmospheric concentrations of the five major long-lived greenhouse gases from 1979 to August 2014 (NOAA, 2014b) newgenrtpdf 0.6 0.2 Source: World Meteorological Organization Temperature anomaly (°C) 0.4 –0.2 –0.4 –0.6 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 Figure 4.1.╇ Global temperature anomaly (difference between the average surface temperature and the thirty-year average from 1961 to 1990) from 1880 to 2011 (CSIRO, 2012) Blue and orange bars correspond to years for which La Niña and El Niño events, respectively, were known to occur 1.0 Northern Hemisphere anomaly (°C) relative to 1961 to 1990 Instrumental data (AD 1902 to 1999) Reconstruction (AD 1000 to 1980) Reconstruction (40 year smoothed) 1998 instrumental value 0.5 0.0 –0.5 –1.0 1000 1200 1400 1800 1600 2000 Year Figure  4.2.╇ Temperature anomaly (difference between the average surface temperature and the thirty-year average from 1961 to 1990) for the Northern Hemisphere from 1000 to 2000 (IPCC, 2001b) 0.6 Annual average Temperature anomaly (°C) relative to 1961–1990 0.4 0.2 0.0 –0.2 –0.4 –0.6 0.6 Decadal average 0.4 0.2 0.0 –0.2 –0.4 –0.6 1850 1900 1950 2000 Year Figure 4.3.╇ Annual and decadal globally averaged land and ocean surface temperature anomaly from 1850 to 2012 (IPCC, 2014a) newgenrtpdf Thermohaline circulation Deep water formation Deep water formation Surface current Deep current Deep water formation Salinity (PSS) 32 34 36 38 Figure 4.4.╇ Thermohaline circulation associated with the Great Ocean Conveyor Belt Courtesy of the National Aeronautics and Space Administration Annual land-surface average temperature 12-month moving average of surface temperature over land Gray band indicates 95% uncertainty interval –0.5 –1 NASA GISS NOAA/NCDC Hadley/CRU Berkeley Earth 1750 1800 1850 1900 1950 –1.5 Temperature anomaly (°C) 0.5 –2 2000 Figure  4.5.╇Global annual average land temperatures relative to the 1950–79 mean Results reported by the Hadley Centre of the UK Meteorological Office and the Climate Research Unit of the University of East Anglia (HadCRU), the Goddard Institute of Space Studies (GISS) of the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration (NOAA), and the Berkeley Earth Surface Temperature Project (http://berkeleyearth.org/resources.php) Accessed January 15, 2015 Decadal land-surface average temperature 10-year moving average of surface temperature over land Gray band indicates 95% uncertainty interval –0.5 –1 NASA GISS NOAA/NCDC Hadley/CRU Berkeley Earth 1750 1800 1850 1900 1950 Temperature anomaly (°C) 0.5 –1.5 2000 Figure  4.6.╇Global decadal moving average land temperatures relative to the 1950–79 mean Results reported by the Hadley Centre of the UK Meteorological Office and the Climate Research Unit of the University of East Anglia (HadCRU), the Goddard Institute of Space Studies (GISS) of the National Aeronautics and Space Administration, the National Oceanic and Atmospheric Administration (NOAA), and the Berkeley Earth Surface Temperature Project (http://berkeleyearth.org/resources.php) Accessed January, 15, 2015 newgenrtpdf 300 Tide gauge data and uncertainty Satellite altimeter data Sea level rose at a rate of 3.2 mm per year in the last 20 years 200 Change in global mean sea level (mm) 40 30 20 10 –10 –20 –30 –40 2010 Sea level rose at a global-averaged rate of about 1.7 mm per year during the 20th century 150 2000 100 50 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 1990 1980 1970 1960 1950 1940 1930 1920 1910 1900 1880 1890 –50 –100 Monthly 3–month running mean Trend = 3.2 mm/year 2020 Change in global mean sea level (mm) 250 Source: CSIRO Year Figure 5.1.╇ Measurements of global-average annual mean sea level relative to circa-1880 datum (CSIRO, 2014) With permission of the Commonwealth Scientific and Industrial Research Organization of Australia

Ngày đăng: 14/08/2020, 15:57

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN