1. Trang chủ
  2. » Luận Văn - Báo Cáo

Dissertation summary: The application of invented algorithm in organizing genetics teaching (Grade 12 – Biology program)

30 14 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 30
Dung lượng 654,94 KB

Nội dung

Application of invented algorithm to organize and use algorithm in teaching genetics (Biology 12 - High School) to develop cognitive capacity and creative thinking capacity for students.

THAI NGUYEN UNIVERSITY UNIVERSITY OF EDUCATION TRUONG MONG DIEN THE APPLICATION OF INVENTED ALGORITHM  IN ORGANIZING GENETICS TEACHING (GRADE 12 – BIOLOGY PROGRAM)   Specialty: Theory and Methodology of Biology Teaching  Code: 9140111 DISERTATION SUMMARY THAI NGUYEN­ 2020 The dissertation was completed at THAI NGUYEN UNIVERSITY – UNIVERSITY OF EDUCATION Supervisors: Assoc. Prof. PhD. Nguyen Phuc Chinh   Reviewer 1: Reviewer 2: Reviewer 3: The dissertation will be defended in the university committee: THAI NGUYEN UNIVERSITY – UNIVERSITY OF EDUCATION At  h  on ……………. 2020 The dissertation can be found at: ­ National library of Vietnam’ ­ Thai Nguyen University ­ Learning Resource Center; ­ Library ò University of Education Thư viện Trường Đại học Sư phạm Thái Nguyên PUBLISHED WORKS RELATED TO THE DISSERTATION Nguyen Phuc Chinh, Truong Mong Dien (2013), "Overview of  Invented Algorithm,  Journal of Science and Technology, Thai  Nguyen University, No. 14, p. 211­215 Truong   Mong   Dien,   Nguyen   Phuc   Chinh   (2015),   "Scientific  basis of applying Invented Algorithm in teaching",  Journal of  Education, No. 361, issue 1 in July 2015, p.16­18 Truong Mong Dien (2016), "The use of Algorithm method in  teaching Biology",  Journal of Education,  No. 375, issue 1 on  February 2016, p.55­57 INTRODUCTION 1. Rationate It is derived from the need to innovate teaching methods, the  advantages   of  invented   algorithm,   the   characteristics   of   genetic  knowledge (Biology 12), the dissertation title of “The application of   invented   algorithm   in   organizing   Genetics   teaching   (Grade   12   Biology Program)” has been chosen 2. Objectives of the study Application   of   invented   algorithm   to   organize   and   use  algorithm in teaching genetics (Biology 12 ­ High School) to develop  cognitive capacity and creative thinking capacity for students 3. Research subject and object Research   subject:   Teaching   Genetics   (Biology   12   ­   High  School)   according   to   the   invented   algorithm   Research   object:  Teaching process of Biology 12 ­ High School 4. Scientific hypothesis  If  algorithm  is  built and used appropriately in the  stages  of  teaching   Genetics   (Biology   12   ­   High   School),   it   will   develop  cognitive and creative thinking capacity for students 5. Limitations of the dissertation title The   dissertation   researches   and   applies  invented   algorithm  theory in teaching Genetics (Biology 12 ­ High School) 6. Research mission (1) Research of invented algorithmic theory and application of  algorithm in teaching (2) Investigation of the situation of  algorithmic  application in  teaching process in high schools (3) Proposing the process of developing some  algorithms  in  teaching Genetics (Biology 12 ­ High School) (4) Developing a process of using algorithm  which is built in  teaching Genetics (Biology 12 ­ High School) (5) Pedagogical experiment to evaluate the effectiveness of the  proposed options 7. Research Methods Method   of   theoretical   research,   Method   of   pedagogical  investigation,   Method   of   experts,   Method   of   consultation   with  experts, Method of pedagogical experiment 8. New contributions of the dissertation (1) Proposing the process of developing some algorithms for  teaching Genetics (Biology 12 ­ High School) (2)   Proposing   the   process   of   using   some  algorithms  in  teaching Genetics (Biology 12 ­ High School) (3) Proposing a scale to evaluate the efficiency of applying  invented algorithm in teaching Genetics (Biology 12 ­ High school) 9. The structure of the dissertation In   addition   to   the   introduction,   conclusions,   references   and  appendices, the main content of the dissertation is presented in three  chapters:   Chapter     Theoretical   and   practical   basis   Chapter   2.  Application of invented algorithm in teaching Genetics (Biology 12 ­  High School). Chapter 3. Pedagogical experiment Chapter 1: THEORETICAL AND PRACTICAL BASIS 1.1. Research history of algorithm 1.1.1. History of algorithmic research in the world Science of Creativity in the world has been formed for a long  time   The  Greek  mathematician,   Pappop,   founded  the   “Science   of  Creativity”,   which   he   named   Heuristics   Alfred   Binet   is   a   French  psychologist   who   invented   the   first   practical   IQ   test   In   1939,   A.  Osborn   (American)   proposed   a   method   of   brain   stimulation   or  brainstorming   In   1926,  F   Kunze  proposed   the   target   audience  method. In 1942, the method of morphological analysis was proposed  by the Swiss. It was developed by Fritz Zwicky. The person who has  made   a   lot   of   contributions   to   developing   innovative   science   is  Genric Sanlovic AltshulerAnthony. "Tony" Peter Buzan is the father  of the Mind map method. In 1983, a professor of psychology called  Howard   Gardner   of   Harvard   University   published   the   theory   of   "  Multiple Intelligences". In 1992,  Habits of Mind was introduced by  PhD   Arthur   Costa,   Honorary   Professor   at   California   State  University. Today, the research works of thought and creativity have  been given appropriate attention and have brought high efficiency in  many fields in many countries around the world 1.1.2. History of algorithmic research in Vietnam The   person   who   has   brought  Science   of   Creativity  into  Vietnam   is   Prof   Phan   Dung   with   works   such   as:   Scientific   and  technical innovation methodology of problem solving and decision  making; Basic creative principles; The world  inside  creative  human  beings… In 1991, Center for Scientific and Technical Creativity was  established   at   the   University   of   Science   ­   Viet   Nam   National  University, Ho Chi Minh City with the purpose of teaching ordinary  people to be creative. In 1998,  Mr  Nguyen Van Le and his work  “The Scientific Basis of Creativity” presented a number of scientific  foundations of educating creativity for young people. Nguyen Minh  Triet with  “Awakening of Creative Potential”  in 2000 and Nguyen  Canh Toan with “Initiating of Creative Potential” in 2004 brought up  issues of creative learning 1.2. Theoretical Basis 1.2.1. Some basic concepts 1.2.1.1. Algorithm:  1.2.1.2. Invented algorithm:  1.2.1.3. Theory for solving invented problems 1.2.2. Classification of Algorithm 1.2.2.1. Recognition algorithm It is the Algorithm that results in the judgment of type x of A x: perceived object. A: some kind.  1.2.2.2. Transform algorithm All Algorithms that are not Recognition algorithm belong to  transform algorithm.  1.2.3. The role of algorithm in teaching in general and in teaching   Genetics in particular 1.2.3.1. The role of algorithm in teaching   For students Firstly, the first benefit that  algorithmic  method brings is to  help students formulate 3 problem solving methods in an algorithmic  manner. Secondly, the algorithmic method helps to promote students'  positive   and   oriented   thinking   Thirdly,   it   forms   a   common   and  general method of scientific thinking and purposeful activities For teachers Firstly,   teaching   by   algorithmic   methods   helps   teachers  formulate methods to solve problems for students in a focused, quick  and effective manner. Secondly, it helps teachers develop teaching  algorithms systematically and effectively. Thanks to the algorithms,  students will acquire knowledge better. Thirdly, it also helps teachers  design well the content of “customized teaching program” to help  students acquire the knowledge that teachers impart in a best way and  most systematically 1.2.3.2. The role of algorithm in teaching Genetics  The role of algorithm in teaching Genetics is to provide the  right   solution,   avoid   confused   situation   and   having   no   advance  orientation. From an exercise or an example of a teacher, students  can apply to a variety of similar exercises. The second role is to help  students   work   systematically,   know   how   to   use   visual   images   to  make   the   problem   clear,   easy   to   understand   and   avoid   confusion  when solving them. The last one is to help students know how to  exploit   and   use   problematic   data   in   a   rational   way  For  excellent  students: the algorithm helps students get fast, accurate results, which  takes less time, so that they can think of other solution methods. For  weak students: Following the steps correctly in the algorithm record  will help students find the correct solution, this helps them to have  confidence in learning, to be encouraged and encouraged, which will  form a better sense of learning.  1.2.4. Scientific basis of applying algorithm in teaching 1.2.4.1. Mathematical basis ­ algorithmic theory The mathematical basis of the algorithm defines Finality; Determinability;  Universality; I/O Quantity; The effectiveness of the algorithm 1.2.4.2. Basis of creative psychology By analyzing the creative principles of G. Altshuller, we found  that there are 8 creative principles that can be applied in teaching,  namely: The principle of division; Principle of association; Principle  of   local   quality;   Principle   of   changing   physical   and   chemical  parameters;   Principles   of   using   intermediaries;   Reversal   principle;  Principle of flexibility and Principle of impact on "noise" 1.2.4.3. Basis of information theory Algorithm   has   the   effect   of   modeling   research   objects   and  coding   them   with   a   kind   of   "language"   that   is   both   intuitive   and  specific   Therefore,   teaching   by   algorithm   makes   the   process   of  information transmission faster and more accurate 1.2.4.4. Basis of control theory Application of invented algorithm in the teaching process will  enhance   the   inverse   relationship   between   teachers   and   students  because the invented algorithm promotes students' creative thinking,  independence and autonomy 1.2.4.5. The basis of cognitive psychology and psychology at different   ages 1.3. Practical basis 1.3.1. Actual awareness of teachers' reasoning Investigation   of   the   theoretical   cognitive   status   of   teachers  includes perceptions of concepts, roles,  algorithmic  classification of  teachers in high schools today 1.3.2. Practices of using algorithm of teachers in teaching Genetics Practical investigations of  algorithmic  use include the extent,  benefits and difficulties of using algorithm of teacher The  results   show   that   teaching  with  the   use   of   algorithm   is  rarely applied by teachers, and if it is applied, it will only be used in a  very small amount of content in certain stages of teaching. Teachers  still have many confusion and difficulties when teaching algorithms,  so   algorithm   teaching   has   not   been   widely   implemented   and  conducted   regularly   Teachers   often   use   existing   processes,   the  design of algorithms appropriate to the teacher's targets and subjects  of teaching is still limited Chapter 2. APPLICATION OF INVENTED ALGORITHM IN  TEACHING GENETICS (BIOLOGY 12 ­ HIGH SCHOOL) 2.1. Analysis of structure and content of Genetics part (Biology  12 ­ High School) In order to apply the algorithm in teaching genetics properly and  effectively, we have conducted the content analysis of each chapter  in genetics part to determine the content that can apply algorithms  and apply them in theoretical teaching or genetic exercises.  2.2  Developing   algorithm   for   teaching   Genetics   (Biology   12   ­  High School) 2.2.1   Principles   of   developing   algorithm   for   teaching   Genetics   (Biology 12 ­ High School) 2.2.1.1. Conformity with the program objectives and content 2.2.1.2. Guarantee of unity between science and education 2.2.1.3. User friendly 2.2.2. Process of developing algorithm for teaching Genetics part   (Biology 12) 2.2.2.1. Process of developing recognition algorithm Process of  developing  Step 1: Determination of knowledge target Step 2: Description algorithmic content recognition  algorithm Step 3: Preparation of algorithmic records Step 4: Algorithm is active Figure 2.2. Process of developing recognition algorithm Example: Developing recognition algorithm for Mendelian inheritance Step 1: Determination of knowledge target Students: Present the essential signs of Mendel's laws of inheritance;  Identify the Mendel's laws of inheritance in genetic exercises Step 2: Description algorithmic content Inherited by strict rules The result of two factor cross is the same Mendelian  inheritance The characteristic is equally expressed in both sexes Each pair of genes specifies a pair of characters Each pair of genes lies on a different homologous  chromosome Complete dominant ­ recessive 12 From the genetic characteristics of the sex linkage genetic rule,  the teacher will introduce students the algorithmic records identifying  the sex linkage genetic rule that have been designed by the teacher W The expression characters  are irregular in both sexes It is not sex linkage  rule R Same Result of two­way cross Genes are located in the  homologous regions of X and Y Different The character appears  only in heterogametic  sex W R Genes on the Y chromosome in the part that do not  have homologous regions on the X chromosome  (crossed inheritance) Genes on the X chromosome in the part  that do not have homologous regions on  the Y chromosome (direct inheritance) Teacher: The instructions for using the algorithmic record to  identify the sex linkage genetic rule are as follows: (1) The expression characters are irregular in both sexes. If the  result is wrong, it is concluded that it is not sex linkage genetic rule.  If it is right, go to step 2 or skip step 2 to go straight to step 3 (2) Result of two­way cross: If result of two­way cross is the  same, it is concluded that the expression characters is by the gene  located on the homologous region of the X and Y chromosomes. If  result of two­way cross is different, go to step 3 (3) The character appears only in heterogametic sex (having  XY chromosomes). If the result is right, it is concluded that it is due  to   genes   on   the   Y   chromosome   in   the   part   that     not   have  homologous regions on the X chromosome (direct inheritance). If it  is wrong, the conclusion is it is due to genes on the X chromosome in  the part that do not have homologous regions on the Y chromosome  (crossed inheritance) 13 Step 4: Practice and apply them The   teacher   asks   students   to   come   back   to   Morgan’s  experiment to practice using algorithmic records Students perform the request of the teacher individually ­ Expression characters are irregular in both sexes: Right  → It   is sex linkage genetic character ­ Result of two­way cross is different: Right ­ The character appears in both sexes  → The character is due to   X chromosome gene in the part that do not have homologous allele  on the Y chromosome Teacher assigns other exercise: Exercise: Suppose a striped rooster breeds with a black­furred  hen   and   all   of   their   offspring   (F1)   is   striped   chickens   Next,   F1  continue to breed with F1, F2 includes 50 striped chickens and 16  black­furred chickens and all black­furred chickens are hens. Which  rule is fur color characters inherited? Teachers ask students to discuss in groups to do the exercise or  also assign home tasks for students Illustrative example Developing recognition algorithms for nuclear inheritance rule Step 1: Determine the target  Students   need   to   identify   targets:   distinguish   the   nuclear  inheritance rule Step 2: Organize students to analyze logical knowledge To organize students to analyze knowledge logic about  nuclear  inheritance rule, teachers can navigate by a system of questions such as: ­  What factors govern nuclear inheritance rule? ­ Which nuclear inheritance rule have you learned? ­ What is the relationship between these genetic laws? Students   mobilize   the   learned   knowledge   to   answer   the  suggested questions of teachers and find out the knowledge logic: Step 3: Students develop their own algorithmic records To organize students to design their own algorithmic records to  recognize the nuclear inheritance rule, teachers can guide students: (1) List the identifying signs of each genetic rule (2) Arrange individual signs to identify each rule 14 Teachers can suggest students complete the following table: Identifying signs Character   The number of   expression in   gene pairs per   both sexes chromosome Rule Two­way cross The number of genes  pairs of a pair of  characters Menden Gene interaction Genetic linkage Sex linkage (3) Algorithmic preliminary design algorithm Students can use pencil to sketch out the algorithm on paper. Put  the nature signs in order, draw arrows and find instructions to draw (4) Inspection and completion 2.3.2.2.  Using algorithms in teaching Genetics exercises Step 1: Teacher selects exercises and assigns tasks Step 1: Teacher selects exercises and assigns tasks Stage 1 Stage 1 Step 2: Organize students establish the relationship between  Step 2: Organize students establish the relationship between  hypothesis and conclusion hypothesis and conclusion Use algorithm to  Use algorithm to  guide students to  guide students to  solve genetic  solve genetic  exercises exercises Step 3: Teacher provides problem solving program Step 3: Teacher provides problem solving program Step 4: Students solve problems according to the program Step 4: Students solve problems according to the program Step 5: Practice  Step 5: Practice  Step 1: Teacher selects exercises and assigns tasks Step 1: Teacher selects exercises and assigns tasks Stage 2 Stage 2 Instruct students to  Instruct students to  develop their own  develop their own  algorithm for solving  algorithm for solving  genetic exercises genetic exercises Step 2: Organize students establish the relationship between  Step 2: Organize students establish the relationship between  hypothesis and conclusion hypothesis and conclusion Step 3: Organize students to develop their own problem solving  Step 3: Organize students to develop their own problem solving  program program Step 4: Comment and complete the problem solving program Step 4: Comment and complete the problem solving program Stage 3 Stage 3 Apply creative  Apply creative  principles to  principles to  develop and  develop and  solve creative  solve creative  exercises exercises Level 1: Teacher  Level 1: Teacher  s develop  s develop  creative  creative  exercises for  exercises for  students to  students to  practice  practice  Step 1: Select problem Step 1: Select problem Step 2: Identify and solve problems Step 2: Identify and solve problems Step 3: Teachers introduce creative exercises based  Step 3: Teachers introduce creative exercises based  on creative principles on creative principles Step 4: Develop solving programs and solve  Step 4: Develop solving programs and solve  creative exercises creative exercises Step 5: Practice Step 5: Practice Level 2:  Level 2:  Teachers guide  Teachers guide  students to  students to  develop  develop  creative  creative  exercises exercises Step 1: Select problem Step 1: Select problem Step 2: Solve problems Step 2: Solve problems Step 3: Organize students to develop their own  Step 3: Organize students to develop their own  creative exercises based on creative principles creative exercises based on creative principles Step 4: Students develop a program to solve the  Step 4: Students develop a program to solve the  problem exercises problem exercises Step 5: Comment and conclude Step 5: Comment and conclude 15 Stage   1:   Use   algorithm   to   guide   students   to   solve   genetic   exercises Step 1: Teacher selects exercises and assigns tasks Based on the targets of knowledge, skills, competencies to be  achieved and based on the cognitive capacity of each student class,  teachers choose appropriate exercises Step   2:   Organize   students   establish   the   relationship   between   hypothesis and conclusion The establishment of the relationship between the hypothesis  and   the   conclusions   is   that   the   students   analyze   the   problem   to  mobilize   known   knowledge,   identify   the   requirements   and   think  about how to solve the problem Step 3: Teacher provides problem solving program In   stage   1,   teachers   need   to   develop   sample   programs   for  students to familiarize themselves with the learning method and to  learn how to build the next learning program Step 4: Students solve problems according to the program For students with average and weak study ability, they will be  more confident and more interested in learning than when they solve  problems after being provided with solving programs, from which  they   will   love   the   subject   more   With   good   students,   this   can   be  considered   as   a   stepping   stone   for   them   to   accumulate   more  knowledge   and   experience   to   prepare   for   designing   their   own  learning programs according to algorithm Stage 2: Instruct students to develop their own algorithm for   solving genetic exercises Step 1, step 2 of this stage is basically the same as stage 1 Step   3:   Organize   students   to   develop   their   own   problem   solving program In this step, when students design the algorithm themselves,  the algorithms are the product of students' thinking process. Students  16 think, write and draw by their own language, thus maximizing the  potential of the brain. On the other hand, due to being self­created, it  creates   interest   in   learning   for   students   This   method   first   helps  students understand the lesson and memorize the lesson better, and  then train them to think logically and coherently so that they know  how to solve problems scientifically in other situations. This is the  target of using algorithm in teaching to be achieved Step 4: Comment and complete the problem solving program Teachers   organize   for   students   to   report   their   results   and  lessons learned. Teachers synthesize ideas, then standardize to help  students perfect the problem solving program. In this step, teachers  can also motivate students to think by asking them to generalize the  exercises into a general form Stage  3: Apply creative principles to develop and solve creative   exercises Level 1: Teachers develop creative exercises for students to   practice Step 1: Select problem The selection of problems in this period is similar to the above  two   stages   Teachers   also   need   to   pay   attention   to   the   lesson  objectives, student level to choose the problem accordingly Step 2: Identify and solve problems The   problem   selected   in   step     is   the   starting   problem.  Teachers   organize   students   to   identify   genetics   part   that   problem  belongs to Step   3:   Teachers   introduce   creative   exercises   based   on   creative principles When giving creative exercises, teachers should clearly state  how the exercises are created and the creative principles on which the  exercises are based so that students can easily visualize and think Step 4: Develop solving programs and solve creative exercises Level   2:   Teachers   guide   students   to   develop   creative   exercises 17 Basically, step 1 and step 2 in level 2 are the same as step 1  and step 2 in stage 1 Step   3:   Organize   students   to   develop   their   own   creative   exercises  Based on the creative cycle of Razumovsky [35], based on the  system of creative principles, the  development  of creative exercises  in the dissertation is conducted as follows: Starting problem Concepts and rules Develop methods to solve problems and  find results Make questions and answers Creative  principles Creative problem 2.3.2.3. Using algorithms to enhance creative thinking and problem   solving competence for students in teaching Genetics (Biology 12 ­   High School) In teaching Genetics, the use of algorithms to enhance creative  thinking   and   problem   solving   skills   is   most   clearly   revealed   in  teaching genetic exercises, especially when they develop and solve  creative assignments Creative exercise The process of applying creative principles to guide students in  Analyze  solving creative exercises takes place according to the following process: Identification Analyze  Establish a relationship between hypothesis and conclusion Creative principles Propose the options Evaluate Choose the optimal plan Perform Result Comment Lesson 18 Figure 2.20. The process of solving creative exercises The level  to which the creative thinking capacity and problem  solving capacity in teaching is formed and developed depending on the  user and the use of teaching process Using algorithm in forming new knowledge Algorithm   used   in   teaching   helps   students   orientate   textbook  research to find new knowledge, and also works to create a shortened  knowledge product from textbooks. The method of using algorithms to  teach new knowledge is inductive measure Using algorithm in consolidating and perfecting knowledge This is an important stage in the learner's awareness path to  practice the use of the acquired knowledge in specific situations. This  is   to   strengthen   the   process   of   acquiring   knowledge,   bringing  knowledge to serve practical requirements, creating products similar  to   existing   or   higher,   newer   products   This   is   also   a   period   of  consolidating   skills   to   turn   them   into   professional   ones   for   the  ultimate learning target of "Practice make perfect" Using algorithm in testing and assessing Testing and essessing is the period in which students self­assess or  evaluate learning process of each other. This is also the stage for teachers  to assess the level and capacity of each student, receive feedback from  students   to   adjust   the   deveopment   of   teaching   algorithms   and   their  teaching process to suit the targets and subjects. To implement this task,  teachers need to build a tool to assess the level of knowledge acquisition  and level of capacity development in each student 19 Chapter 3. PEDAGOGICAL EXPERIMENT 3.1. Experimental purposes  In   order   to   check   the   feasibility   and   effectiveness   of   the  scientific hypothesis that the subject has set; test the effectiveness  of   algorithms   that   have   been   developed   in   teaching   genetics  (Biology 12) 3.2. Experimental content Pedagogical experiment is conducted for a number of lessons that  invented algorithm is allowed to apply to this content When applying the invented algorithm or any teaching method,  we think that it must be conducted continuously and systematically to  assess the effectiveness of that method in the most objective way 3.3. Experimental method 3.3.1. Selecting experimental schools, classes and teachers We   conducted   experiments   in     high   schools   in   Hung   Yen  province: Before conducting the experiment, we discussed with teachers  who participated in the experiment the following content: ­ Purpose, request, task and content of conducting experiment ­   Specific   purpose,   method   and   teaching   plan   for   each   lesson  period ­ Provide documents for teachers to participate in experimental  research before experimenting. Guilding documentation includes: +   Analyzing   the   logical   structure   of   the   content   of  experimental lessons + Process of 1developing algorithmic records + Process of applying algorithm to teaching genetics (Biology 12) + Methods of organizing students to apply creative principles  to propose creative exercises and situations.  + Sample lesson plans of genetics that apply algorithm into  teaching process 3.3.2. Organization of pedagogical experiment The experiment was conducted 2 times *   Phase     (academic   year   of   2015   ­   2016)   is   exploratory  experiment 20 *   Phase     (academic   year   of   2016   ­   2017)   is   the   official  experiment 3.3.3. Method of results processing  3.3.3.1. Using mathematical 1 3.3.3.2. Handling the comments of teachers and students 3.4   Criteria   for   assessing   the   effectiveness   of   applying   invented  algorithm in teaching genetics (Biology 12) 3.4.1. Assessing student's cognitive capacity Assessing the level of students' knowledge acquisition Assessing students' knowledge use ability  3.4.2   Assessing  creative   thinking   capacity   in   teaching   Genetics   (Biology 12 ­ High School) with applying of Algorithm 3.4.2.1   The   basis   for   developing   criteria   for   assessing   creative   capacity From these basis, we propose the following criteria to assess  students' creative thinking capacity: The first criterion: From the cognitive needs of students, they  can  discover   new   problems   and  give  dependable   predictions   (idea  suggestion) The second criterion: From the predictions, students propose  possible   solutions   to   test   the   hypothesis   and   identify   the  consequences derived from the hypothesis The third criterion: Students know how to analyze the pros  and cons of the proposed plans and choose the most optimal solution The   fourth   criterion:   Students   successfully   implement   the  selected plan The fifth criterion: Identify personal experience lessons 3.4.2.2. How to evaluate Based on the above criteria, when evaluating students' creative  thinking capacity, teachers need to: ­ Design starting exercises/situations ­ Organize students to solve the starting exercises/situations ­ Organize students to propose creative exercises/situations and  find solutions to solve those exercises/situations 21 3.4.2.3. Proposing a scale of creative thinking capacity in teaching   Genetics (Biology 12 ­ High School) 1, Problem detection Criteria Point The problem is found and dependable prediction is given 2 points The problem  is found but dependable prediction is not  1 point given The problem is not found 0 point 2, The solution for solving problem has been proposed Criteria Point The solutions for solving problem and consequences of  2  solutions are proposed points The solutions for solving problem are proposed but  1 point consequences of solution is not given The solutions for solving problem are not proposed 0 point 3, Analysis and assessment of advantages and disadvantages   of the solutions to choose the best option to solve the problem Criteria Point The solutions are analyzed and the most optimal option  3 points is selected The solutions are analyzed but the most optimal option is  2 points not selected The   solutions   are  not   analyzed   but   the   most   optimal  1 point option is selected The   solutions   are  not   analyzed   and   the   most   optimal  0 point option is selected 4, Successful implementation of the selected option or there   are improvements compared to the selected option Criteria Point Students successfully implement the selected option and  2  propose improvement plan points Students successfully implement the selected  option but  1 point improvement plan is not proposed No option is implemented 0 point 5, Lesson for each individual 22 Criteria Point Students can draw experience lessons for themselves 1 point Students cannot draw experience lessons for themselves 0 point The system of 5 criteria with the levels and scales as above can  be   used   to   measure   creative   thinking   capacity   in   the   teaching   of  genetics in particular and in teaching in general The   number   of   points   that   each   student   obtains   from   the   4  above   criteria   is   called   x   To   evaluate   students'   creative   thinking  capacity, we divide the levels as follows: Table 3.4. Table assessing the level of creativity in the experiment Level 0 No. of  point (s) 0≤ x 

Ngày đăng: 06/08/2020, 02:58

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w