1. Trang chủ
  2. » Giáo án - Bài giảng

BÀI TÂP CẢ NĂM 6 ĐẾN 9

84 20 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 84
Dung lượng 22,87 MB

Nội dung

.·~- \ l - ' BAI T.AP TlJA.N ? \d CANAM ! ~· T , s" G xao VIen: ·····~oo:.•···~·•o•••••oe•••••• - = - => ~ - = - => = -=-=DC AC DC 4 7 30 40 (em );DC= (em) => BD = 7 · · { AC.lAB b Tam giac ABC vuong tai A nen => DH II AC DH.lAB " DH: ;: BD D·-H = -24 ' ABC co' DH /l AC nen-·==-.·-·=> T amg1ac AC BC Tam giac AliD vuong t?iH c6 _A; = 45° =>.1 AHD can t?i H => AH = DH 24 r;:; =>AD =AH +DH =-.v2(cm) Bai6 a AM =9 em; CM = 6cm · b BN Ia phan giac g6c ngoai g6c B cua tam giac ABC => NC = BC => NC = 10 =>NC= 0(cm) NA AB AC+NC 15 TUAN24 Bai x: tu6i each day nam (x E N*) => tu6i my d6: 5x c:> Tu6i illy va nam sau lfui luqt la 5x + va X + Phuong trinh: 5x + = 3(x + 6) ~ x = (tm} V?y hi~n 10 tu6i va my 34 tu6i Bai x: (km) la d9 dai quang duCm.g AB (x > O) c:> Vd\fdinh: ~ (km/h); Vthvct~: ~(km/h) X X c:> PT: -+10=-¢> x==420 (tm) V?y quang duCm.g AB dai 420 km Bai x (m): CR cua HCN =>CD cua HCN: 320 68 2 x = 160 -x (m) Phuong trinh: (x + 2)(17_0- x)- x(260- x) = 2700 ¢>X= V~y Bai x: 70 (tm) CR cua HCN la 70m va CD la 90m , S6 tfun tham len rna xi nghi~p d?t theo hqp d6ng (~EN*) Phuang trinh: 21 x -x=24¢) x=480 20 K~t lu~n: 480 tfun B~i 5· MBC (/) l\HIK theo ti ~6 k ~ 30 25 =i IK = 25cm·' HI= 15cm·' HK = 20cm · Bai PnEF = 22cm; PinK= 11 Ocm ¢ Bai HI= 18cm; HK = 24cm; IK = 36cm ! • Bai x: s6 tern thu (x TUAN25 EN*); s6 hi thu: 36- x Phuo-ng trinh: 500x + 100(36- x) = 11600 x = 20 V~y Bai c6 20 tern thu; 16 hi thu v to thu nh§t X (Ian/h) (x > 0) => v to thu hai =X+ (km/h) PT: ~ x = 3(x+8) ¢) x = 48 ~ K~t lu~ Bai X (h) la thai gian hai d9i cling lam d~n s6 diy l?i cua d9i I g~p d6i d9i II (x > 0) ¢ : PT: I 000- 120x = 2(950- 160x) ¢> x = 4,5 (tim)=> K~t lu~ Bai a 6ABC (/) l\DEF theo ti s6 b L\DEF (/) MBC theo ti s6 _!_ Bai a AB = 12cm; AC = 18cm; BC = 24cm 69 DE=!._ DF AB 4' AC -8.15.-= A -~ =.!_ EF =_!_=> LillEF (/) MBC 4' BC 10~~; · E= fJ ~ 4S ; fL= t - ~- 30° Bru a BC = lOcm; HK = 20cm b MBC (/) MllK theo ti s6 ~ TUANJ6 Biti Quang du 0) ¢ Thai gian luc diva luc v~ l§n luot Ia: ~ (gia) va ~ (gia) - ¢ PT: ~-~= Bai 40 36 60 50 ~ 50 40 x=l20 (tm) => K€t luau v th\IC cua ca no: X (kmlh) (x > 5) V xuoi: X+ (kmfh), V nguqc: X- (kmfh) c:> PT: 3(x + 5) = 4(x- 5) ~ x = 35 c:> B9 dai do~ AB Ia 120 kmlh Bai X (phut) la thai gian chay cua voi nuac 1~ (35 - x) (phut) la thm gian chay cua voi nuac nong c:> PT: 30x + 40(35- x) = 1250 ~ x = 15 (tm) c:> K€t lu?n Bai ilCBD ~ ilCAB(g.g) => CB2 =CA CD ¢ CA =CD+ DA = 16 (em)=> CB = 144 => CB = 12cm =>DB=~ BA Bai LlABC ~ ilDEF theo ti s6 k => AB = BC = k DE , - BM EN EF BC EF BC=2BMvaEF=2EN=> - = - = k => MBM c.n LIDEN => AM DN -= k Bai a 6.BCD (/) ilHCB (g.g) 70 BC HC BC DC DC BC b -=-=:>HC=-=9(cm) HD=DC-HC= 16cm c BH = 12cm Ke AK DC=> MKD = => AB = HK = 7cm => ~BHC SABcD = => DK = CH = 9cm => KH = 7cm · (AB + DC).BH 2 192 (em ) -~ ~: - TUAN27 b.x= ~ ' a x=21 B a1 c 5 25 x=12 Bai a PT ~ 8(x + 5) = 6(3x- 5) ~ x = 7' b, c, d tuang t1)' i x= Bai a PT ~ (3x + 2).(-3)(x- 3)(2x + 1) = ~ x=3 x= b, c, d tuang t1)' Bai x (km/h) la v~ t6c c~n tim (x > 0) ,-"., J -240 ( gw ' ) '-,/ t d1J loen: X 240 ~ ~ duong: ' V o~ to~ sau lrl-, wl tang: x + 10 (km/h) => t d"1 hJ.et quang - - ( gw 0 ' ) x+10 ¢ PT: 240 _ 240 = 20 x x+ 10 [x = 80 (tm) 60 x = -90 (loai) ¢> K€t lu~n Bai a MDC (/) ~BEC (g.g) b MDC (/) ~EC => - = - => AC.EC = BC.DC ¢ '' DC EC AC BC c 6DEC (/) MBC (c.g.c) Bai a DE= 15cm 71 > DE AE =- ~ DE AE b LlliAD c.n LlliBK (g g) c MDE c.n 1CKD (g g}-> AP.=~ => A.Q = ~ - EK BE KC CD DE+EK ·AE+BE KC AD => AD ~ DK = 20cm =KC AE· · · ~ d ScKD = 96 cm2 Bai a MHB b dBMD c c.n c.n 1CAB (g.g) -> BC = 15cm; AH = 7,2cm dBAC (g.g) BM ~ 7,5cm; HM = ~,1~m; 1BMD c.n L\BAC (g~~): ·=? BD = 12,5cm =>AD=3,5cm d E Ia tqrc tam L\BCD nen BE l_ CD ~ - ~ TUAN28 x=-2 Bai a PT ~ (-x-2)(5x-2)=0~ x= r b, c, d tuang t\I Bai a f)K.Xf): X f- 1; X f- -l PT (3x2 + 4x + 1)- (3x2 - 5x + 2) = x =.!_ (tm) b, c, d tuang 1:\f Bai a BKXD: x f- - 1; x -:f PT (x - 1)(2x2 + 3x + 4) = x =1 (tm) b, c, d tuang 1:\f Bai V ngu di xe d?p: x (kmlh) (x > 0) Phuongtrinh : 20 60 60 - x x+4 60 x 1+ - + =- ~ [x=20 x= - 36(/oai) v~ t6c luc di cua nguai d6 la: 20 kmlh 72 Bai BK // AH => AH = BK.AC 18 (m) BC , Dh A·A'B'C' Bm A ADC ( g.g ) nen " A'B' B'C' ==.k => AB = -A'B' (/.) o.nJ.J AB BC k , Bai Chieu cao cua cay la 22,5m TUAN29 Bai b, c, d tuang tv a Sai vi (a+ 2)- (a- 2) = > Bai a B~ khing dinh x L~y X , + :::; 10 + 2x sai thi x + > 10 + 2x ~ x < - == -10 => X + =- 8; 10 + 2x = - 10 va -1 < - d L~yx =- c L~y X=- 40 b Layx=2 Bai a x > Vx > x + 2013 > Vx b, c, d tuang tl,l' Bai a L~y vi dv a= 2; b = 1; c =- 4~ d =- b L~y vi dv a = 3; b Bai a = - c L~y a= 2; b = -3 d L~y a = - 5; b = - 4 MBI (/) f: HCI (g.g) b LillHC (/.) f: CHI vi Fi chung va HBC = ICH = 10em, -=> AI_AB {AI=3cm c Be IC : " ·' · BC IC=5cm Bai a MBH (/.) f: CAH (g.g) AB BH BM BH ~ m'm ~ b - = - · -=-=> MBM c AM C/) f: CAN (c.a.c) o d.t CN t~i K MBM (/.) f: CAN·' JJrC = 90°=>AM LCN 73 Bai a AB II CD; MHB (/) ABCD (g.g) b AH = AB => AH = BC.AB va )3D= 15cm > AH = 7,2cm BC BD BD _ _ _ _ _ -· -·- c MHB (/) LlliCD > HB = AH.CD =9, (em) => SAHB = BC ~ AH.HB =_34,56 (cm2) - ; : Bai a s= · TUAN30 b S ={xI x 3} T~p nghi?m cua cac BPT l~i: V~y BPT (2) khong tuong duong v6i cac BPT l~i Bai a S1 = {0; 1; 2} d s4 = b s2.= {O; ±I} e Ss = {0; 1; 2; 3; 4} C = Ai5E = Ki5B => L:lFBD (/) L:lFEC (g.g) {1; 2} c s~ = Bai a MBC (/) L:lAED (c.g.c) b c TLr y a va b thay vao ti Bai a C/m ABD s6.d6ng d?llg d~ tinh ED va FB = CED => MDB c.n.MCE(g.g) b MBD (/) L:lCED (g.g) c AD.AE=AB.AC } =>AD = AB.AC - DB.DC AD.DE =DB CD · Bai a AB = CD; AD= BC AB II CD=> AM/ICDvaMB II CD AD II BC=> AD 1/CN 74 {± 1; ± 2; 3; 4} AM II CD=> AM CD IA AD IC' II CN => -=-· AD CN IA IC · -=- => AM_CB_DM -AB CN DN AM CB AB va' CB co.t dinh => AM-CN kh"ong d _01 b -=-=>AM.CN=AB.CB·, AB ,, CN 1M IA · ID ID IC IN ? c -=-=-=>ID- =IM.IN IH AH IH HD lli IH HD AH ·• · · · d.-.- = - · - = - = > - + - = - + - :=!:.f - CD AD' AM AD · AM CD AD AD · 1 =>-+-=AM CD IH Bai a 2x- < - ~ 2x < - ~ TUAN31 x-2_ Bai Sxq = 2.(15 + 25).8 = 640 (cm2) V = 25.15.8 = 3000 (cm3) 75 Bai a: ThS tich cua bS: 1,2.2.1 = 2,4 (m3) b ThS tich cua nu6c: 60.20 = 1200 (I)= 1,2 m A cao cua •· , 1, = 0, ( m ) Ch teu m\fc nuac: 24 ' Bai a HS t\1' ch1lng minh b Stp = 2352 (cm2); V = 7760 (cm3) Bai a Di~n tich day:_2.3.4 = 24 (cm2) Di~n tich xung quanh: 6.2.(3 + 4) = 84.(cm2) Di~n tich toan phfui: 24 + 84 = 108 ( cm2 ) b V = Sda.y.h = 6.3.4 = 72 (cm3) - TUAN32 b, c, d tuang tt;r ' a -x+-< 2 -9 - x~ x< B at 70 b, c, d tuang tlJ Bai a ¢:::> ! x- x(2x- 1) > 25 - 2x(x + 3) -x - 2x2 +x+2x +6x>25 ¢!> ¢!> !~7 31 x> 3- HS tt.r biSu di~n nghi~m tren h~ t:rvc·tQa d9 b, c, d tuang tt;r , Bat4 a 3x + 16 X - X X X ~ +- ~ -x +2~ - + 58 425 X X ~ -x ~ - ¢) 100 x :::;;- 76 2x2 + x > 25- 2x2 - 6x b, c, d tuang tv Bai MBC vuong A=> BC = 3-Ji(cm) Sxq = 2.p.h = 24 + 12Ji (cm2) V = S.h = ~ 3.3.4 = 18 (em-') Bai Sxq = 3.4.10 = 120· (cm2); AH = Sday =.::! .AH.BC = 4J3 2J3 (em) (cm2) V = Sday.h = 40.J3 ( cm3) b Sxq = _(3 + + 5).9 = 108 (cm2) c Stp = Sxq + 2.Sday = 108 + 3.4 = 120 (cm2) Bai a BC = 5cm d V = S.h = ! 3.4.9 =54 ( cm3) Bai a B'MDN la hinh thoi :!· ; , TUAN33 Bai a Khi m 2>:.! thi A = - Khi m < m+1 ! thi A = 5m - b, c, d tuang tl! Bai a N~u 2x - < N~u 2x- ~ ¢> x < ~ thi J2x- 5J = - 2x + x = (tm) x ~ ~ thi J2x- 5J = 2x- x = (tm) b tucmgtt.r Bai a x ~ - 1; PT tr& 5- (x + 1) = 3x - 10 77 ¢> x = 3,5 (tm) X< - 1; PT tr& thrum + (x + 1) = 3x -10 ¢?X= (k thoa man) b, c, d tuong tt,r - - , B a1 I a X- 21-1 - X - 3X +.21 - [x-2 =-(xz -3x+2) x-2 =x -3x+2 b, c, d tuong tt,r b OA = Bai a AC = 10.J2 em J1l9 em c Trung do:;m SH = Stp = Sxq + Sday = d V = !._ S.h = Bai a AH = s.J2 em; SO = J94 em 20M+ 100 ( cm2) 100J94 (cm3) AB.Ji =6.J3 (em) V = !_ SABc.SO = 180 J3 (cm3) ' stp -B at 62 sxq + sday -3 • + - J3 - =36 + 9-vr:; - Bai a OA = Ji; SA= b V = c Sxq = => Sxq Jso + OA 2 (_em2_ ) =Jl94(cm) ! S.h = 400 (cm3) 4.Sm~tben = = - .sH.BC; SH = 13cm 260 cm2 78 TUAN34 b, 9, d tuong 1:lJ Bai a x~ 1; pt ¢> 3x- (x-1)"= X< 1; pt ¢> 3x +X- = ¢> x = ~ (lo~i) ¢>X= (tm) · b tucmg tg Bai a x~ x< j thipt ¢> 3x-5 = 1-2x ¢> x=% (lo?i) %thi pt ¢> -3x + = - 2x ¢> x = (lo?i) btuongtlJ · Bai a x2 < => S = {x 1- < x < 2} b, e, d tuong tv Bai Stp = Sxq + Sctay = :.fj ~ 3.30~25 + 30 = 1125 + 225.J3 (mm) v 1500 ' a V = S.h => l1 = -=-=12,5 Bm (em) s 120 b a, b la d9 dai day eua hinh h9p ehfr nh?t a.b =120 {a= 4.J6 => Sxo = 225-v6cmr; , s.J6 ' } => a :b = 4:5 b= Bai AC = 12em ,; i' ! Chu vi day = 36 em ' ¢ Stp = 2.p.h + 2S = 576 + 9.12 = 684 (em 2) V = S.h = l - ~ 9.12.16 = 864 (em"') 79 · Bfli a Hinh chop SABCD c6 day ABCD Ia hinh vuong G9i la giao diSm du SABCD la hinh chop d~~b _ V _,SAB=C=D- =_!_ VABCD.A'B'C'D' TUAN 35 Bai a y + 2y + ~ ~ y + 2y + + > ~ (y + I ) + ~ 2 Dung vi (y + 1? ~ Vy b, c, d tuong tv Bai a (m + I)2 > 4m; (n + I) > 4ri; (p + I)2 > 4p ¢ ¢ (m + 1) (n + I? (p + I? ~ 64mnp = 64 (m + 1) (n +I) (p +I)~ , b Ap d\ffig (x + y) ~ 4xy · {(a+b) > 4ab (ab+Ii ~ 4ab Dfiu ''=" xay ~ a= b va a.b = ~ a= b = , a x - , I m+n B al -+-~ ., ~ ., m n m+n ~ (m-n) ~ Bai a ~MIN mn m+n dung 'v'm,n > (/) L\KIP (g.g) b Vi L1MIN (/) L\KIP nen = MIMN ' IP NP 5cm· -=-=> • MNi = iPK Do-NI la phan giac cua g6c N => c NP , (m+n) -~4mn :MN1 = iNP MI - MN -:Ml+IP MN+NP 80 =>:Ml = MP.MN = ~ MN+NP Bai a 3+5 AEi5 = BEH =.AD£=> b MBE (/) ~CBD = ~=>:Ml = ~em 2 MDE can A (g.g) => AE.BD =BE.CD c AEKD la hlnh binh hanh Ma AE =AD nen AEKD la hinh thoi ' \ n i Bai a L1BHC (/) L1MBC (g.g) => BH.BC = CH.BM b BM = BN; HBN = HCD => L1BHN (/) L1CHD (c.g.c) => BHN = EH1) => DHN = 90° => DH L HN Bai a IC = 9cm; DC= DI + IC = 25cm; BD = 20cm BD + BC = DC => WCD vuong B -> BD l BC b SABcD = _!_(AB ~ CD).BI = 192 (cm2) KB KC KD KB c L1BCK (/) L1DBK (g.g) > - = - => KB =KD.KC l i d i ~ j ; ··~ i I :~ ' I 81 p, v ~· :: ... Tinh s6 cac g6c ngil giac I6i Bai 6: Tinh s6 cac g6c da giac 12 qmh Bai 7: Tinh s6 qmh cta m9t da giac bi~t rkg t6ng s& cac g6c cua n6 bing 360 ° Bai 8: Tinh s6 qmh cua m9t da giac bi~t rkg t6ng... 1: M6i khkg dinh sau dung hay sai? Vi sao? a)a + ~a- v6i m9i s6 thvc a b)3( a+ 2) ~ 3(a- 2)- v6i mQi s6 thvc a c)a-15~a-20 v6im9i s6 thvc a d)a(-a+2)~a(2-a) v6in:tQis6thgca Bai 2: Tim m9t gia... n = 24 ,6 ; p = 10 ,6; q = -31, b)B =(a-b )(b +c)+ b(b -a) v&i a= 0, 86; b = 0, 26; c =1,5 Bai 5: Cho riJY < 90 °, diem A nfun g6c d6 G9i B la diem d6i xilng v&i A qua diSm Ox, C la diSm d6i xilng

Ngày đăng: 16/07/2020, 14:36

TỪ KHÓA LIÊN QUAN

w