Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 55 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
55
Dung lượng
3,3 MB
Nội dung
Đềthi tuyển sinh vào lớp 10 Sở Giáo dục và đào tạo KỲ THI TUYỂN SINH LỚP 10 CHUYÊN QUỐC HỌC Thừa Thiên Huế Môn: TOÁN - Năm học 2007-2008 Đề chính thức Thời gian làm bài: 150 phút Bài 1: (2 điểm) Giải hệ phương trình: =− =+ 82 82 2 2 xy yx Bài 2: (2 điểm) Chứng minh rằng phương trình: ( ) 4 2 2 4 2 2 3 0x m x m − + + + = luôn có 4 nghiệm phân biệt 1 2 3 4 , , ,x x x x với mọi giá trị của m . Tìm giá trị m sao cho 2 2 2 2 1 2 3 4 1 2 3 4 11x x x x x x x x + + + + × × × = . Bài 3: (3 điểm) Cho hình vuông cố định PQRS. Xét một điểm M thay đổi ở trên cạnh PQ (M ≠ P, M ≠ Q). Đường thẳng RM cắt đường chéo QS của hình vuông PQRS tại E. Đường tròn ngoại tiếp tam giác RMQ cắt đường thẳng QS tại F (F ≠ Q). Đường thẳng RF cắt cạnh SP của hình vuông PQRS tại N. 1. Chứng tỏ rằng: · · · ERF QRE +SRF = . 2. Chứng minh rằng khi M thay đổi trên cạnh PQ của hình vuông PQRS thì đường tròn ngoại tiếp tam giác MEF luôn đi qua một điểm cố định. 3. Chứng minh rằng: MN = MQ + NS. Bài 4: (2 điểm) Tìm tất cả các cặp số nguyên ,p q sao cho đẳng thức sau đúng: 1232 +−−=−+− qppqqp Bài 5: (1 điểm) Chứng minh với mọi số thực , ,x y z luôn có: ( ) 2x y z y z x z x y x y z x y z + − + + − + + − + + + ≥ + + Hết Sưu tầm: Võ Thạch Sơn Đềthi tuyển sinh vào lớp 10 Sở Giáo dục và đào tạo KỲ THI TUYỂN SINH LỚP 10 CHUYÊN QUỐC HỌC Thừa Thiên Huế Môn: TOÁN - Năm học 2007-2008 ĐÁP ÁN - THANG ĐIỂM BÀI NỘI DUNG Điể m B.1 =− =+ 82 82 2 2 xy yx (2đ) Ta có : ( ) ( ) 2 2 2 2 0x y y x+ − − = . 0,25 Hay ( ) ( ) 2 0x y x y+ − + = . 0,25 + Nếu 0x y+ = , thay y x= − vào phương trình đầu thì: 2 2 2 8 2 8 0x x x x− = ⇔ − − = 0,25 Giải ra : 4; 2x x= = − 0,25 Trường hợp này hệ có hai nghiệm : ( ) ( ) ; 4; 4x y = − ; ( ) ( ) ; 2;2x y = − 0,25 + Nếu 2 0x y− + = , thay 2y x= + vào phương trình đầu thì: ( ) 2 2 2 2 8 2 4 0x x x x+ + = ⇔ + − = . 0,25 Giải ra: 1 5; 1 5x x= − − = − + . 0,25 Trường hợp này hệ có hai nghiệm: ( ) ( ) ; 1 5;1 5x y = − − − ; ( ) ( ) ; 1 5;1 5x y = − + + 0,25 B.2 ( ) 4 2 2 4 2 2 3 0x m x m − + + + = (1) (2đ) Đặt : 2 t x= , ta có : ( ) 2 2 4 2 2 3 0t m t m− + + + = (2) ( 0t ≥ ) . 0,25 Ta chứng tỏ (2) luôn có hai nghiệm : 1 2 0 t t< < . 0,25 ( ) ( ) 2 2 4 2 ' 2 3 4 1 0m m m∆ = + − + = + > với mọi m .Vậy (2) luôn có hai nghiệm phân biệt 1 2 ,t t . 0,25 4 1 2 3 0t t m× = + > với mọi m . 0,25 ( ) 2 1 2 2 2 0t t m+ = + > với mọi m . 0,25 Do đó phương trình (1) có 4 nghiệm : 1 t − , 1 t + , 2 t − , 2 t + . ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 2 2 2 2 2 2 2 2 1 2 3 4 1 2 3 4 1 1 2 2 1 1 2 2 x x x x x x x x t t t t t t t t + + + + × × × = − + + − + + − × × − × ( ) 1 2 1 2 2 t t t t= + + × 0,25 ( ) 2 2 2 2 2 4 4 2 1 2 3 4 1 2 3 4 4 2 3 4 11x x x x x x x x m m m m+ + + + × × × = + + + = + + . 0,25 2 2 2 2 4 2 4 2 1 2 3 4 1 2 3 4 11 4 11 11 4 0 0x x x x x x x x m m m m m+ + + + × × × = ⇔ + + = ⇔ + = ⇔ = 0,25 1 Đềthi tuyển sinh vào lớp 10 B.3 3 đ Câu3. 1 (1đ) Hình vẽ đúng 0,25 Đường tròn ngoại tiếp tam giác RMQ có đường kính RM . · · · 0 45ERF MRF MQF= = = (3) 0,25 F nằm trong đọan ES. · · · 0 90 QRE ERF FRS= + + Do đó : · · 0 45QRE SRF+ = (4) 0,25 Từ (3) và (4) : · · · ERF QRE SRF= + . 0,25 Câu3. 2 (1đ) Ta chứng minh đường tròn ngoại tiếp tam giác MEF luôn qua điểm cố định P. 0,25 Ta có : · · 0 45NSE NRE= = . Do đó N, S, R, E ở trên đường tròn đường kính NR. 0,25 Ta cũng có: · · 0 45FME FNE= = . Do đó N, F, E, M ở trên đường tròn đường kính MN. 0,25 Do · 0 90MPN = nên đường tròn ngoại tiếp tam giác MEF đi qua điểm P. 0,25 Câu3. 3 (1đ) Tam giác RMN có hai đường cao MF và NE. Gọi H là giao điểm của MF và NE, ta có RH là đường cao thứ ba. RH vuông góc với MN tại D. Do đó : · · DRM ENM= . 0,25 Ta có: · · ENM EFM= (do M, N, F, E ở trên một đường tròn); · · · EFM QFM QRM= = (do M, F, R, Q ở trên một đường tròn). Suy ra: · · DRM QRM= . D nằm trong đọan MN. 0,25 Hai tam giác vuông DRM và QRM bằng nhau, suy ra : MQ = MD 0,25 Tương tự : Hai tam giác vuông DRN và SRN bằng nhau, suy ra : NS = ND . Từ đó : MN = MQ+NS 0,25 B. 4 1232 +−−=−+− qppqqp ( α ) (2đ) Điều kiện: 2 0,p − ≥ 3 0,q − ≥ 2 1 0.pq p q− − + ≥ (p, q là các số nguyên) 0,25 Bình phưong hai vế của ( α ) : 2 2 3 3 2 6p q pq p q− × − = − − + . 0,25 Hay : ( ) ( ) 2 ( 2)( 3) 2 3p q p q− − = − − . 0,25 2 D H N F E M S R Q P Đềthi tuyển sinh vào lớp 10 Tiếp tục bình phương : ( ) ( ) ( ) ( ) 2 2 4 2 3 2 3p q p q− − = − − . 0,25 + Nếu 2p = thì ( α ) trở thành: 0 + 3 − q = 3 − q , đúng với mọi số nguyên 3q ≥ tùy ý. 0,25 + Nếu 3q = thì ( α ) trở thành: 2 − p + 0 = 2 − p ,đúng với mọi số nguyên 2p ≥ tùy ý. 0,25 + Xét 2p > và 3q > . Ta có : ( ) ( ) 4 2 3p q= − − ( p, q là các số nguyên) Chỉ xảy ra các trường hơp : 1/ 2 1,p − = 3 4q − = ; 2/ 2 2,p − = 3 2q − = ; 3/ 2 4,p − = 3 1q − = . 0,25 Ta có thêm các cặp (p; q): (3; 7) , (4; 5) , (6, 4) . Kiểm tra lại đẳng thức ( α ): 1 + 4 = 9 ; 2 + 2 = 8 ; 4 + 1 = 9 0,25 B.5 )(2 zyxzyxyxzxzyzyx ++≥+++−++−++−+ (*) (1đ) Đặt: ,a x y z= + − ,b y z x= + − c z x y= + − . Trong ba số a, b, c bao giờ cũng có ít nhất hai số cùng dấu, chẳng hạn: 0a b × ≥ . Lúc này : zyx −+ + zxy −+ = a + b = ba + = 2 y 0,25 Ta có : x y z a b c+ + = + + ; 2x a c= + ; 2z b c= + . Do đó để chứng minh (*) đúng, chỉ cần chứng tỏ : c + cba ++ ≥ ca + + cb + (**) đúng với 0a b× ≥ . 0,25 Ta có: (**) ( ) 2 2 c a b c ab a c b c ca cb c ab ca cb c ab⇔ × + + + ≥ + × + ⇔ + + + ≥ + + + (***) 0,25 Đặt: 2 ca cb c A+ + = ; ab B= , ta có B B= (do a.b ≥ 0) ta có: (***) ⇔ A + B ≥ BA + ⇔ A . B ≥ AB ⇔ AB ≥ AB . Dấu đẳng thức xảy ra trong trường hợp các số: a, b, c, a + b + c chia làm 2 cặp cùng dấu. Ví dụ: 0ab ≥ và ( ) 0c a b c+ + ≥ . 0,25 Chú ý: Có thể chia ra các trường hợp tùy theo dấu của a, b, c (có 8 trường hợp) để chứng minh(*) 3 Đềthi tuyển sinh vào lớp 10 ĐỀTHI TUYỂN SINH LỚP 10 HỆ THPT CHUYÊN ĐHKHTN, ĐHQG HÀ NỘI NĂM HỌC 2007-2008 – Thời gian 150 phút NGÀY THỨ NHẤT Câu 1. (3 điểm) Giải hệ phương trình và phương trình sau a) 2 2 4 1 2 2 1x x x x x− + = − + + . b) 3 3 ( ) 2 4 xy x y x y x y + = + + + = . Câu 2. (3 điểm) a) Giả sử x 1 , x 2 là 2 nghiệm dương của phương trình x 2 – 4x + 1 = 0. Chứng minh rằng 5 5 1 2 x x+ là một số nguyên. b) Cho a, b là các số nguyên dương thỏa mãn a + 1 và b + 2007 đều chia hết cho 6. Chứng minh rằng 4 a + a + b chia hết cho 6. Câu 3. (3 điểm) Cho M là trung điểm của cung nhỏ AB của đường tròn tâm O (AB không phải là đường kính). C và D là 2 điểm phân biệt, thay đổi nằm giữa A và B. Các đường thẳng MC, MD cắt (O) tương ứng tại E, F khác M. a) Chứng minh các điểm C, D, E, F nằm trên một đường tròn. b) Gọi O 1 và O 2 lần lượt là tâm các đường tròn ngoại tiếp các tam giác ACE và BDF. Chứng minh rằng khi C và D thay đổi trên đoạn AB thì giao điểm của hai đường thẳng AO 1 và BO 2 là một điểm cố định. Câu 4. (1 điểm) Cho a, b, c là các số thực dương thỏa mản abc = 1. Chứng minh rằng: ( ) ( ) ( ) 2 2 2 1 . 1 1 1 a b c a b c ab a bc b ca c ≤ + + + + + + + + + + 4 Đềthi tuyển sinh vào lớp 10 bài 1 a. bài này đặt ẩn phụ là ra b. đặt x+y=a xy=b ta có hệ ab=2 +a-3ab=4 thay ab=2 vào phương trình 2 ta tính đc a= 2=> b=1 thay a và b ta tính đc x=y=1 1. a)đk Đặt phương trình trở thành: Đặt Câu 2 a)PT có 2 nghiệm và Do đó là số nguyên đpcm b) và a,b lẻ (1) (2) Từ(1)(2)=>đ.p.c.m ----------------------------------------------------------- 5 Đềthi tuyển sinh vào lớp 10 ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH ĐỀTHI TUYỂN SINH LỚP 10 NĂNG KHIẾU NĂM HỌC 2007 – 2008 MÔN TOÁN AB ( Chung cho các lớp Toán , Tin , Lý , Hoá , Sinh ) Thời gian làm bài : 150 phút. Câu 1. Cho phương trình : 2 2 2 ( 1) 3 0 1 x x m m m x − + + − = − (1) a) Tìm m để x = -1 là một nghiệm của phương trình (1) b) Tìm m để phương trình (1) vô nghiệm Câu 2. a) Giải bất phương trình : 2 ( 3)( 1) 2 1 7x x x x+ − − − < − b) Giải hệ phương trình : 2 3 2 1 2 3 2 1 x y y x x x y x x y y y + = − + = − Câu 3. a) Cho a,b là hai số thoả mãn điều kiện : 2 2 2 2 3 2 5 7 0a ab b a b a ab b a b− + + − = − + − + = Chứng tỏ rằng : 12 15 0ab a b − + = b) Cho : 2 2 ( 4 2)( 1)( 4 2) 2 1 ( 1) x x x x x x A x x x + − + + + + − + = − Hãy tìm tất cả các giá trị của x để 0A ≥ Câu 4. Cho tam giác ABC nhọn có H là trực tâm và góc BAC bằng 60 o . Gọi M , N , P lần lượt là chân đường cao kẻ từ A , B , C của tam giác ABC là I là trung điểm của BC . a) Chứng minh rằng tam giác INP đều b) Gọi E và K lần lượt là trung điểm của PB và NC . Chứng minh các điểm I , M , E và K cùng thuộc một đường tròn c) Giả sử IA là phân giác của góc NIP . Hãy tính số đo của góc BCP Câu 5. Một công ty may giao cho tổ A may 16800 sản phẩm , tổ B may 16500 sản phẩm và bắt đầu thực hiện công việc cùng một lúc . Nếu sau 6 ngày , tổ A được hỗ trợ thêm 10 công nhân may thì họ hoàn thành công việc cùng lúc với tổ B . Nếu tổ A được hỗ trợ thêm 10 công nhân may ngay từ đầu thì họ sẽ hoàn thành công việc sớm hơn tổ B 1 ngày. Hãy xác định số công nhân ban đầu của mỗi tổ . Biết rằng , mỗi công nhân may mỗi ngày được 20 sản phẩm . − HẾT − 6 Đềthi tuyển sinh vào lớp 10 Sở Giáo dục-đào tạo KỲ THI TUYỂN SINH LỚP 10 THPT Thành Phố Huế Thừa Thiên Huế Khóa ngày 12.7.2007 Đề chính thức Môn: TOÁN Thời gian làm bài: 120 phút Bài 1 : (1,75 điểm) a) Không sử dụng máy tính bỏ túi, tính giá trị của biểu thức: 3 2 3 6 3 3 3 A − = + + b) Rút gọn biểu thức ( ) − = − > ≠ ÷ + + + + 1 1 1 : 0 vµ 1 1 2 1 x B x x x x x x x . Bài 2: (2,25 điểm) Trên mặt phẳng tọa độ cho hai điểm ( ) 4 ; 0B và ( ) 1 ; 4C − . a) Viết phương trình đường thẳng (d) đi qua điểm C và song song với đường thẳng 2 3y x= − . Xác định tọa độ giao điểm A của đường thẳng (d) với trục hoành Ox. b) Xác định các hệ số a và b biết đồ thị hàm số y = ax + b đi qua 2 điểm B và C. Tính góc tạo bởi đường thẳng BC và trục hoành Ox (làm tròn đến phút). c) Tính chu vi của tam giác ABC (đơn vị đo trên các trục tọa độ là xentimét) (kết quả làm tròn đến chữ số thập phân thứ nhất). Bài 3: (2 điểm) a) Tìm hai số u và v biết: 1, 42 vàu v uv u v+ = = − > . b) Khoảng cách giữa hai bến sông A và B là 60 km. Một xuồng máy đi xuôi dòng từ bến A đến bến B, nghỉ 30 phút tại bến B rồi quay trở lại đi ngược dòng 25 km để đến bến C. Thời gian kể từ lúc đi đến lúc quay trở lại đến bến C hết tất cả là 8 giờ. Tính vận tốc xuồng máy khi nước yên lặng, biết rằng vận tốc nước chảy là 1 km/h. Bài 4: (2,5 điểm) Cho nửa đường tròn tâm O có đường kính AB = 2R. Kẻ hai tia tiếp tuyến Ax và By của nửa đường tròn (Ax, By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB). Gọi M là điểm tùy ý thuộc nửa đường tròn (khác A và B). Tiếp tuyến tại M của nửa đường tròn cắt Ax tại D và cắt By tại E. a) Chứng minh rằng: ∆ DOE là tam giác vuông. b) Chứng minh rằng: 2 AD BE = R× . c) Xác định vị trí của điểm M trên nửa đường tròn (O) sao cho diện tích của tứ giác ADEB nhỏ nhất. Bài 5: (1,5 điểm) Một cái xô dạng hình nón cụt có bán kính hai đáy là 19 cm và 9 cm, độ dài đường sinh 26cml = . Trong xô đã chứa sẵn lượng nước có chiều cao 18 cm so với đáy dưới (xem hình vẽ). a) Tính chiều cao của cái xô. Hỏi phải đổ thêm bao nhiêu lít nước để đầy xô ? 7 Đềthi tuyển sinh vào lớp 10 Sở Giáo dục và đào tạo KỲ THI TUYẺN SINH LỚP 10 THPT TP. Huế Thừa Thiên Huế Môn: TOÁN - Khóa ngày: 12/7/2007 Đề chính thức Đáp án và thang điểm Bài ý Nội dung Điể m 1 1,75 1. a + ( ) ( ) ( ) ( ) 3 3 2 6 3 3 3 2 3 6 3 3 3 3 3 3 3 3 A − − − = + = + + + − + ( ) 6 3 3 3 2 9 3 A + = − + − + 3 2 3 3 1A = − + + = 0,25 0,25 0,25 1.b Ta có: + ( ) − = − + + + + 1 1 1 1 1 1 1 x x x x x x + = ( ) − + 1 1 x x x + ( ) − − = + + + 2 1 1 2 1 1 x x x x x + ( ) ( ) 2 1 1 1 : 1 1 x x x B x x x x − − + = = − + + (vì 0x > và 1x ≠ ). 0,25 0,25 0,25 0,25 2 2,25 2. a + Đường thẳng (d) song song với đường thẳng 2 3y x= − , nên phương trình đường thẳng (d) có dạng 2 ( 3)y x b b= + ≠ − . + Đường thẳng (d) đi qua điểm ( ) 1; 4C − nên: 4 2 6 3b b= − + ⇔ = ≠ − . Vậy: Phương trình đường thẳng (d) là: 2 6y x= + . + Đường thẳng (d) cắt trục Ox tại điểm ( ; 0)A x nên 0 2 6 3x x= + ⇔ = − . Suy ra: ( ) 3 ; 0A − 0,25 0,25 0,25 2. b + Đồ thị hàm số y ax b= + là đường thẳng đi qua ( ) 4; 0B và ( ) 1; 4C − nên ta có hệ phương trình: 0 4 4 a b a b = + = − + + Giải hệ phương trình ta được: ( ) 4 16 ; ; 5 5 a b = − ÷ . 0,25 0,25 1 Đềthi tuyển sinh vào lớp 10 2 [...]... 2008 2007 2006 2y z x Bài 6: Ba số dương x, y, z 2008 mãn: x + y + z > 4 Tìm giá trị nhỏ nhất của biểu thức: thỏa 2007 2006 2z 2x 2y 2 x y z P y z z x x y ĐỀTHI TUYỂN SINH VÀO LỚP 10 ( khối chun) MƠN THI : TỐN 7 Đềthi tuyển sinh vào lớp 10 ĐỀ DỰ THI Thời gian làm bài : 150 phút - Bài1: ( 1,5 điểm)Tìm x, y ∈ ¢ biết a) x2 -25 = y(y+6) b) 1+x + x2 +x3 = y3 Bài 2: ( 1, 5 điểm) Cho P = x... trên đoạn thẳng AM lấy điểm I sao cho: AI.AM = k2, trong đó k là số dương cho trước và k nhỏ hơn khoảng cách từ A đến đường thẳng xy Dựng hình vng AIJK, tìm tập hợp điểm I và tập hợp điểm K ĐỀTHI TUYỂN SINH VÀO LỚP 10 TRƯỜNG THPT CHUN TĨNH 6 Đềthi tuyển sinh vào lớp 10 Năm học: 2007 - 2008 Thời gian: 150' xy Bài 1: a) Giải phương trình: x4P 2x3 + 4x2-3x - 4 = 0 2 2 b)Tìm những điểm M(x;y) trên đường... ln ln đi qua một điểm cố định ĐỀTHI THỬ TUYỂN SINH VÀO LỚP 10 MƠN THI : TỐN Thời gian làm bài : 120 phút Bài 01 :)( 1, 5 điểm) a) Thực hiện phép tính : A = ( 5 +3 − 3− 5 ) 2 b) Giải phương trình : x + 4x 2 − 4x + 1 = 5 Bài 02 : ( 1, 5 điểm) Cho phương trình : x2 – 2mx + m - 1 = 0 (1) a Chứng minh rằng phương trình ln có 2 nghiệm phân biệt với mọi m 15 Đềthi tuyển sinh vào lớp 10 b Tìm... giác AIEJ Và CMJE nội tiếp b) Chứng minh I, J, M thẳng hàng và IJ vng góc với HK c) Tính độ dài cạnh BC và bán kính đường tròn ngoại tiếp tam giác ABC theo b, c d) Tính IH + JK theo b,c 5 Đềthi tuyển sinh vào lớp 10 ĐỀTHI TUYỂN SINH VÀO LỚP 10 THPT CHUN TỐN - TIN TRƯỜNG ĐẠI HỌC VINH VỊNG II (150 PHÚT) Câu V a) Tìm các giá trị của tham số m để tập nghiệm của phương trìng sau có đúng một phần tử: 2 2 x... ĐỀ CHÍNH THỨC KÌ THI TUYỂN SINH VÀO LỚP 10 CHUN NGUYỄN DU NĂM HỌC 2006-2007 MƠN : TỐN (CHUN) Thời gian : 150 phút (khơng kể thời gian giao đề) Bài 1: (1.5 điểm) Cho f(x)= -( m 2 +1)x+2(1+ 2 )m+4+2 2 , m là tham số Định m để f(x) ≤ 0 với mọi x∈ [1;2] Bài 2: (1.5 điểm) Cho x,y,z là các số ngun khác nhau đơi một.Chứng minh: ( x − y )5 + ( y − z )5 + ( z − x)5 chia hết cho 5(x-y)(y-z)(z-x) 10 Đề. .. O nằm trên đường tròn ngoại tiếp VMNP THI TUYỂN VÀO LỚP 10 CHUN TỐN - THPT CHUN QUẢNG BÌNH Năm học 2002-2003 Câu 1(2 điểm): Cho đường thẳng có phương tr“nh 1) Xác định trong mỗi trường hợp sau: a/ (d) đi qua điểm b/ (d) cắt trục tung tại B có tung độ bằng 3 2) T“m để 2 đường thẳng được xác định trên và đường thẳng đơi một song song Câu 2(1,5 điểm): CMR: 11 Đềthi tuyển sinh vào lớp 10 Câu 3(2 điểm):... lít + V = π h ( r 2 + rr1 + r12 ) = ×6π ( 192 + 19 ×16,5 + 16,52 ) 0,25 0,25 0,25 Ghi chú: − Học sinh làm cách khác đáp án nhưng đúng vẫn cho điểm tối đa − Điểm tồn bài khơng làm tròn 4 Đềthi tuyển sinh vào lớp 10 ĐỀTHI TUYỂN SINH VÀO LỚP 10 THPT CHUN TỐN - TIN TRƯỜNG ĐẠI HỌC VINH VỊNG I (150 PHÚT) Câu I 1 Tính giá trị của biểu thức: P x Biết rằng: 3 y 3 3 (x 3 y) 2004 3 3 3 x 3 2 2 3 2 2 y 17 12 2... 3) 2 = 0 ( x − 1 − 1)2 ≥ 0∀x Vì ( y − 2 − 2)2 ∀y ( z − 3 − 3)2 ∀z Để ( x − 1 − 1) 2 + ( y − 2 − 2) 2 + ( z − 3 − 3) 2 = 0 18 Đềthi tuyển sinh vào lớp 10 x −1 −1 = 0 x −1 = 1 x −1 = 1 x=2 => y − 2 − 2 = 0 => y − 2 = 2 => y − 2 = 4 => y = 6 z−3= 9 z = 12 z−3 −3= 0 z−3 = 3 ĐỀTHI TUYỂN SINH TRƯỜNG CHUN LÊ HỒNG PHONG TPHCM Câu 1: a)cho x,y,z,t là các số thưc Cmr: dấu "="xảy ra khi nào? b) với a,b là số... tuyến với(O) tại B và C cắt nhau tại N Kẻ AM song song với BC MN cắt(O) tại M và P a) Cho Tính BC b) Cm c) Cm BC,ON,AP đồng quy 1) a) Áp dụng : Bđt trên ln đúng nên b) Dấu "=" xảy ra ( đềthi u a và b cùng dấu) 19 Đềthi tuyển sinh vào lớp 10 2) Có : + thì vơ lí + thì : 3) Đặt và Dễ thấy là 2 nghiệm của pt : a) m=24 thì b) kq: 4) Tương tự : 5) 6) a) b) Dễ thấy tứ giác c) I~ câu a) ko bàn là hình thang... (b-c)=pq-6 Câu 14:Cm pt = +y+2+ khơng có nghiệm ngun Câu 15:cho tam giác nhọn ABC, gọi AD, BE, CF là các đường cao của tam giác.Cm tia DA là tia phân giác góc ĐỀTHI VÀO TRƯỜNG CHUN LQĐ ĐÀ NẲNG 2007-2008 vòng 1 Bài 1 1,5 điểm Cho biểu thức P = 121 Đềthi tuyển sinh vào lớp 10 a Tìm điều kiện đối với x để biểu thức A có nghĩa.Với điều kiện đó, hãy rút gọn biểu thức A b Tìm x để A+x-8=0 Bài 2 1,5 điểm Cho . Đề thi tuyển sinh vào lớp 10 Sở Giáo dục và đào tạo KỲ THI TUYỂN SINH LỚP 10 CHUYÊN QUỐC HỌC Thừa Thi n Huế Môn: TOÁN - Năm học 2007-2008 Đề chính. Đề thi tuyển sinh vào lớp 10 ĐẠI HỌC QUỐC GIA TP.HỒ CHÍ MINH ĐỀ THI TUYỂN SINH LỚP 10 NĂNG KHIẾU NĂM HỌC 2007 – 2008 MÔN TOÁN AB ( Chung cho các lớp Toán