1. Trang chủ
  2. » Giáo án - Bài giảng

75 đề thi thử THPT QG 2019 môn toán THPT kim liên hà nội lần 1 file word có ma trận lời giải chi tiết

26 27 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 26
Dung lượng 2,11 MB

Nội dung

SỞ GD&ĐT HÀ NỘI KỲ THI THỬ THPT QUỐC GIA LẦN TRƯỜNG THPT KIM LIÊN NĂM 2018-2019 (Đề thi có 07 trang) Mơn thi: Tốn 12 Thời gian làm bài: 90 phút, không kể thời gian phát đề Mục tiêu: Đề thi thử Toán THPT Quốc Gia 2019 trường THPT Kim Liên – Hà Nội lần mã đề 606 biên soạn nhằm giúp em học sinh khối 12 trường làm quen thử sức với kỳ thi tương tự thi THPT Quốc gia môn Tốn, để em có chuẩn bị mặt tâm lý lẫn kiến thức trước bước vào kỳ thi thức dự kiến diễn vào tháng 06/2019, đề thi có cấu trúc đề giống với đề minh họa Toán 2019 mà Bộ Giáo dục Đào tạo công bố Câu Với a, b hai số thực khác tùy ý, ln  a b  bằng: A 2ln a  ln b B  ln a  ln b  C ln a  ln b D ln a  ln b Câu Với k n hai số nguyên dương tùy ý thỏa mãn k �n , mệnh đề đúng? n! n! n! k k k k A An  B An  C An  n ! D An  k ! n  k  !  nk! k! Câu Cho hình nón có bán kính đáy a diện tích tồn phần 3 a Độ dài đường sinh l hình nón bằng: A l  4a C l  2a B l  a D l  a Câu Đường cong hình vẽ bên đồ thị hàm số sau đây? A y   x  x  B y  x  x  C y   x  x  D y   x  Câu Mặt cầu bán kính a có diện tích bằng: A  a B  a C 4 a D  a Câu Cho khối lăng trụ ABC A ' B ' C ' có diện tích đáy ABC S chiều cao h Thể tích khối lăng trụ cho bằng: A S h B S h C S h D S h 3 Câu Cho hàm số y  f  x  có bảng biến thiên sau: x y' y � 1  � +  + � 3 4 � 4 Hàm số đạt cực đại điểm x0 bằng: A B 4 C D 3 Trang 1/5 Câu Đường cong hình vẽ bên đồ thị hàm số sau đây? A y  ln x B y  e x C y  ln x D y  e x Câu Cho khối chóp S.ABCD có đáy ABCD hình vng cạnh a, SA vng góc với mặt phẳng đáy cạnh bên SB tạo với đáy góc 45° Thể tích khối chóp S.ABCD bằng: A a3 B a3 C a3 D a Câu 10 Rút gọn biểu thức P  x x A x B x 16 C x D x 16 Câu 11 Cho khối tứ diện có tất cạnh 2a Thể tích khối tứ diện cho bằng: a3 a3 a3 2a B C D 12 3 Câu 12 Tập hợp điểm M không gian cách đường thẳng Δ cố định khoảng R không đổi A  R  0 là: A hai đường thẳng song song C mặt nón B mặt cầu D mặt trụ Câu 13 Số nghiệm thực phương trình log  x  x    bằng: A B C D Câu 14 Cho cấp số cộng  un  có số hạng đầu u1  công sai d  Giá trị u7 bằng: A 15 B 17 C 19 D 13 Câu 15 Cho hàm số y  f  x  liên tục đoạn  3; 4 có đồ thị hình vẽ bên Gọi M m giá trị lớn nhỏ hàm số cho đoạn  3; 4 Tính M  m A B C D Câu 16 Hình bát diện có đỉnh? A 10 B C 12 D x 1 Câu 17 Tiếp tuyến với đồ thị hàm số y  điểm có hồnh độ x0  1 có hệ số góc bằng: 2x  1 A B  C 5 D 5 Câu 18 Cho đường thẳng Δ Xét đường thẳng l cắt Δ điểm Mặt tròn xoay sinh đường thẳng l quay quanh đường thẳng Δ gọi là: A mặt trụ B mặt nón C hình trụ D hình nón Trang 2/26 Câu 19 Trong mệnh đề sau, mệnh đề sai? A Tồn hình đa diện có số đỉnh số mặt B Tồn hình đa diện có số cạnh gấp đơi số mặt C Số đỉnh hình đa diện ln lớn D Tồn hình đa diện có số cạnh số mặt Câu 20 Cho hàm số y  f  x  có đồ thị hình vẽ bên Hàm số cho đồng biến khoảng đây? A  1; � B  0; � C  2;0  D  4; � Câu 21 Giá trị lại xe ô tô loại X thuộc hàng xe Toyota sau r năm kể từ mua nhà kinh tế nghiên cứu ước lượng công thức G  t   600.e 0,12t (triệu đồng) Ơng A mua xe tơ loại X thuộc hãng xe từ xe xuất xưởng muốn bán sau thời gian sử dụng với giá từ 300 triệu đến 400 triệu đồng Hỏi ông A phải bán khoảng thời gian gần với kết kể từ mua? A Từ 2,4 năm đến 3,2 năm B Từ 3,4 năm đến 5,8 năm C Từ năm đến năm D Từ 4,2 năm đến 6,6 năm Câu 22 Có giá trị nguyên m � 0; 2018 để bất phương trình m  e �4 e x  có nghiệm với x ��? A 2016 B 2017 C 2018 D 2019  � � Câu 23 Số hạng không chứa x khai triển �3 x  � bằng: x� � A B 35 C 45 D Câu 24 Cho hàm số y  có đồ thị  C  Hàm số sau có đồ thị đối xứng với  C  qua đường thẳng có phương trình y  x x 2 A log x B log x C y  log x D y  log x x Câu 25 Tổng tất nghiệm phương trình log      x bằng: A B C x  x 9 � Câu 26 Tập nghiệm S bất phương trình � �tan � � 7� D x 1 � � ��tan � là: � 7�   2 2; 2 � A S  � � � � 2; � B S  �; 2 � ��� C  2; 4 D  �; 2 � 4; � Câu 27 Cho hàm số y  f  x  có đạo hàm f '  x   x  x  1  x   hàm số cho bằng: A B C   x x �� Số điểm cực trị D Câu 28 Cho hàm số y  x3  3mx  6mx  có đồ thị  C  Có giá trị nguyên tham số m thuộc đoạn  5;5 để  C  cắt trục hoành ba điểm phân biệt có hồnh độ lập thành cấp số nhân? Trang 3/26 A B C D 11 Câu 29 Cho hàm số y  f  x  có bảng biến thiên sau: � x y' y 2 + 1  �  + � 2 � � � Số nghiệm thực phương trình f  x   bằng: A B Câu 30 Cho log a  log b  A I  C D log  5a  � � � log b Tính giá trị biểu thức I  log � B I  2 D I  log  C I  Câu 31 Người ta xếp bảy viên bi khối cầu có bán kính R vào lọ hình trụ Biết viên bi tiếp xúc với hai đáy, viên bi nằm tiếp xúc với sáu viên bi xung quanh viên bi xung quanh tiếp xúc với đường sinh lọ hình trụ Tính theo R thể tích lượng nước cần dùng để đổ đầy vào lọ sau xếp bi A 6 R B 26 R 28 R C 18 R D C f '  x   cot x ln D f '  x   Câu 32 Hàm số f  x   log  sin x  có đạo hàm là: A f '  x   cot x ln B f '  x   tan x ln sin x ln Câu 33 Cho hàm số y  f  x  liên tục � có bảng biến thiên hình vẽ x y' y � 1  � + �  + � 1 Tập hợp tất giá trị thực tham số m để phương trình f  cos x   2m   có nghiệm thuộc �  � khoảng � ; �là: � 4� � 1� 0; A � � 2� � � 1� 0; � B � � 2� �1 � C � ; � �4 � �2  � D � � ;4� � � � 2x 1 có đồ thị  C  Có điểm M thuộc  C  có tung độ nguyên x 1 dương cho khoảng cách từ M đến tiệm cận đứng lần khoảng cách từ M đến tiệm cận ngang Câu 34 Cho hàm số y  đồ thị  C  A B C D Trang 4/26 Câu 35 Gọi S tập hợp tất giá trị nguyên tham số m để đường thẳng d : y   x  m cắt đồ thị hàm số y  2 x  hai điểm phân biệt A, B cho AB �2 Tổng giá trị tất phần tử S x 1 bằng: A 6 B D 27 C 2 x2 � � � � max y � bằng: Câu 36 Cho hàm số y  Giá trị �min y � � x 1 �x� 2;3 � �x� 2;3 � A 16 B 45 C 25 D 89 Câu 37 Cho hình chóp S.ABC có đáy ABC tam giác cạnh a Mặt bên  SBC  vng góc với đáy �CSB  90� Tính theo a bán kính mặt cầu ngoại tiếp chóp S.ABC? A a B a C a D a Câu 38 Tính đạo hàm hàm số y   x  x  1 A y '  C 2x 1 3 x2  x  B y' D y' 2x 1 y' x  x  1 2x 1 3  x  x  1 3  x  x  1 Câu 39 Xét số thực x, y thỏa mãn x  y �4 log x2  y  x  y  �1 Giá trị lớn biểu thức P  x  y  a  b với a, b số nguyên Tính T  a  b3 A T  B T  250 C T  152 D T  98 Câu 40 Tất giá trị tham số m để hàm số y  x   m  1 x  m  đồng biến  1;5  A m  B  m  C m �2 D �m �2 Câu 41 Cho hàm số y  f  x  có bảng biến thiên sau: x y' y �  �  �  � � Số đường tiệm cận ngang tiệm cận đứng đồ thị hàm số cho bằng: A B C � D Trang 5/26 Câu 42 Cho khối hộp ABCD.A ' B ' C ' D ' tích Gọi E, F điểm thuộc cạnh BB ' DD ' cho BE  EB ' , DF  FD ' Tính thể tích khối tứ diện ACEF 2 1 A B C D 9 Câu 43 Cho hình chóp S.ABC có đáy tam giác ABC vng C, CH vng góc với AB H, I trung điểm đoạn HC Biết SI vng góc với mặt phẳng đáy, �ASB  90� Gọi O trung điểm đoạn AB, O’ tâm mặt cầu ngoại tiếp tứ diện ABSI, α góc OO ' mặt phẳng  ABC  Tính cos  Câu 44 A B Gọi n số C giá trị D tham số  2m    x3  x    m  3m    x  x    m3  m  2m   x    A n  B n  m để bất phương trình vơ nghiệm Giá trị n bằng: C n  D n  Câu 45 Cho hàm số y  f  x  có bảng xét dấu đạo hàm sau: � x f ' x 6  4 2  + �  + x Hàm số f  x    2e nghịch biến khoảng đây? A  0;1 B  1; � C  �; 1 D  2;0  Câu 46 Cho hình chóp tứ giác S.ABCD với O tâm đáy chiều cao SO  AB Tính góc mặt phẳng  SAB  mặt phẳng đáy A 90� B 60� C 30� D 45� Câu 47 Cho hàm số f  x   ax  2bx  3cx  4dx  5h ( a, b, c, d , h ��) Hàm số y  f '  x  có đồ thị hình vẽ bên Tập nghiệm thực phương trình f  x   5h có số phần tử bằng: A B C D Câu 48 Một đề kiểm tra trắc nghiệm 45 phút môn Tiếng Anh lớp 10 đề gồm 25 câu hỏi độc lập, câu có đáp án trả lời có đáp án Mỗi câu trả lời 0,4 điểm, câu trả lời sai khơng điểm Bạn Bình học môn Tiếng Anh nên làm theo cách chọn ngẫu nhiên câu trả lời cho tất 25 câu Gọi A biến cố “Bình làm k câu”, biết xác suất biến cố A đạt giá trị lớn Tính k A k  B k  C k  25 D k  Câu 49 Cho khối chóp S.ABC tích V M điểm cạnh SB Thiết diện qua M song song với đường thẳng SA BC chia khối chóp thành hai phần Gọi V1 thể tích phần khối chóp S.ABC chứa cạnh SA Biết V1 20 SM  Tính tỉ số V 27 SB Trang 6/26 B C D Câu 50 Cho hình chóp S.ABCD có đáy ABCD hình thang vng C D, �ABC  30� Biết A AC  a , CD   SCD  a a cạnh SA vuông góc với mặt phẳng đáy Khoảng cách từ B đến mặt phẳng , SA  2 bằng: A a B a C a D a Trang 7/26 MA TRẬN Cấp độ câu hỏi STT Chuyên đề Đơn vị kiến thức Nhận biết Đồ thị, BBT C4 Cực trị C7 Đơn điệu C20 Thông hiểu Vận dụng Vận dụng cao Tổng C27 C40 C45 C28 C33 Hàm số Tương giao C29 C35 C47 Min - max C15 C36 Tiệm cận C41 C34 Bài toán thực tế Hàm số mũ - logarit Biểu thức mũ logarit C8 C24 C32 C39 C1 C10 C30 10 Phương trình, bất phương trình mũ logarit C13 C22 C25 C26 11 Bài toán thực tế C21 12 13 14 15 Mũ logarit Nguyên hàm – Tích phân 16 17 Số phức 18 19 20 Hình Oxyz Nguyên hàm Tích phân Ứng dụng tích phân Bài tốn thực tế Dạng hình học Dạng đại số PT phức Đường thẳng Mặt phẳng 21 Mặt cầu C5 22 Bài toán tọa độ điểm, vecto, đa điện C16 23 Bài toán min, max 24 Thể tích, tỉ số thể tích HHKG 25 26 C19 Khối nón C6 C9 C31 C42 C11C12 Khoảng cách, góc Khối trịn C46 C50 C18 C3 C43 Trang 8/26 27 28 29 30 31 Khối trụ xoay Tổ hợp – xác suất 32 CSC CSN 33 PT - BPT 34 Mặt cầu ngoại tiếp khối đa diện Tổ hợp – chỉnh hợp C37 C2 Xác suất C48C49 Nhị thức Newton Xác định thành phần CSC - CSN C23 C14 Bài toán tham số 1 C44 Giới hạn 35– Hàm số Giới hạn Hàm số liên tục liên tuc36 – Đạo hàm Tiếp tuyến C17 Đạo hàm C38 37 38 PP tọa độ mặt phẳng 39 Lượng giác PT đường thẳng PT lượng giác Trang 9/26 NHẬN XÉT ĐỀ Mức độ đề thi: KHÁ Đề thi gồm 50 câu trắc nghiệm khách quan Kiến thức tập trung chương trình lớp 12, câu hỏi lớp 11 chiếm 20% Khơng có câu hỏi thuộc kiến thức lớp 10 Cấu trúc: thiếu mảng kiến thức nguyên hàm- tích phân, tập trung vào phần hàm số, mũ - logarit 22 câu hỏi VD-VDC phân loại học sinh câu VDC Chủ yếu câu hỏi mức thông hiểu vận dụng, Đề thi phân loại học sinh mức Trang 10/26 Diện tích mặt cầu bán kính a S  4 a Cách giải Diện tích mặt cầu bán kính a S  4 a Câu Chọn đáp án D Phương pháp Thể tích khối lăng trụ có chiều cao h diện tích đáy S V  S h Cách giải Thể tích khối lăng trụ có chiều cao h diện tích đáy S V  S h Câu Chọn đáp án A Phương pháp Hàm số đạt cực đại điểm x  x0 qua điểm x  x0 đạo hàm y ' đổi dấu từ dương sang âm Cách giải Dựa vào BBT ta thấy hàm số y  f  x  đạt cực đại điểm x  Chú ý: Không kết luận hàm số y  f  x  đạt cực đại điểm x  3 Câu Chọn đáp án A Phương pháp Hàm mũ y  a x hàm trị tuyệt đối y  f  x  ln nằm phía trục Ox Cách giải Hàm số y  ln x y  e x ln nằm phía trục Ox, hàm số y  e x ln nằm phía trục Ox, loại đáp án B, C, D Câu Chọn đáp án C Phương pháp +) Xác định góc SB mặt đáy +) Tính SA +) Tính thể tích V  SA.S ABCD Cách giải Ta có: SA   ABCD  � AB hình chiếu SB lên  ABCD  � � SB;  ABCD    � SB; AB   �SBA  45�(Do �SBA  90�) Xét tam giác vng SAB ta có: SA  AB.tan 45� a 1 a3 Vậy VS ABCD  SA.S ABCD  a.a  3 Câu 10 Chọn đáp án C Phương pháp Sử dụng công thức: m m n a  a ; a m a n  a m  n n Cách giải 1 1 Ta có: P  x x  x x  x   x Câu 11 Chọn đáp án D Trang 12/26 Phương pháp +) Gọi G trọng tâm tam giác BCD � AG   BCD  +) Áp dụng định lí Pytago tính AG +) Tính thể tích VABCD  AG.S BCD Cách giải Gọi G trọng tâm tam giác BCD � AG   BCD  Gọi E trung điểm CD Do BCD tam giác cạnh 2a � BE  2a a 2 2a BE  3 Áp dụng định lí Pytago tam giác vng ABG ta có: � BG  AG  AB  BG  2a Tam giác BCD cạnh 2a � S BCD   2a   a2 1 2a 2a AG.S BCD  a  3 3 Câu 12 Chọn đáp án D Phương pháp Sử dụng khái niệm mặt trụ: Mặt tròn xoay sinh đường thẳng l song song với Δ, cách Δ khoảng R khơng đổi mặt trụ trịn xoay trục Δ, đường sinh l, bán kính R Cách giải Vậy VABCD  Tập hợp điểm M không gian cách đường thẳng Δ cố định khoảng R không đổi  R   mặt trụ Câu 13 Chọn đáp án D Phương pháp b Giải phương trình logarit bản: log a f  x   b � f  x   a Cách giải x0 � 2 Ta có: log  x  x    � x  x   � � x3 � Vậy phương trình cho có nghiệm phân biệt Câu 14 Chọn đáp án A Phương pháp Sử dụng công thức SHTQ cấp số cộng: un  u1   n  1 d Cách giải Ta có: u7  u1  6d   6.2  15 Câu 15 Chọn đáp án A Trang 13/26 Phương pháp GTLN, GTNN hàm số y  f  x   3; 4 giá trị điểm cao điểm thấp đồ thị hàm số  3; 4 Cách giải f  x   5; m  f  x   Dựa vào đồ thị hàm số ta dễ dàng suy M  max  3;4  3;4 Vậy M  m    Câu 16 Chọn đáp án D Phương pháp Nhìn hình vẽ Cách giải Hình bát diện có đỉnh Câu 17 Chọn đáp án B Phương pháp Hệ số góc tiếp tuyến với đồ thị hàm số y  f  x  điểm có hồnh độ x  x0 f '  x0  Cách giải  3  1.2 5 �3 �  TXĐ: D  �\ � � Ta có: y '  2  x  3  x  3 �2 Hệ số góc tiếp tuyến với đồ thị hàm số điểm có hồnh độ x0  1 y '  1  5  �  1  3� � � Câu 18 Chọn đáp án B Phương pháp Sử dụng khái niệm mặt nón: Mặt trịn xoay sinh đường thẳng l cắt Δ xoay quanh Δ gọi mặt nón trịn xoay Cách giải Cho đường thẳng Δ Xét đường thẳng l cắt Δ điểm Mặt tròn xoay sinh đường thẳng l quay quanh đường thẳng Δ gọi mặt nón Câu 19 Chọn đáp án D Cách giải Đáp án A tứ diện có đỉnh mặt Đáp án B hình lập phương có 12 cạnh mặt Đáp án C đúng, khối đa diện có đỉnh khối tứ diện, có đỉnh Câu 20 Chọn đáp án B Phương pháp Dựa vào đồ thị hàm số, xác định khoảng mà khoảng theo chiều từ trái sang phải đồ thị hàm số lên Cách giải Dựa vào đồ thị hàm số ta thấy hàm số y  f  x  đồng biến khoảng  0; � Câu 21 Chọn đáp án B Phương pháp Tìm t để 300 �G  t  �400 Trang 14/26 Cách giải Theo ta có: 300 �G  t  0,12 t  600 �  e � 400 e 0,12t ۣ� � ۣln � 0,12t ln 3, t 5,8 Vậy ông A phải bán khoảng thời gian từ 3,4 năm đến 5,8 năm Câu 22 Chọn đáp án D Phương pháp Sử dụng phương pháp đồ thị hàm số giải bất phương trình Cách giải   Để bất phương trình m  e �4 e x   f  x  với x ��� m  e �max f  x  x�� Xét hàm số f  x   e x  ta có: f '  x   3 2x 2e x  x �� e    BBT: � t � f ' t  + � f  t   Dựa vào BBT ta thấy BPT nghiệm với x ��� m  e  � m   e �3,81 �m � 0; 2018 Kết hợp điều kiện đề � � ⇒ có 2019 giá trị m thỏa mãn �m �� Câu 23 Chọn đáp án B Phương pháp n k k nk Sử dụng khai triển nhị thức Newton:  a  b   �Cn a b n k 0 Cách giải � � Ta có: �3 x  � �C7k x � k 0 �  x 7k k 7k 7k k k  �1 � k  k  C x x  C x � �4 � � k 0 � x � k 0 Số hạng không chứa x khai triển ứng với 7k k 28  4k  3k  0� 0� k 4 12 Vậy số hạng không chứa x khai triển C7  35 Câu 24 Chọn đáp án D Phương pháp Đồ thị hàm số y  log a x y  a x đối xứng qua đường thẳng y  x Cách giải Trang 15/26 x Ta có: y   y  log  7 x Do hàm số có đồ thị đối xứng với  C  qua đường thẳng có phương trình y  x x Chú ý: Nhiều HS nhầm lẫn sau: Hàm số có đồ thị đối xứng với  C  qua đường thẳng có phương x trình y  x y  log chọn đáp án B Câu 25 Chọn đáp án B Phương pháp b +) Giải phương trình logarit bản: log a f  x   b � f  x   a +) Giải phương trình bậc cao hàm số mũ Cách giải log   5x    x �  x  51 x  x �5  x � 5x  x 1 �  6.5   � �x �� x0 1 � � x Vậy tập nghiệm phương trình S   0;1 Câu 26 Chọn đáp án D Phương pháp  a 1 � f  x �a g  x  � � Giải bất phương trình mũ bản: a �f  x  �g  x  Cách giải x  x 9 � � �tan � � 7� x 1 x �4 � � � �� tan � � x  x  �x  � x  x  �0 � � x �2 � 7� � Vậy tập nghiệm bất phương trình  �; 2 � 4; � Câu 27 Chọn đáp án D Phương pháp Số cực trị hàm số y  f  x  số nghiệm bội lẻ phân biệt phương trình f '  x   Cách giải x0 � � x 1 Xét phương trình f '  x   � x  x  1  x     x   � � � x  2 � x2 � Hàm số không đạt cực trị điểm x  nghiệm bội hai phương trình f '  x   Vậy hàm số cho có điểm cực trị Câu 28 Chọn đáp án A Phương pháp +) Xét phương trình hồnh độ giao điểm, tìm điều kiện để phương trình hồnh độ giao điểm có nghiệm phân biệt Trang 16/26 +) Sử dụng tính chất cấp số nhân: un 1.un1  un Cách giải Xét phương trình hồnh độ giao điểm x3  3mx  6mx   �  x    x  x    3mx  x    x2 � � �  x  2 � x   m x   �   � � � g  x   x    3m  x    * � Để đồ thị  C  cắt trục hồnh điểm phân biệt phương trình (*) có nghiệm phân biệt khác �� m2 m2 � � �     3m   16  � 9m  12m  12  2 � �� � � �� �� � �m  � 2 � m   6m  �0 � �g   �0 �� � � m �2 � 2 Giả sử x1 , x2  x1  x2  nghiệm phân biệt phương trình (*) Áp dụng định lí Vi-ét ta có: �x1  x2  3m  � �x1 x2  TH1: x1 , x2 , theo thứ tự lập thành cấp số nhân � 2x1  x2 �x22  x2  3m  � �x  �2 � �2 � �2 � m   ktm   m  x � �2 x  � �2 TH2: x1 , 2, x2 theo thứ tự lập thành cấp số nhân � x1 x2  (luôn với m  m  2 ) TH3: 2; x1 ; x2 theo thứ tự lập thành cấp số nhân, tương tự TH1 ta tìm m  (ktm) � 2 � 5; �� 2;5 � có giá trị nguyên m thỏa mãn yêu cầu Vậy kết hợp điều kiện đề � m �� � � toán Câu 29 Chọn đáp án C Phương pháp Số nghiệm phương trình f  x   số giao điểm đồ thị hàm số y  f  x  đường thẳng y  song song với trục hồnh Cách giải Số nghiệm phương trình f  x   số giao điểm đồ thị hàm số y  f  x  đường thẳng y  song song với trục hoành Dựa vào BBT ta thấy đường thẳng y  cắt đồ thị hàm số y  f  x  điểm phân biệt Vậy phương trình f  x   có nghiệm phân biệt Câu 30 Chọn đáp án C Phương pháp Sử dụng công thức: Trang 17/26 log a f  x   log a g  x   log a � �f  x  g  x  � �  a �1, f  x   0, g  x    log an b m  m log a b   a �1, b   n Cách giải 3 I  log � log  5a  � � � log b  log   log a   log b  log 6   2.1   Câu 31 Chọn đáp án B Phương pháp +) Xác định bán kính đáy chiều cao hình trụ +) Tính thể tích khối trụ +) Tính tổng thể tích viên bi, từ suy thể tích lượng nước cần dùng Cách giải Ta mơ hình vẽ đáy hình trụ sau: Khi ta có Rht  3R chiều cao hình trụ đường kính viên bi h  R � Vht   Rht2 h    3R  R  18 R 28 R Thể tích viên bi  R  3 Vậy thể tích lượng nước cần dùng để đổ đầy vào lọ sau xếp bi 18 R  28 R 26 R  3 Câu 32 Chọn đáp án A Phương pháp u'  log a u  '  u ln a Cách giải  sin x  ' cos x cot x  sin x ln sin x ln ln Câu 33 Chọn đáp án A Phương pháp +) Đặt t  cos x , tìm khoảng giá trị t f ' x   +) Đưa phương trình dạng f  t   2m  Số nghiệm phương trình số giao điểm đồ thị hàm số y  f  t  đường thẳng y  2m  song song với trục hoành Cách giải �  � � 2  �  ; �� x �� ; �� cos x � 1;0  Đặt t  cos x , x �� � 4� � 2� �1 � Phương trình trở thành f  t   2m  có nghiệm thuộc � ;1� �2 � Số nghiệm phương trình số giao điểm đồ thị hàm số y  f  t  đường thẳng y  2m  song song với trục hoành Trang 18/26 Dựa vào BBT ta có để phương trình trở thành �2m � �m �1 � f  t   2m  có nghiệm thuộc � ;1� �2 � � 1� 0; Vậy m �� � 2� � Câu 34 Chọn đáp án C Phương pháp +) Xác định đường tiệm cận đồ thị  C  � 2m  � m; � C  Tính khoảng cách từ M đến đường tiệm cận +) Gọi M � � � m 1 � +) Giải phương trình khoảng cách từ M đến tiệm cận đứng lần khoảng cách từ M đến tiệm cận ngang tìm m Cách giải TXĐ: D  �\  1 Đồ thị hàm số y  2x  có TCĐ x  � x    d1  TCN: y  � y    d  x 1 � 2m  � m; � C  ta có: Gọi M � � � m 1 � d  M ; d1   m  ; d  M ;  d    2m  2  m 1 m 1 Vì khoảng cách từ M đến tiệm cận đứng lần khoảng cách từ M đến tiệm cận ngang nên d  M ; d1   3d  M ;  d   � m   � m  � M  4;3  tm  �  m  1  � � m 1 m  2 � M  2;1  tm  � Vậy có điểm M thỏa mãn u cầu tốn Câu 35 Chọn đáp án A Phương pháp +) Tìm điều kiện để phương trình hồnh độ giao điểm +) Tính độ dài AB áp dụng định lí Vi-ét Cách giải Xét phương trình hồnh độ giao điểm 2 x  x  m   x �1 �  x  x  mx  m  2 x  x 1 � x   m  1 x  m    * Để đường thẳng d : y   x  m cắt đồ thị hàm số y  2 x  hai điểm phân biệt A, B phương trình x 1 (*) có nghiệm phân biệt khác 1 � � � m  6m   m  3  �  m  1   m  1  � � �� �� � �0  luon dung   m   m  �0 m  3  � � � Trang 19/26 Gọi A  x A ;  x A  m  ; B  xB ;  xB  m  , x A , xB nghiệm phân biệt phương trình (*) Áp dụng �x A  xB  m  định lí Vi-ét ta có: � �x A xB   m  Ta có: 2 2 AB   xA  xB     x A  m  xB  m    x A  xB   �  xA  xB   4x1 x2 � � �  2�  m2  6m  3 �8 � m  6m  �4 � 7 �m �1  m  1   m  1 � � �  m �� � � � S   7;1 Kết hợp điều kiện � � � m �� 7; 3  � 3  3;1� � �   Câu 36 Chọn đáp án D Phương pháp Hàm số bậc bậc đơn điệu khoảng xác định Cách giải 3  x �D � Hàm số cho nghịch biến  2;3 TXĐ: D  �\  1 Ta có y '   x  1 � 2 y  y  3  �xmin � �5 � 42  89 � � � 2;3 �� �� y max y �x� 2;3 � �x� 2;3 � � � � � � � �2 � max y  � �x� 2;3 Câu 37 Chọn đáp án C Phương pháp +) Gọi G tâm đường tròn ngoại tiếp tam giác ABC Chứng minh G tâm mặt cầu ngoại tiếp chóp S.ABC +) Trung tuyến tam giác cạnh a a Cách giải Gọi G tâm đường tròn ngoại tiếp tam giác ABC � GA  GB  GC (1) Gọi M trung điểm BC ta có: �  ABC  � SBC   BC � � AM   SBC   ABC    SBC  � � �AM � ABC  , AM  BC Lại có SBC vng S (gt) � M tâm đường tròn ngoại tiếp tam giác SBC � SM trục tam giác SBC Mà G �AM � GS  GB  GC (2) Từ (1) (2) � GA  GB  GC  GS � G tâm mặt cầu ngoại tiếp chóp S.ABC Tam giác ABC cạnh a � AM  a a � GA  AM  3 Câu 38 Chọn đáp án B Phương pháp Trang 20/26 n n 1 Sử dụng công thức  u  '  nu u ' Cách giải 2 2x 1 x 1  y '  x  x      Ta có: 3  x  x  1 Câu 39 Chọn đáp án D Câu 40 Chọn đáp án C Phương pháp +) Tính y ' +) Dựa vào giá trị m, xét dấu y ' tìm điều kiện để hàm số có y '  x � 1;5  Cách giải x0 � Ta có: y '  x   m  1 x  � x  x  m  1  � �2 x  m 1 � TH1: m �1 � y '  � x  � Hàm số đồng biến  0; � nghịch biến  �;0  � Hàm số đồng biến  1;5  ™ x0 � � x  m 1 TH2: m  � y '  � � � x   m 1 � Bảng xét dấu y ' : y' �   m 1 +  Dựa vào bảng xét dấu ta thấy để hàm số đồng biến  1;5  � ��m  1 m 1 m + � �  m �2 Kết hợp trường hợp ta có m �2 Câu 41 Chọn đáp án C Phương pháp Cho hàm số y  f  x  y  y0 � y  y0 TCN đồ thị hàm số +) Nếu lim x �� y  �� x  x0 TCĐ đồ thị hàm số +) Nếu xlim � x0 Cách giải Dựa vào BBT ta thấy: lim y  � y  TCN đồ thị hàm số x �� lim y  �� x  TCĐ đồ thị hàm số x �2  lim y  �; lim y  �� x  TCĐ đồ thị hàm số x �3 x �3 Vậy đồ thị hàm số cho có đường tiệm cận Câu 42 Chọn đáp án B Trang 21/26 Phương pháp Phân chia lắp ghép khối đa diện Cách giải Lấy G �AA ', H �CC ' cho AG  2GA ', CH  HC ' , dễ thấy  EGFH  / /  ABCD  2 VABCD.EGFH  VABCD A ' B 'C ' D '  3 Ta có: VABCD EGFH  VA.GEF  VC EFH  VF ACD  VE ABC  VACEF � VACEF  VABCD.EGFH   VA.GEF  VC EFH  VF ACD  VE ABC  2   Câu 43 Chọn đáp án A Phương pháp +) Chứng minh tam giác SHC đều, kẻ CK  SH , chứng minh CK / / OO '  +) CK / / OO ' � � OO ';  ABC    � CK ;  ABC   +) Xác định góc CK  ABC  tính góc Cách giải Ta có: SI   ABC  � SI  HC Xét tam giác SHC có SI trung tuyến đồng thời đường cao � SHC cân S � SH  SC (1) �AB  HC � AB   SHC  � AB  SH Ta có: � �AB  SI Do ABC vng C SAB vng S, lại có O trung điểm AB � OA  OB  OS  OC Xét tam giác OSH tam giác vuông OCH có: OS  OC  cmt  ; OH chung � OSH  OCH (cạnh huyền – cạnh góc vuông) � SH  CH (2) Từ (1) (2) � SHC Gọi K trung điểm SH ta có CK  SH Do AB   SHC   cmt  � AB  CK � CK   SAB   3 Vì tam giác SAB vuông S � O tâm đường tròn ngoại tiếp SAB O ' tâm mặt cầu ngoại tiếp tứ diện ABSI � OO ' trục SAB � OO '   SAB  (4) Từ (3) (4) � CK / /OO ' � � OO ';  ABC    � CK ;  ABC   Trong  SHC  kẻ KM / / SI  M �CH  � CM hình chiếu CK  ABC  � � CK ,  ABC    � CK , CM   �KCM  �KCH Do tam giác SHC tam giác (cmt) � Đường cao CK đồng thời phân giác � �KCH  30� Vậy � OO ';  ABC    30��   30�� cos   Trang 22/26 Câu 44 Chọn đáp án B Phương pháp Đưa bất phương trình dạng tích biện luận Cách giải  2m    x3  x    m  3m    x  x    m3  m  2m   x    � x  m    x    x  m  1  m    x    m  m  1  m    x    �  m  2  x  2 � x   m  1 x  m  m  1 � � � �  m    x    x  m   x  m  1   * TH1: m  �  � Bất phương trình vơ nghiệm � m  (tm) TH2: m �2 , vế trái (*) f  x    m    x    x  m   x  m  1 đa thức bậc ba, ln tồn x0 �� để f  x0   � Bất phương trình ln có nghiệm m �2 Vậy tồn m  để bất phương trình cho vơ nghiệm Câu 45 Chọn đáp án A Phương pháp x +) Sử dụng cơng thức tính đạo hàm hàm hợp tính đạo hàm hàm số g  x   f  x    2e +) Xét dấu g '  x  khoảng đáp án kết luận Cách giải x x x Đặt g  x   f  x    2e ta có: g '  x   f '  x    2e  � �f '  x    e � � � �2 x  � 2;0  � f '  x    Với x � 0;1 ta có � x �x � 0;1 � e � 1; e   x x � g ' x  � �f '  x    e � � x � 0;1 � Hàm số f  x    2e nghịch biến  0;1 Câu 46 Chọn đáp án B Phương pháp +) Gọi H trung điểm AB Chứng minh �  SAB  ;  ABCD    �SHO +) Tính tan �SHO Cách giải Gọi H trung điểm AB Tam giác SAB cân S � SH  AB �AB  SO � AB   SHO  � AB  OH Ta có: � �AB  SH �  SAB  � ABCD   AB �  SAB  �SH  AB � �  ABCD  �OH  AB � � �  SAB  ;  ABCD    � SH , OH   �SHO Xét tam giác vng SHO có Trang 23/26 AB SH tan �SHO    � �SHO  60� AB OH Câu 47 Chọn đáp án B Phương pháp +) Dựa vào đồ thị hàm số y  f '  x  lập BBT hàm số y  f  x  +) Số nghiệm phương trình f  x   5h số giao điểm đồ thị hàm số y  f  x  đường thẳng y  5h song song với trục hoành Cách giải x  3 � � x  1 Dựa vào đồ thị hàm số y  f '  x  ta có f '  x   � � � x 1 � Ta có BBT hàm số y  f  x  sau: � x 3 f ' x  1 + 0  � + 5h f y x 5h Ta có: f    5h Số nghiệm phương trình f  x   5h số giao điểm đồ thị hàm số y  f  x  đường thẳng y  5h song song với trục hoành Dựa vào BBT ta thấy phương trình f  x   5h có nghiệm phân biệt Câu 48 Chọn đáp án D Phương pháp +) Sử dụng quy tắc nhân tính xác suất biến cố A 25 �1 � +) Xét khai triển  �  � �4 � k 25  k �1 ��3 � +) Giả sử Ak  C � �� � �4 ��4 � k 25 số hạng lớn khai khai triển trên, giải hệ phương trình �Ak  Ak 1 tìm k �� � �Ak  Ak 1 Cách giải Do câu có đáp án có đáp án nên xác suất để trả lời câu để trả lời sai câu xác suất Trang 24/26 k 25  k �1 ��3 � Gọi A biến cố “Bình làm k câu”, xác suất biến cố A P  A   C � �� � �4 ��4 � k 25 25 k 25  k �1 � 25 �1 ��3 � Xét khai triển  �  �  �C25k � �� � �4 � k 0 �4 ��4 � k 25  k �1 ��3 � Giả sử Ak  C25k � �� � �4 ��4 � số hạng lớn khai triển ta có: k 25  k k 1 26  k � k �1 �� 3� � �3 � k 1 � C25 � �� �  C25 � � � � � �Ak  Ak 1 � �4 ��4 � �4 � �4 � �� � k 25  k k 1 24  k �Ak  Ak 1 � �3 � � k �1 ��3 � k 1 � C25 � �� �  C25 � � � � � �4 � �4 � � �4 ��4 � 25! � 25! �1  �k ! 25  k  !   k  1 ! 26  k  ! � � �k 26  k �� �� 25! � 25! �   � �25  k k  �k ! 25  k  !  k  1 ! 24  k  ! �26  k  3k � 26 k �k  26  k   � 22 26 � � �� �� �  k  , k ��� k  22 4 �3k   25  k  � k � � � 25  k   k  1 Câu 49 Chọn đáp án B Phương pháp +) Dựng thiết diện MNPQ ( N �AB, P �AC , Q �SC ) +) V1  VS ANP  VS NPM  VS PMQ SM  x Sử dụng cơng thức tỉ lệ thể tích, tính V1 theo x V SB V 20 +) Dựa vào giả thiết  giải phương trình tìm x V 27 Cách giải Dựng +) Đặt MN / / SA  N �AB  , NP / / BC  P �AC  ; PQ / / SA  Q �SC  Khi thiết diện cần tìm MNPQ Ta có V1  VS ANP  VS NPM  VS PMQ SM SQ AP AN x�   x SB SC AC AB VS ANP S ANP AN AP    x � VS ANP  x 2V Ta có: VS ABC S ABC AB AC Đặt VS NPM SM   x  x  1 � VS NPM  xVS NPB VS NPB SB S BNP BN S AP    x; BAP  x S BAP BA S ABC AC Trang 25/26 � S BNP S BAP S    x  x � BNP    x  x S BAP S ABC S ABC � VS NPB S BNP     x  x � VS NPB    x  xV VS ABC S ABC � VS NPM  x   x  V VS PMQ VS PBC SM SQ  x2 SB SC  VS PBC S PBC PC    1 x VS ABC S ABC AC � VS PMQ  x   x  � VS PMQ  x   x  V VS ABC � V1  VS ANP  VS NPM  VS PMQ   x  x   x   V � V1  x  x   x   3x  x V V1 20 20  � 3x  x3  �x V 27 27 Câu 50 Chọn đáp án B Phương pháp Mà Kẻ AE  BC  E �BC  � d  B;  SCD    BC BC d  E ;  SCD    d  A;  SCD   EC EC Cách giải Kẻ AE  BC  E �BC  ta có: AD  AC  CD  a  CE a a BE  AE.cot 30�  2 � E trung điểm BC � d  B;  SCD    2d  E ;  SCD    d  A;  SCD   Trong  SAD  kẻ AH  SD  H �SD  ta có: CD  AD � � CD   SAD  � CD  AH � CD  SA � �AH  CD � AH   SCD  � d  A;  SCD    AH � �AH  SD Áp dụng hệ thức lượng tam giác vng SAD ta có: AH  SA AD SA  AD 2 Vậy d  B;  SCD     a a 2 2 �a � �a � � � � � �2 � �2 �  a a Trang 26/26 ... A A C A C D A A C 10 C 11 D 12 D 13 D 14 A 15 A 16 D 17 B 18 B 19 D 20 B 21 B 22 D 23 B 24 D 25 B 26 D 27 D 28 A 29 C 30 C 31 B 32 A 33 A 34 C 35 A 36 D 37 C 38 B 39 D 40 C 41 C 42 B 43 A 44 B... NHẬN XÉT ĐỀ Mức độ đề thi: KHÁ Đề thi gồm 50 câu trắc nghiệm khách quan Kiến thức tập trung chương trình lớp 12 , câu hỏi lớp 11 chi? ??m 20% Khơng có câu hỏi thuộc kiến thức lớp 10 Cấu trúc: thi? ??u... Min - max C15 C36 Tiệm cận C 41 C34 Bài toán thực tế Hàm số mũ - logarit Biểu thức mũ logarit C8 C24 C32 C39 C1 C10 C30 10 Phương trình, bất phương trình mũ logarit C13 C22 C25 C26 11 Bài toán

Ngày đăng: 10/07/2020, 10:52

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w