Các dạng tập chương: Mạch điện xoay chiều CHỦ ĐỀ I: ĐẠI CƯƠNG DỊNG ĐIỆN XOAY CHIỀU A Tóm tắt lí thuyết : I.Cách tạo suất điện động xoay chiều: Cho khung dây dẫn phẳng có N vịng ,diện tích S quay với vận tốc ω, xung quanh trục vng góc với với đường sức từ ur từ trường có cảm ứng từ B Theo định luật cảm ứng điện từ, khung dây xuất suất điện động biến đổi theo định luật dạng cosin với thời gian gọi tắt suất điện động xoay chiều: e = E0 cos(ωt + ϕ0 ) 1.Từ thông gởi qua khung dây : -Từ thơng gửi qua khung dây dẫn gồm N vịng dây có diện tích S quay từ trường B Giả sử t=0 : (n , B ) = ϕ ⇒ -Biểu thức từ thông khung: Φ = N B.S cos ωt = Φo.cos ωt (Với Φ = L I Hệ số tự cảm L = π 10-7 N2.S/l ) - Từ thông qua khung dây cực đại Φ0 = NBS ; ω tần số góc tốc độ quay khung (rad/s) Đơn vị : + Φ : Vêbe(Wb); + S: Là diện tích vịng dây (S: m ); + N: Số vòng dây khung ur ur + B : Véc tơ cảm ứng từ từ trường B:Tesla(T) ( B vng góc với trục quay ∆) + ω : Vận tốc góc khơng đổi khung dây r ur ( Chọn gốc thời gian t=0 lúc ( n, B ) = 00) -Chu kì tần số khung : T = 2π ;f = ω T Suất điện động xoay chiều: r −∆Φ π = −Φ ' = ω NBS sin ω t = E0cos(ω t − ) n - Biểu thức suất điện động cảm ứng tức thời: e = ∆t α π e=E0cos(ωt+ϕ0) Đặt E0= NBωS :Suất điện động cực đại ; ϕ0 = ϕ − ω Đơn vị :e,E0 (V) B II.Điện áp xoay chiều -Dòng điện xoay chiều 1.Biểu thức điện áp tức thời: Nếu nối hai đầu khung dây với mạch thành mạch kín biểu thức điện áp tức thời mạch ngồi là: u=e-ir Xem khung dây có r = u = e = E0 cos(ωt + ϕ ) Tổng quát : u = U cos(ωt + ϕu ) ( ϕ u pha ban đầu điện áp ) 2.Khái niệm dòng điện xoay chiều - Là dịng điện có cường độ biến thiên tuần hoàn với thời gian theo quy luật hàm số sin hay cosin, với dạng tổng quát: i = I cos(ωt + ϕ i ) * i: giá trị cường độ dòng điện thời điểm t, gọi giá trị tức thời i (cường độ tức thời) * I0 > 0: giá trị cực đại i (cường độ cực đại) * ω > 0: tần số góc f: tần số i T: chu kì i * (ωt + ϕ): pha i * ϕ i pha ban đầu dòng điện) 3.Độ lệch pha điện áp u cường độ dòng điện i: Đại lượng : ϕ = ϕu − ϕi gọi độ lệch pha u so với i Nếu ϕ >0 u sớm pha (nhanh pha) so với i Nếu ϕ là: A Φ = BS B Φ = BSsin ω C Φ = NBScos ω t D Φ = NBS Câu 16 Một dịng điện xoay chiều có cường độ i = 2 cos(100π t + π / 6) (A Chọn phát biểu sai A Cường độ hiệu dụng (A) B Chu kỳ dòng điện 0,02 (s) C Tần số 100π D Pha ban đầu dòng điện π/6 −2 2.10 π cos 100π t + ÷( Wb ) Biểu thức suất điện Câu 17: Từ thông qua vòng dây dẫn Φ = π 4 động cảm ứng xuất vòng dây π π A e = −2sin 100π t + ÷(V ) B e = 2sin 100π t + ÷(V ) 4 4 C e = −2sin100π t (V ) D e = 2π sin100π t (V ) Câu 18: Chọn phát biểu nói cường độ hiệu dụng dịng điện xoay chiều A Cường độ hiệu dụng đo ampe kế chiều B Giá trị cường độ hiệu dụng đo ampe kế xoay chiều C Cường độ hiệu dụng dòng điện xoay chiều cường độ dịng điện khơng đổi D Giá trị cường độ hiệu dụng tính cơng thức I = 2I , I cường độ cực đại dòng điện xoay chiều π Câu 19: Một dịng điện xoay chiều hình sin có biểu thức i = cos(100πt + )( A) , t tính giây (s) Kết luận sau khơng ? A Tần số dịng điện 50 Hz B Chu kì dịng điện 0,02 s C Biên độ dòng điện A D Cường độ hiệu dụng dòng điện A Câu 20:Giá trị hiệu dụng hiệu điện xoay chiều có biểu thức u = 220 cos100 π t(V) A 220 V B 220V C 110 10 V D 110 V Câu 21: Giá trị hiệu dụng dịng điện xoay chiều có biểu thức i = cos200 π t(A) A 2A B A C A D A 4.TRẮC NGHIỆM ÔN TẬP Câu Số đo vôn kế xoay chiều A giá trị tức thời điện áp xoay chiều B giá trị trung bình điện áp xoay chiều C giá trị cực đại điện áp xoay chiều D giá trị hiệu dụng điện áp xoay chiều Câu Số đo Ampe kế xoay chiều A giá trị tức thời dòng điện xoay chiều B giá trị trung bình dịng điện xoay chiều C giá trị cực đại dòng điện xoay chiều D giá trị hiệu dụng dòng điện xoay chiều Câu Một mạng điện xoay chiều 220 V – 50 Hz, chọn pha ban đầu điện áp khơng biểu thức điện áp có dạng A u = 220cos50t (V) B u = 220cos50 πt (V) C u= 220 cos100π t (V) D u= 220 cos100π t (V) Câu Dòng điện chạy qua đoạn mạch xoay chiều có dạng i = 2cos 100 πt (A), hiệu điện hai đầu đoạn mạch có giá trị hiệu dụng 12V, sớm pha π / so với dòng điện Biểu thức điện áp hai đầu đoạn mạch A u = 12cos100 πt (V) B u = 12 cos100πt (V) C u = 12 cos(100πt − π / 3) (V) D u = 12 cos(100πt + π / 3) (V) Câu Chọn câu Dịng điện xoay chiều hình sin A dịng điện có cường độ biến thiên tỉ lệ thuận với thời gian B dịng điện có cường độ biến thiên tuần hoàn theo thời gian C dịng điện có cường độ biến thiên điều hịa theo thời gian D dịng điện có cường độ chiều thay đổi theo thời gian Câu Một khung dây dẫn phẳng có diện tích S = 100 cm gồm 200 vòng dây quay với vận tốc → 2400vịng/phút từ trường có cảm ứng từ B vng góc trục quay khung có độ lớn B = 0,005T Từ thông cực đại gửi qua khung A 24 Wb B 2,5 Wb C 0,4 Wb D 0,01 Wb → Câu Một khung dây dẫn quay quanh từ trường có cảm ứng từ B vng góc trục quay khung với vận tốc 150 vịng/phút Từ thơng cực đại gửi qua khung 10/π (Wb) Suất điện động hiệu dụng khung A 25 V B 25 V C 50 V D 50 V Câu Cường độ dịng điện đoạn mạch có biểu thức: i = cos (100 πt + π/6) (A) Ở thời điểm t = 1/100(s), cường độ mạch có giá trị: A A B - 0,5 A C không D 0,5 A DẠNG GIẢI TOÁN ĐIỆN XOAY CHIỀU BẰNG MỐI LIÊN QUAN GIỮA DDDH VÀ CHUYỂN ĐỘNG TRÒN ĐỀU A Phương pháp : 1.Dùng mối liên hệ dao động điều hoà chuyển động tròn M +Ta xét: u = U 0cos(ωt + φ) biểu diễn OM quay quanh vịng trịn tâm O bán kính U0 , quay ngược chiều kim đồng hồ với tốc độ góc ω , +Có điểm M ,N chuyển động trịn có hình chiếu lên Ou u, thì: -N có hình chiếu lên Ou lúc u tăng (thì chọn góc âm phía dưới) , -M có hình chiếu lên Ou lúc u giảm (thì chọn góc dương phía trên) =>vào thời điểm t ta xét điện áp u có giá trị u biến đổi : ˆ -Nếu u theo chiều âm (đang giảm) ⇒ ta chọn M tính góc α = MOU ˆ -Nếu u theo chiều dương (đang tăng) ta chọn N tính góc: α = − NOU α −α -U0 O u u U0 N M2 Dòng điện xoay chiều i = I0cos(2πft + ϕi) * Mỗi giây đổi chiều 2f lần * Nếu cho dòng điện qua phận làm rung dây tượng sóng -U -U1 Sáng dừng dây rung với tần số 2f Cơng thức tính thời gian đèn huỳnh quang sáng chu kỳ Khi đặt điện áp u = U0cos(ωt + ϕu) vào hai đầu bóng đèn, biết đèn sáng lên u ≥ U1 Gọi ∆t khoảng thời gian đèn sáng chu kỳ M'2 U 4∆ϕ ˆ ; cos ∆ϕ = , (0 < ∆ϕ < π/2) ∆t = Với ∆ϕ = M 1OU U0 ω -Thời gian đèn tắt chu kì: ∆tt = T − ∆t s *) Trong khoảng thời gian t=nT: -Thời gian đèn sáng: t s = n.∆t s ; -Thời gian đèn tắt: tt = n∆tt = t − t s M1 Tắt Sáng U U0 O Tắt M'1 B.Áp dụng : Bài : Biểu thức cường độ dòng điện xoay chiều chạy qua đoạn mạch i = I cos(100πt )( A) , với I0 > t tính giây (s) Tính từ lúc s, xác định thời điểm mà dịng điện có cường độ tức thời cường độ hiệu dụng ? Bài giải : Ta có: i = I cos(100πt )( A) giống mặt toán học với biểu thức x = A cos(ωt ) chất điểm dao động điều hồ Do đó, tính từ lúc s, tìm thời điểm để dịng điện có cường độ tức thời cường u độ hiệu dụng i = I = I0 giống tính từ lúc s, tìm thời điểm để chất điểm dao động A điều hồ có li độ x = Vì pha ban đầu dao động 0, nghĩa lúc s chất điểm vị trí giới hạn x = A, nên thời điểm cần tìm thời gian ngắn để chất điểm từ vị trí x = A A đến vị trí x = Ta sử dụng tính chất hình chiếu chất điểm chuyển động tròn lên đường thẳng nằm mặt phẳng quỹ đạo dao động điều hoà với chu kì để giải Bài tốn Thời gian ngắn để chất điểm dao động điều hoà chuyển động từ vị + A Q (C) x = trí x = A đến vị trí (từ P đến D) thời gian chất điểm chuyển động trịn với chu kì từ P đến Q theo cung tròn PQ α D P A A A Tam giác ODQ vng D có OQ = A, OD = nên ta có : O 2 π OD cos α = = Suy : α = rad OQ π α Thời gian chất điểm chuyển động tròn từ P đến Q theo cung tròn PQ : t= = = ω ω 4ω Trong biểu thức dòng điện, tần số góc ω = 100π rad/s nên ta suy tính từ lúc s thời điểm mà dịng điện có cường độ tức thời cường độ hiệu dụng : π π t= = = s 4ω 4.100π 400 π Bài : Biểu thức cường độ dòng điện xoay chiều chạy qua đoạn mạch i = I cos(100π t − )( A) , I > với t tính giây (s) Tính từ lúc s, xác định thời điểm mà dịng điện có cường độ tức thời cường độ hiệu dụng ? Bài giải : Ta sử dụng tính chất hình chiếu chất điểm chuyển động trịn lên đường thẳng nằm mặt phẳng quỹ đạo dao động điều hoà với chu kì để giải Bài tốn I0 I Thời gian ngắn để i = đến i = I0 ( cung MoQ) từ i = I0 đến vị trí có i = I = (từ P đến 2 D) thời gian vật chuyển động trịn với chu kì từ Mo đến P π π + Q từ P đến Q theo cung trịn MoPQ ta có góc quay α = + =5ᴫ/12 (C) Tần số góc dịng điện ω = 100π rad/s α D P Suy chu k ỳ T= 0,02 s I Thời gian quay: t= T/12+ T/8 =1/240s O 0 5π 5π = = s Hay: t = Mo 12ω 12.100π 240 I Bài (B5-17SBT NC)Một đèn nêon mắc với mạch điện xoay chiều có điện áp hiệu dụng 220V tần số 50Hz Biết đèn sáng điện áp cực không nhỏ 155V a) Trong giây , lần đèn sáng ?bao nhiêu lần đèn tắt ? b) Tình tỉ số thời gian đèn sáng thời gian đèn tắt chu kỳ dòng điện ? Hướng dẫn : x i a) u = 220 sin(100π t )(V ) -Trong chu kỳ có khoảng thời gian thỏa mãn điều kiện đèn sáng u ≥ 155 Do chu kỳ ,đèn chớp sáng lần ,2 lần đèn tắt -Số chu kỳ giây : n = f = 50 chu kỳ -Trong giây đèn chớp sáng 100 lần , đèn chớp tắt 100 lần C’ M’ M ϕ U0 O b)Tìm khoảng thời gian đèn sáng nửa chu kỳ đầu π 5π ⇒ 220 sin(100π t ) ≥ 155 ⇒ sin(100π t ) ≥ ⇒ ≤ 100π t ≤ ⇒ s≤t≤ s 6 600 600 1 E’ -Thời gian đèn sáng nửa chu kỳ : ∆t = − = s 600 600 150 C 1 ⇒ Thời gian đèn sáng chu kỳ : t S = = s 150 75 -Thời gian đèn tắt chu kỳ : ttat = T − t s = 50 − 75 = 150 cos U0 B E s -Tỉ số thời gian đèn sáng thời gian đèn tắt chu kỳ : ts ttat = 75 = 150 Có thể giải Bài tốn pp nêu : U u ≥ 155 ⇒ 155 = 220 = Vậy thời gian đèn sáng tương ứng chuyển động trịn quay góc 2 ·EOM góc E · ' OM ' Biễu diễn hình ta thấy tổng thời gian đèn sáng ứng với thời gian tS=4.t với t U0 / · = ⇒ ϕ =π /3 thời gian bán kính qt góc BOM = ϕ ; với cos ϕ = U0 t / 75 t 4.π / =2 = / 300 s = s ⇒ s = S = 100π 75 ttat T −tS / 150 π Bài 4( ĐH 10-11): Tại thời điểm t, điện áp u = 200 cos(100π t − ) (trong u tính V, t tính s , điện áp có giá trị s) có giá trị 100 2V giảm Sau thời điểm 300 C’ M A −100V B 100 3V C −100 2V D 200 V HD giải : Dùng mối liên quan dddh CDTD , t=0 , u ứng với CDTD C Vào ˆ = ∆ϕ thời điểm t , u= 100 2V giảm nên ứng với CDTD M với MOB Áp dụng : t S = ∆ϕ u 100 ⇒ t=600.0,02/3600=1/300s Vì thêm Ta có : ∆ϕ = = Suy t = ω U 200 ˆ =600 Suy u= −100 2V s u ứng với CDTD B với BOM 300 Bài 5: Vào thời điểm đó, hai dịng điện xoay chiều i = Iocos(ωt + ϕ1) i2 = Iocos(ωt + ϕ2) có giá trị tức thời 0,5I o, dòng điện giảm, dòng điện tăng Hai dòng điện lệch pha góc 5π 2π π 4π A B C D 6 ϕ 0,5I0 I0 cos O B B C’ C M M’ Δϕ O U0 cos B Câu 7: Đặt vào hai đầu vào hai đầu đoạn mạch R, L, C mắc nối tiếp Biết R = 10Ω, cuộn cảm có L = tụ điện có C = H, 10π π 10 −3 F điện áp đặt vào hai đầu cuộn cảm có dạng u L = 20 cos(100πt + )V Biểu thức 2π điện áp hai đầu đoạn mạch là: π )V π π C u = 40 cos(100πt + )V D u = 40 cos(100πt − )V 4 R A Câu 8: Một mạch điện xoay chiều RLC ( Hình vẽ) có R = 100 Ω ; A u = 40 cos(100πt + π )V B u = 40 cos(100πt − Chọn B M L B H Điện áp hai đầu đoạn mạch AM chứa R có dạng: u2 u1 π Hình u1 = 100 cos100 π t (V) Viết biểu thức tức thời điện áp hai đầu AB mạch điện π π A u = 200 cos(100π t + ) V B u = 200 cos(100π t − ) V π π C u = 200 cos(100π t + ) V D u = 200 cos(100π t − ) Chọn C L= Câu : Ở mạch điện hình vẽ bên , đặt điện áp xoay chiều vào AB u AM = 120 2cos(100π t )V C π L,r R )V Biểu thức điện áp hai đầu AB : A B r M π π A u AB = 120 2cos(100π t + )V B u AB = 240cos(100π t + )V π π C u AB = 120 6cos(100π t + )V * D u AB = 240cos(100π t + )V −3 C L R 10 F; Câu 10: Ở mạch điện xoay chiều hình vẽ :R=80Ω; C = A B 16π M π π u AM = 120 2cos(100π t + )V ; uAM lệch pha với i Biểu thức điện áp hai đầu mạch : π π A u AB = 240 2cos(100π t + )V B u AB = 120 2cos(100π t − )V Chọn B π 2π )V C u AB = 240 2cos(100π t + )V D u AB = 120 2cos(100π t − Câu 11: Đặt vào hai đầu mạch điện xoay chiều gồm cuộn dây tụ điện mắc nối tiếp điện áp xoay chiều uMB = 120 2cos(100π t + ổn định có biểu thức u = 100 cos(100π t + π )(V ) Dùng vơn kế có điện trở lớn đo điện áp hai đầu cuộn cảm hai tụ điện thấy chúng có giá trị 100V 200V Biểu thức điện áp hai đầu cuộn dây là: π )(V ) 3π )(V ) C ud = 200 cos(100π t + π )(V ) 3π )(V ) Chọn D D ud = 100 cos(100π t + 2.10 −4 Câu 12: Một đoạn mạch điện xoay chiều gồm tụ điện có điện dung C1 = F mắc nối tiếp với tụ điện π A ud = 100 cos(100π t + có điện dung C = B ud = 200 cos(100π t + π 2.10 −4 F Dịng điện xoay chiều chạy qua đoạn mạch có biểu thức i = cos100πt + ( A) , t 3 3π tính giây (s) Biểu thức điện áp xoay chiều hai đầu đoạn mạch Trang 157 π (V ) 6 B u = 200 cos 100πt − π ÷(V) 2 D u = 100 cos 100πt − A u = 200 cos100πt − C u = 150 cos 100πt − π ÷(V) 2 π ÷(V) 2 Câu 13: Cho mạch điện gồm R, L, C mắc nối tiếp Cho R = 60Ω, L = 0,8H, C thay đổi Đặt vào hai đầu mạch điện điện áp xoay chiều u = 120cos(100t + π/2)V Khi C = Co điện áp hiệu dụng hai đầu điện trở đạt giá trị cực đại Khi biểu thức điện áp gữa hai tụ A uC = 80 cos(100t + π)(V ) B uC = 160cos(100t - π/2)(V) C uC = 160cos(100t)(V) D uC = 80 cos(100t - π/2)(V) Câu 14: Cho mạch điện gồm R, L, C mắc nối tiếp Cho L = 1/π(H), C = 50/π(μF) R = 100(Ω) Đặt vào hai đầu mạch điện điện áp xoay chiều u = 220cos(2πft + π/2)V, tần số f thay đổi Khi f = f o cường độ dịng điện hiệu dụng qua mạch I đạt giá trị cực đại Khi biểu thức điện áp hai đầu R có dạng A uR = 220cos(2πfot - π/4)V B uR = 220cos(2πfot + π/4)V C uR = 220cos(2πfot + π/2)V D uR = 220cos(2πfot + 3π/4)V Câu 15: Cho mạch điện gồm R, L, C mắc nối tiếp Cho R = 60Ω, C = 125μF, L thay đổi Đặt vào hai đầu mạch điện điện áp xoay chiều u = 120cos(100t + π/2)V Khi L = Lo điện áp hiệu dụng hai đầu điện trở đạt giá trị cực đại Khi biểu thức điện áp gữa hai tụ A uC = 160cos(100t - π/2)V B uC = 80 cos(100t + π)V C uC = 160cos(100t)V D uC = 80 cos(100t - π/2)V Câu 16: Cho mạch điện gồm R, L, C mắc nối tiếp Cho R = 30Ω, C = 250μF, L thay đổi Đặt vào hai đầu mạch điện điện áp xoay chiều u = 120cos(100t + π/2)V Khi L = Lo cơng suất mạch đạt giá trị cực đại Khi biểu thức điện áp hai đầu điện trở A uR = 60 cos(100t + π/2)V B uR = 120cos(100t)V C uR = 60 cos(100t)V D uR = 120cos(100t + π/2)V CHỦ ĐỀ XI: Bài Toán hai đoạn mạch: Hai đoạn mạch điện xoay chiều pha: Hai đoạn mạch AM gồm R1L1C1 nối tiếp đoạn mạch MB gồm R2L2C2 nối tiếp mắc nối tiếp với nhau, có: UAB = UAM + UMB ⇒ uAB ; uAM uMB pha ⇒ tanφuAB = tanφuAM = tanφuMB Hai đoạn mạch R1L1C1 R2L2C2 xoay chiều u i có pha lệch ∆ϕ: Với tan ϕ1 = Z L1 − Z C1 R1 tan ϕ = Z L2 − Z C2 R2 (giả sử ϕ1 > ϕ2) tan ϕ1 − tan ϕ = tan ∆ϕ + tan ϕ1 tan ϕ 3.Trường hợp đặc biệt : hai đoạn mạch mạch điện mà có ∆ϕ = π/2 (vng pha nhau, lệch góc 900) thì: tanϕ1.tanϕ2 = − Có ϕ1 – ϕ2 = ∆ϕ ⇒ VD1: Mạch điện hình có uAB uAM lệch pha ∆ϕ Hai đoạn mạch AB AM có i uAB chậm pha uAM tan ϕ AM − tan ϕ AB = tan ∆ϕ + tan ϕ AM tan ϕ AB Z Z −Z Nếu uAB vuông pha với uAM thì: tan ϕ AM tan ϕ AB =-1 ⇒ L L C = − R R ⇒ ϕAM – ϕAB = ∆ϕ ⇒ A R L B Hình VD2: Mạch điện hình 2: Khi C = C1 C = C2 (giả sử C1 > C2) i1 i2 lệch pha ∆ϕ Hai đoạn mạch RLC1 RLC2 có uAB A R L Gọi ϕ1 ϕ2 độ lệch pha uAB so với i1 i2 có ϕ1 > ϕ2 ⇒ ϕ1 - ϕ2 = ∆ϕ Nếu I1 = I2 ϕ1 = -ϕ2 = ∆ϕ/2 Hình Nếu I1 ≠ I2 tính M C M C B tan ϕ1 − tan ϕ = tan ∆ϕ + tan ϕ1 tan ϕ Trang 158 Câu 1: Đặt vào hai đầu đoạn mạch hình 3.3 hiệu điện uAB = Uocos(100t) Biết C1=40μF, C2 = 200μF, L = 1,5H Khi chuyển khoá K từ (1) sang (2) thấy dịng điện qua ampe kế hai trường hợp có lệch pha 90o Điện trở R cuộn dây là: A R = 150Ω B R = 100Ω C R = 50Ω D R = 200Ω (1) C1 L,R A K A B (2) C Hình 3.3 Câu (ĐH-2010): Một đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp Đoạn mạch AM có điện trở 50 Ω nối tiếp với cuộn cảm có độ tự cảm ( H ) đoạn mạch MB có tụ điện với điện dung C thay đổi π Đặt điện áp u = U cos100πt (V) vào hai đầu đoạn mạch AB Điều chỉnh C tụ điện đến giá trị C cho điện áp hai đầu đoạn mạch AB lệch pha π/2 so với điện áp hai đầu đoạn AM Giá trị C A 8.10 −5 F π B 10 −5 (F) π C 4.10 −5 (F) π D HƯỚNG DẪN: Độ lệch pha hiệu điện hai đầu đoạn mạch AN i : tan ϕ AM 2.10 −5 (F) π Z = L (1) Độ lệch pha u R Z L − Z C1 (2).Theo giá thiết R Z (Z − Z ) π R2 8.10−5 + ϕ = → tan ϕ AM tan ϕ = −1 → L L C1 = −1 → Z C1 = + Z L = 125Ω → C1 = F R ZL π I tan ϕ = ϕ AM C©u 3: Ở mạch điện R=100Ω; C = 10-4/(2π)(F) Khi đặt vào AB điện áp xoay chiều có tần số f = 50Hz uAB uAM vuông pha với Giá trị L là: A L = 2/π(H) B L = 3/π(H) C L = /π(H) D L = 1/π(H) Câu (ĐH-2011): Một đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp Đoạn mạch AM gồm điện trở R1 mắc nối tiếp với tụ điện có điện dung C, đoạn mạch MB gồm điện trở R mắc nối tiếp với cuộn cảm có độ tự cảm L Đặt điện áp xoay chiều có tần số giá trị hiệu dụng không đổi vào hai đầu đoạn mạch AB Khi đoạn mạch AB tiêu thụ cơng suất 120 W có hệ số cơng suất Nếu nối tắt hai đầu tụ điện điện áp hai đầu đoạn mạch AM MB có giá trị hiệu dụng lệch pha π/3, công suất tiêu thụ đoạn mạch AB trường hợp A 75 W B 90 W C 160 W D 180 W Giải: * Ban đầu, mạch xảy cộng hưởng: P1 = U2 = 120 ⇒ U = 120.( R1 + R2 ) (1) R1 + R2 UMB * Lúc sau, nối tắt C, mạch R1R2L: +) UAM = UMB ; ∆ϕ = π/3 ZL ( R + R2 ) = ⇒ ZL = Vẽ giản đồ ⇒ ϕ = π/6 ⇒ tan ϕ = R1 + R2 3 120( R1 + R2 ) U ⇒ P2 = ( R1 + R2 ) I = ( R1 + R2 ) = ( R1 + R2 ) = 90 Z ( R + R ) ( R1 + R2 ) + U π/3 ϕ I UAM ⇒ Đáp án B Câu 5(ĐH-2011): Đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp Đoạn AM gồm điện trở R = 40 Ω mắc nối tiếp với tụ điện có điện dung C = 10 −3 F, đoạn mạch MB gồm điện trở R mắc với cuộn 4π cảm Đặt vào A, B điện áp xoay chiều có giá trị hiệu dụng tần số khơng đổi điện áp tức thời hai đầu đoạn mạch AM MB là: u AM = 50 cos(100πt − đoạn mạch AB A 0,84 B 0,71 − Giải: + Ta có ZC = 40Ω ; + tanφAM = 7π )(V) u MB = 150 cos100πt (V ) Hệ số công suất 12 C 0,86 ZC π = −1 → ϕ AM = − R1 ZL π = → Z L = R2 ⇒ tan φMB = R2 U AM 50 = = 0,625 * Xét đoạn mạch AM: I = Z AM 40 + Từ hình vẽ có: φMB = D 0,95 UMB π/3 7π/12 I π/4 UAM Trang 159 * Xét đoạn mạch MB: Z MB = U MB = 120 = R22 + Z L2 = R2 ⇒ R2 = 60; Z L = 60 I R1 + R2 Hệ số công suất mạch AB : Cosφ = ( R1 + R ) + ( Z L − Z C ) ≈ 0,84 ⇒ Đáp án A Gỉải cách : Dùng máyFx570ES Tổng trở phức đoạn mạch AB: Z AB = u AB u AM + uMB u =( ) Z AM = (1 + MB ) Z AM i u AM u AM Cài đặt máy: Bấm MODE xuất hiện: CMPLX bấm: SHIFT MODE Chọn đơn vị Rad (R) 150 A∠ϕ (1 + ) X (40 − 40i) = 7π Nhập máy : Hiển thị có trường hợp: 50 2∠− a + bi 12 Ta muốn hiển thị ϕ, máy hiện: a+bi bấm: SHIFT = Kết quả: 118,6851133 ∠ 0,5687670898 Bấm tiếp: cos (0,5687670898) = 0,842565653 ⇒ Đáp án A Câu : Mạch điện xoay chiều AB gồm điện trở R = 80Ω nối tiếp với hộp X Trong hộp X chứa phần tử điện trở R’ cuộn cảm L, tụ C u = 100 2cos(120π t + π )V Dịng điện qua R có cường độ hiệu dụng A trễ pha uAB Phần tử hộp X có giá trị: A R’ = 20Ω B C = 10−3 F 6π C L = H* 2π D L = H 10π Câu 7: Giữa hai điểm A B nguồn xoay chiều u = 220 cos(100πt – π/2)(V) Ta ghép vào phần tử X (trong số R, L, C) dịng điện qua mạch đo 0,5(A) trễ pha π/2 so với u Nếu thay X phần tử Y (trong số R,L, C) dịng điện qua mạch pha so với u cường độ hiệu dụng 0,5(A) Khi ghép X, Y nối tiếp, ghép vào nguồn dịng điện qua mạch có cường độ π so với u.* 2 π ( A) trễ pha C so với u A ( A) trễ pha π so với u π ( A) sớm pha D so với u 2 B ( A) sớm pha Câu 8: Cho mạch điện xoay chiều AB chứa R, L,C nối tiếp, đoạn AM có điện trở cuộn dây cảm 2R = ZL, đoạn MB có tụ C điện dung thay đổi Đặt hai đầu mạch vào hiệu điện xoay chiều u = U 0cosωt (V), có U0 ω khơng đổi Thay đổi C = C công suất mạch đạt giá trị cực đại, mắc thêm tụ C vào mạch MB công suất toạn mạch giảm nửa, tiếp tục mắc thêm tụ C vào mạch MB để công suất mạch tăng gấp đôi Giá trị C là: A C0/3 3C0 B C0/2 2C0 C C0/3 2C0 D C0/2 3C0 • Khi C = C0 cơng suất cực đại, ta có ZC0 = ZL = 2R • Khi mắc thêm tụ C1 (coi mạch có tụ C01) cơng suất mạch giảm nửa: P = Pmax/2 ⇒(ZL - ZC)2 = 2R2, ZL = 2R nên ZC01 = R = ZC0/2 ZC01 = 3R = 3ZC0/2 Hay C01 = 2C0 C01 = 2C0/3 ⇒ ta xác định C1 = C0 C1 = 2C0 • Để công suất mạch tăng gấp đôi (cực đại) cần mắc thêm tụ C (coi mạch có C012) Ta có ZC012 = ZC0, ta xác định C2 = 2C0 C2 = C0/3 Câu 9: Một đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp Đoạn mạch AM có điện trở 50 Ω mắc nối tiếp với cuộn cảm có độ tự cảm 1/π H ,đoạn mạch MB có tụ điện với điện dung thay đổi Đặt điện áp u=U0cos100Лt V vào hai đầu đoạn mạch AB Điều chỉnh điện dung tụ điện đến giá trị C1 cho điện áp hai đầu đoạn mạch AB lệch pha π/2 so với điện áp hai đầu đoạn mạch AM Giá trị C1 A 4.10-5/Л F B 8.10-5/Л F C 2.10-5/Л F D.10-5/Л F Câu 10(ĐH): Một đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp Đoạn mạch AM gồm điện trở R1 mắc nối tiếp với tụ điện có điện dung C, đoạn mạch MB gồm điện trở R mắc nối tiếp với cuộn cảm có độ tự cảm L Đặt điện áp xoay chiều có tần số giá trị hiệu dụng không đổi vào hai đầu đoạn mạch AB Khi đoạn mạch AB tiêu thụ cơng suất 120 W có hệ số cơng suất Nếu nối tắt hai đầu tụ điện điện áp hai đầu đoạn mạch AM MB có giá trị hiệu dụng lệch pha π , công suất tiêu thụ đoạn mạch AB trường hợp A 75 W B 160 W C 90 W D 180 W Trang 160 Câu 11 : Đặt điện áp u = 220√2cos100πt(V) vào hai đầu đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp đoạn AM gồm điện trở R mắc nối tiếp với cuộn cảm L, đoạn mạch MB có tụ điện C Biết điện áp hai đầu mạch AM điện áp hai đầu đoạn mạch MB có giá trị hiệu dụng lệch pha 2π/3 Điện áp hiệu dụng hai đầu đoạn mạch AM A 220V B 220/√3V C.110V D.220√2 GIẢI : Ta có φAM – φMB = 2π/3 tg(φAM – φMB ) = tg(2π/3) (tgφAM – tgφMB)/(1 + tgφAM.tgφMB) = -√3 [(tgφAM/tgφMB) – 1]/[(1/tgφMB) + tgφAM] = -√3 =>( – )/( + tgφAM ) = -√3 => tgφAM = 1/√3 = ZL/R => ZL = R/√3 => UL = UR/√3 (*) Mặt khác:(URL)2 = (UC)2 = (UR)2 + (UL)2 = (UR)2 + (UR)2/3 = 4(UR)2/3 =>(UC)2 = 4(UR)2/3 UC = 2.UR/√3 (**) Ta lại có : U2 = (UR)2 + ( UL – UC )2 = (UR)2 + (UL)2 – 2UL.UC + (UC)2 U2 = (UC)2 – 2UL.UC + (UC)2 = 2(UC)2 - 2UL.UC (***) Thay (*) (**) vào (***) ta : U2 = 2.4(UR)2/3 – (UR/√3).2.UR/√3 = 4(UR)2/3 UR = U√3/2 = 110√3 (V) => URL = UC = 2.110√3/√3 = 220 => đáp án : A Nhận xét: làm trắc nghiệm để tính nhanh ta nhẩm để lấy điểm quan trọng giải : - mạch MB chứa tụ điện mà vecto UC trễ pha π/2 so với vecto I Mà URL hay UAM lệch pha 2π/3 => độ lệch pha φAM φi π/6 => tg(π/6) = ZL/R => ZL = R/√3 => UL = UR/√3 (1) L C L’ A B Câu 12: Cho mạch điện xoay chiều: C = 159µF K u AB = 100 cos(100πt ) (V ) - L: cuộn cảm có điện trở hoạt động r=17,3 Ω độ tự cảm L=31,8mH - L’: cuộn cảm khác a) Khi K đóng viết biểu thức i Tính cơng suất đoạn mạch b) Mở khố K Hệ số cơng suất mạch không đổi công suất giảm nửa Lập biểu thức điện áp tức thời hai đầu L’ 1 ZC = = = 20Ω Giải: ; Z L = ω.L == 10Ω ; r = 17,3 == 10 3Ω 10−3 ω.C 100π 2π a) K đóng : Z= Z = r + ( Z L − Z C ) = (10 3) + (10 − 20) = 20Ω Z L − Z C 10 − 20 − => ϕ = -π/6 = = r 10 U 100 π = = 5( A) vậy: i = cos(100π t + )( A) I= I = Z 20 tan ϕ = tan ϕ = b)K mở: hệ số công suất không đổi: Công suất giảm 1/2 : P’ =P/2 10 = 20 10 + r ' (10 + r ') + (10 + Z L ' − 20) (1) 2.r (r + r ') = (2) 2 r + (10 − 20) (r + r ') + (10 + Z L ' − 20) 2 2.10 ( r + r ') = 2 ( r + r ') + (10 + Z L ' − 20) (10 3) + (10 − 20) Trang 161 => r’= r = 10 3Ω ; ZL’ = 30Ω Viết biểu thức uL’ ? Tổng trở Z’= Câu 13: Một mạch điện xoay chiều ABDEF gồm linh kiện sau mắc nối tiếp (xem hình vẽ) - Một cuộn dây cảm có hệ số tự cảm L E D B A F - Hai điện trở giống nhau, có giá trị R R R - Một tụ điện có điện dung C L C Đặt hai đầu A, F mạch điện điện áp xoay chiều có giá trị hiệu dung U AF = 50V có tần số f = 50Hz Điện áp hai đầu đoạn mạch AD BE đo U AD = 40V UBE = 30V.Cường độ dòng điện hiệu dụng mạch I = 1A a) Tính giá trị R, L C b) Tính hệ số cơng suất mạch điện c) Tính độ lệch pha hiệu điện UAD UDF ĐH Tài Kế tốn - 1999 Giải 2 a) Tổng trở Z= (2R) + (Z L − ZC ) = U AF 50 = = 50Ω ⇔ 4R + (Z L − ZC ) = 2500 I U AD 40 = = 40Ω I U 30 2 = 30Ω ZBE= R + ZC = BE = I 2 Từ (2) (3): 4R2 + Z L + 2ZC = 5000 2 Lại có ZAD= R + Z L = Từ (1): (1) ⇔ R + Z2L = 1600 (2) ⇔ R + ZC2 = 900 (3) (4) 2 4R2 + Z L + ZC − 2Z L ZC = 2500 (5) Lấy (4) trừ (5): Z + Z + 2Z L ZC = (ZL + ZC ) = 2500 ⇒ Z L + ZC = 50Ω ( loại nghiệm Z L + ZC = −50Ω < 0) (6) 2 Lấy (2) trừ (3) 700= Z L − ZC = (Z L +ZC )(Z L − ZC ) (7) 700 = 14 (8) Thay (6) vào (7): 700=50 (Z L − ZC ) ⇔ Z L − ZC = 50 32 ZL L= = = 0,102H Z L = 32Ω ω 2π 50 ⇒ Từ (6) (8) suy ZC = 18Ω C= = = 177.10−6 F ZCω 100π 18 L C Thay vào (2) R= 1600 − Z2L =24 Ω 2R 2.24 = = 0,96 Z 50 -Z Z c) uAD sớm pha i ϕ với tan ϕ 1= L = ; uDF sớm pha i ϕ với tan ϕ 2= C = − R R π Ta có tan ϕ tan ϕ 2= - nghĩa uAD sớm pha uDF Câu 14: Đặt điện áp u = U cos(ωt + ϕ )(V ) vào hai đầu mạch gồm cuộn dây nối tiếp với tụ C thay đổi Khi C = C1 độ lệch pha dịng điện điện áp hai đầu mạch 600 mạch tiêu thụ công suất 50(W) Điều chỉnh C để công suất tiêu thụ mạch cực đại A.100(W) B.200(W) C.50(W) D.250(W) Z − Z π C = ⇒ Z L − Z C = 3R : c=c1thì ϕ = nên tan ϕ = L R U R U 2R U2 U2 P= = vây = = 200W Z R + 3R R R U2 Khi P=Pmax Z L = Z C ⇒ Pmax = = 200W R b) Hệ số công suất cos ϕ = Trang 162 Câu 15: Một đoạn mạch xoay chiều gồm phần tử mắc nối tiếp: điện trở R, cuộn dây có độ tự cảm L điện trở r, tụ điện có điện dung C Đặt vào hai đầu đoạn mạch điện áp xoay chiều, điện áp tức thời hai đầu cuộn dây hai đầu tụ điện có biểu thức ud = 80 cos ( ωt + π / ) V , uC = 40 2cos ( ωt − 2π / 3) V , điện áp hiệu dụng hai đầu điện trở U R = 60 V Hệ số công suất đoạn mạch A 0,862 B 0,908 C 0,753 D 0,664 π 2π 5π π π uC chậm so với i góc + = ud nhanh pha so với i góc 6 U π L 2 2 tan ϕ d = tan = nên U L = 3U r mà U d = U r + U L = 4U r U r U +Ur ⇒ U r = 40 3(V );U L = 120(V ) ⇒ cosϕ = R = 0,908 U ϕ d − ϕc = Câu 16: Cho mạch điện xoay chiều gồm ba đoạn mắc nối tiếp Đoạn AM gồm điện trở R, đoạn MN gồm cuộn dây cảm, đoạn NB gồm tụ xoay thay đổi điện dung.Mắc vôn kế thứ vào AM, vôn kế thứ hai vào NB Điều chỉnh giá trị C thấy thời điểm ,số V cực đại số V1 gấp đơi số V2 Hỏi số V2 cực đại có giá trị V2Max = 200V số vôn kế thứ A 100V B 120V C 50 V D 80 V Giải: Khi UV1 = URmax mạch có cộng hưởng R U R UV2 = UC = UL = R max => ZL = A M 2 R + ZL Khi UV2 = UCmax ZC = = 2,5R ZL U U V U V max U V max = Z = => UV1 = V max = 80V Đáp án D 2,5 R 2,5 R C C L N B Câu 17: Đặt điện áp xoay chiều u = 120 cos(ωt)V vào hai đầu đoạn mạch AB gồm hai đoạn mạch AM MB mắc nối tiếp Đoạn AM cuộn dây có điện trở r có độ tự cảm L, đoạn MB gồm điện trở R mắc nối tiếp với tụ C Điện áp hiệu dụng đoạn MB gấp đôi điện áp hiệu dụng R cường độ dòng điện hiệu dụng mạch 0,5 A Điện áp đoạn MB lệch pha so với điện áp hai đầu mạch π/2 Công suất tiêu thụ điện mạch là: A 150 W B 90 W C 20 W D 100 W GIẢI : C L,r R * UMB = 2UR => (R2 + ZC2) = 4R2 => ZC = R A B M * tanϕMB = -ZC/R = - => ϕMB = - π/3 => ϕAB = π/6 U Z − ZC R+r = UAM * tanϕAB = L => ZL – ZC = R+r 3 π/6 * Z = UAB/I = 240 Ω -π/3 Z2 = (R + r)2 + (ZL – ZC)2 = (R + r)2 = 2402.3 => R + r = 360Ω * P = (R + r )I2 = 90W UMB Câu 18: Cho mạch điện xoay chiều mắc nối thứ tự: điểm A, cuộn dây, điểm E, tụ điện, điểm B Có vơn π kế V mắc vào hai điểm E B Điện áp hai đầu mạch u AB = 60 cos100πt − (V) Điều chỉnh giá trị 6 điện dung C tụ điện để vôn kế V giá trị cực đại 100V Viết biểu thức điện áp u AE Trang 163 A uπt AE = 160 cos 100 C uπt AE = 80 cos 100 π + ÷V 3 π + ÷V 3 B uπt AE = 80 cos 100 D uπt AE = 120 cos 100 + 2π ÷V π + ÷ 3 Giải: Do UCmax nên uAE vng pha với uAB π π π Gọi pha ban đầu uAM ϕ : ϕ + = → ϕ = chọn đáp án C 2 Có thể tính: uAB vuông pha với uME mà uAB=uEA+ uEB nên U AE = U EB − U AB = 80V ĐA: C Phụ lục: CÁC CÔNG THỨC ĐIỆN XOAY CHIỀU I Đoạn mạch RLC có L thay đổi: IMax ⇒ URmax; PMax ULCMin Lưu ý: L C mắc liên tiếp ω 2C R + Z C2 U R + Z C2 2 2 2 * Khi Z L = U LMax = U LMax = U + U R + U C ; U LMax − U CU LMax − U = ZC R 1 1 L1 L2 = ( + )⇒ L= * Với L = L1 L = L2 UL có giá trị ULmax Z L Z L1 Z L2 L1 + L2 * Khi L = * Khi Z L = 2UR Z C + R + Z C2 U RLMax = Lưu ý: R L mắc liên tiếp R + Z C2 − Z C II Đoạn mạch RLC có C thay đổi: IMax ⇒ URmax; PMax ULCMin Lưu ý: L C mắc liên tiếp ω2L R + Z L2 U R + Z L2 2 2 2 * Khi Z C = U CMax = U CMax = U + U R + U L ; U CMax − U LU CMax − U = ZL R 1 1 C + C2 = ( + )⇒C = * Khi C = C1 C = C2 UC có giá trị UCmax Z C Z C1 Z C2 * Khi C = 2UR Z L + R + Z L2 U RCMax = Lưu ý: R C mắc liên tiếp R + Z L2 − Z L Thay đổi f có hai giá trị f1 ≠ f biết f1 + f = a * Khi Z C = III Bài toán cho ω thay đổi - Xác định ω để Pmax, Imax, URmax o Khi thay đổi ω, đại lượng L, C, R không thay đổi nên tương ứng đại lượng Pmax, Imax, 1 ωL = ⇔ LCω = ⇒ ω URmax xảy cộng hưởng: ZL = ZC hay ω = LC Cω - Xác định ω để UCmax Tính UCmax Trang 164 U C = ZC I = ZC U R + ( Z L - ZC ) = U R + ( Z L - ZC ) ZC2 o U = ω4 L2 C2 + ω2 ( R C2 − 2LC ) + = U = R + ωL ÷ ωC 2 ωC U U = y x L2 C + x ( R 2C − 2LC ) + 2LC − R C2 L R = 2 − ÷⇒ ωC = 2 2L C L C L 2LU từ ta tính U Cmax = R 4LC − R C o UCmax ymin hay x = ωC2 = => Khi ω = - 2U L L R2 U CMax = − L C R LC − R 2C Xác định ω để ULmax Tính ULmax ZL U U U U L = ZL I = = = 2 R + ( Z L - ZC ) R + ( Z L - ZC ) R + ωL ÷ ωC Z2L ω2 L2 o U U U = = = y R2 1 R2 + − + x + x − + ÷ ÷ ω4 L2 C2 ω2 L2 LC L2 C L LC o => Khi ω= - L R2 − C C L2 C R R2 1 2 L = − = C − ⇒ ωL = ÷ 2 ÷ ULmax ymin hay ωL LC L C L R2 C − C 2LU từ ta tính U Lmax = R 4LC − R C2 x= 2U L L R U LMax = − R LC − R 2C C Cho ω = ω1, ω = ω2 P Tính ω để Pmax R.U R.U P = R.I12 = = R + (ZL1 - ZC1 ) o Khi ω = ω1: R + ω1L − ÷ ω1C R.U R.U P = R.I 22 = = 2 o Khi ω = ω2: R + ( ZL2 - ZC2 ) R + ω2 L − ÷ ω2 C o Pnhư khi: P = P ⇔ ω1L − o 1 1 1 = − ω2 L ⇒ ( ω1 + ω2 ) L = + ω1C ω2 C C ω1 ω2 ÷⇒ ω1ω2 = LC Điều kiện để Pđạt giá trị cực đại (cộng hưởng) khi: Trang 165 ZC = ZL ⇒ ω2 = = ω1ω2 ⇒ ω = ω1ω2 LC => Với ω = ω1 ω = ω2 I P cosφ UR có giá trị IMax PMax URMax ω = ω1ω2 ⇒ ω1ω2 = ,f = LC f1 f ω1ω2 = ωm2 = Nghĩa :Có hai giá trị ω để mạch có P, I, Z, cosφ, UR giống - LC Cho ω = ω1, ω = ω2 UC Tính ω để UCmax U U U C1 = ZC1.I1 = = 2 o Khi ω = ω1: ω12 C R + ( ω12 LC − 1) ω1C R + ω1L − ÷ ω1C U C2 = ZC2 I = o Khi ω = ω2: o UC khi: U U = ω2C R + ω2 L − ÷ ω2 C ω22C R + ( ω22 LC − 1) U C1 = U C2 ⇔ ω12C R + ( ω12 LC − 1) = ω22 C2 R + ( ω22 LC − 1) 2 1 ⇒ C2 R ( ω12 − ω22 ) = LC ( ω22 − ω12 ) LC ( ω22 + ω12 ) − ⇒ C R = −2L2C ( ω22 + ω12 ) − LC 2 L R2 ⇒ ( ω2 + ω1 ) = − ÷ L C - L R2 2 − ÷ = ( ω1 + ω2 ) L C Cho ω = ω1, ω = ω2 UL Tính ω để ULmax U U U L1 = ZL1.I1 = = 2 o Khi ω = ω1: 1 R2 R + ω1L − + 1÷ ÷ ω1L ω1C ω12 L2 ω12 LC U U U L2 = ZL2 I = = 2 o Khi ω = ω2: 1 R2 R + ω2 L − + 1÷ ÷ ω2 L ω2 C ω22 L2 ω22 LC o Điều kiện để UCmax khi: ωC = o UL khi: 2 R2 R2 U L1 = U L2 ⇔ 2 + 1 − ÷ = 2 + 1 − ÷ ω1 L ω1 LC ω2 L ω2 LC R2 1 1 1 ⇒ − ÷= − ÷ − + ÷ L ω1 ω2 LC ω1 ω2 LC ω1 ω2 R2 1 1 1 1 R C2 R2 2L ⇒ = 2 LC − + ÷ ⇒ + ÷ = LC − =C − ÷ L LC ω1 ω2 ω1 ω2 C - R2 1 2 L = C − o Điều kiện để ULmax khi: ÷= + ÷ ωL C ω1 ω2 Cho ω = ω1 ULmax, ω = ω2 UCmax Tính ω để Pmax Trang 166 1 C L R2 − C ω1 = o ULmax o UCmax ω2 = L R2 − L C Điều kiện để Pđạt giá trị cực đại (cộng hưởng) khi: ZC = ZL ⇒ ω2 = = ω1ω2 ⇒ ω = ω1ω2 LC o IV.CÁC CÔNG THỨC VUÔNG PHA VỀ ĐIỆN XOAY CHIỀU uL U 0L – Đoạn mạch có L ; uL vuông pha với i u => L ZL với U0L = I0ZL + i = I 02 => Z L = uC U 0C – Đoạn mạch có tụ C ; uC vng pha với i với U0C = I0ZC => Z C = u => Z C 2 i + = I0 u 22 − u 12 i12 − i 22 2 i + = I0 2 + i = I = >( ωCu C ) + i = I 02 ωC u 22 − u 12 i12 − i 22 => Z C = 3- Đoạn mạch có LC ; uLC vuông pha với i 2 u LC i + = => Z LC = U LC I – Đoạn mạch có R L ; uR vuông pha với uL u 22 − u 12 i12 − i 22 2 2 2 2 uL uR uL uR + = ; + = U U U sin φ U cos φ L R 0 – Đoạn mạch có R C ; uR vuông pha với uC uC uR uC uR + = ; + = U 0C U 0R U sin φ U cos φ – Đoạn mạch có RLC ; uR vng pha với uLC u LC U LC uR + U 0R 2 u = ; LC U LC U0 i + = I0 u LC u R + = U sin φ U cos φ U0LC => U02 = U0R2 + U0LC2 ) ϕ U0R u với U0LC = U0R tanϕ => LC + u 2R = U 02 R tan φ – Từ điều kiện để có tượng cộng hưởng ω 02LC = Xét với ω thay đổi Trang 167 ω02 ω02 LC L ω − ω0 ω− ωL − ωL − 7a : => R ω ω = số ω C ω C = tan φ = = = L tan φ R R R 7b : ZL = ωL Z C = ωC ZL ZL ω ω UL = ω LC = => = => ZC Z C ω0 ω0 => đoạn mạch có tính cảm kháng ZL > ZC => ωL > ω0 => đoạn mạch có tính dung kháng ZL < ZC => ωC < ω0 => cộng hưởng ZL = ZC => ω = ω0 7c : I1 = I2 < Imax => ω1ω2 = ω02 Nhân thêm hai vế LC => ω1ω2LC = ω02LC = ZL1 = ω1L ZC2 = 1/ ω2C ZL1 = ZC2 ZL2 = ZC1 )ϕ 7d : Cosϕ1 = cosϕ2 => ω1ω2LC = thêm điều kiện L = CR2 cos φ1 = R cos φ1 = ω1 ω => 2 + − R + ( Z L1 − Z C1 ) ω ω O RLC )ϕRC UC URLC UR URC – Khi L thay đổi ; điện áp hai đầu cuộn cảm L => URC ⊥ URLC => từ GĐVT ULmax tanϕRC tanϕRLC = – R + Z C2 => Z L = => ZL2 = Z2 + ZCZL ZC => U LMAX => U2 Lmax => U LMAX U 2R + U C2 U 2 = R + Z C U LMAX = UC R 2 = U +UR+UC = U + U C U LMAX U => U LMAX UC + U LMAX = => Z ZL ZC + = ZL – Khi C thay đổi ; điện áp hai đầu tụ C => URL ⊥ URLC => UCmax tanϕRL tanϕRLC = – R + Z 2L => Z C = => ZC2 = Z2 + ZCZL ZL U + U 2L U R + Z 2L U CMAX = R UL R 2 = U +UR+UL => U CMAX = => U2 Cmax => U CMAX = U + U L U CMAX U => U CMAX UL + U CMAX = Z ZL + = => ZC ZC 10 – Khi URL ⊥ URC => ZLZC = R2 => U R = U RL U RC U 2RL + U 2RC => tanϕRL tanϕRC = – 11 – Điện áp cực đại hai đầu tụ điện C ω thay đổi Trang 168 Với ωC = L − R2 C L2 (1) => ω2 = ωC2 = ω02 – R2 2L2 (2) => cách viết kiểu (2) dễ nhớ (1) ωC2 ZL = ω LC = với ZL = ωCL ZC = 1/ ωCC => C ZC ω02 2LU => từ U CMAC = (3) => từ (2) (3) suy dạng công thức R 4LC − R C U 2 2 U C max = U ZL Z ZL + = => + = => Z C2 = Z + Z 2L Z L => 1− U CMAX Z C ZC ZC ZC => 2tanϕRL.tanϕRLC = – U => U CMAX 2 ωC2 + = ω0 12 – Điện áp đầu cuộn dây cảm L cực đại ω thay đổi 1 R 2C2 = − Từ ω = (1) => (2) => cách viết kiểu (2) dễ nhớ (1) ωL ω02 2LC − R C ZC ω2 = = 02 Z L ωL LC ωL ; ZL = ωLL ZC = 1/ ωLC => Từ U LMAX = => U L max = 2LU R 4LC − R C U Z − C ZL (3) = > dạng công thức 2 U ZC + = => U LMAX Z L Z => ZL 2 => Z = Z + Z L 2 C => 2tanϕRC.tanϕRLC = – ZC + = ZL U ω02 + = => U LMAX ωL 13 – Máy phát điện xoay chiều pha Từ thông Φ = Φ cos(ωt + φ) dΦ = ωΦ sin(ωt + φ) = E0sin ((ωt + ϕ ) Suất điện động cảm ứng e = − dt 2 Φ e + = => Φ0 E0 Phần chứng minh cơng thức 11; 12 CƠNG THỨC HAY : Trong đoạn mạch xoay chiều , RLC ( cuộn dây cảm ) với điện áp hai đầu đoạn mạch U = không đổi Xét trường hợp ω thay đổi Các bạn biết – Xét điện áp cực đại hai đầu điện trở R U2 URmax = (1a) => ω2RLC = => ω R = (1b) LC R 2- Xét điện áp cực đại hai đầu tụ điện C UCmax = LU R LC − R C ( 2a) Khi : ω = L − R2 C L2 (*) Trang 169 Công thức (*) tài liệu tham khảo viết vậy, biến đổi chút xíu thơi có cơng thức dễ nhớ liên hệ hay sau Bình phương hai vế rút gọn L Ta có R2 R2 2 (2b) => ω C < ω R ωC = − = >ω C = ω R − LC 2L2 2L > Vậy (1b) (2b) có liên hệ đẹp Từ (2a ) chia tử mẫu cho 2L đưa vào => ( 2b) thay vào (2a) , ta có U MAXC = U Z (2c) để tồn đương nhiên ZC > ZL khơng có R − L ZC – Xét điện áp cực đại hai đầu cuộn dây cảm L LU ULmax = (3a) Khi ω = ( ** ) 2 R LC − R C 2LC − R C Công thức ( ** ) tài liệu tham khảo hay viết Tương tự bình phương hai vế viết nghịch đảo R 2C2 1 R 2C2 = LC − = > = − 2 ω L2 ω L2 ω R2 Giữa (3b) (1b) lại có liên hệ Tương tự dùng (3b) thay (3a) ta có U MAXL = ( 3b) => ω L > ω R U Z − C ZL (3c) – Kết hợp (1b) , (2b) , (3b) Ta có : để tồn đương nhiên ZL > ZC khơng có R ω Cω L = ω R2 = ω02 5- Chứng minh UCmax với ω thay đổi thì: 2tanϕRL.tanϕRLC = – R2 2 − L2 Ta có : ZL = ωCL = > Z L = ωC L = ZRL LC 2L L R − C R2 L ωL => = − Z 2L = − Z 2L = Z L Z C − Z 2L = − Z L ( Z L − Z C ) C ωC Z (Z − Z C ) =− => L L (1) R R => Từ hình vẽ => Z 2L = ) ϕ1 R ) ϕ2 ZC Z ZL | ZC – ZL| ZL (2) R Z − ZC tan φ2 = tan φRLC = L (3) R => Từ 1,2,3 : 2tanϕRL.tanϕRLC = – Lưu ý có số phía trước nhé, nên trường hợp URL khơng vng góc với URLC Phần ULmax chứng tương tự tan φ1 = tan φRL = 5– Khi ω thay đổi với ω = ωC UCmax ω = ωL ULmax viết theo biểu thức dạng 2a 3a : UCmax = ULmax dạng, điều kiện có nghiệm ω = ωC ≠ ω = ωL Nhưng viết dạng (2c) (3c) lại khác Trang 170 Cả hai cách viết dạng a hay c UmaxC hay UmaxL dễ nhớ – Khi giá trị điện áp cực đại UmaxR ; UmaxC ; Umax L với tần số tương ứng ωR ; ωC ; ωL có mối quan hệ đặc biệt ωL > ωR > ωC => điều dễ dàng từ biểu thức 2b 3b Nhận xét : Có thể nói cịn nhiều hệ hay vận dụng từ hai dao động có pha vng góc từ số vế phải Ta dùng để giải nhiều tốn nhanh dễ nhớ ! Nguyên tắc thành công : Đam mê! Tích cực! Kiên trì! Người sưu tầm : Địan văn Lượng Email:doanvluong@gmail.com; doanvluong@yahoo.com Điện Thoại: 0915718188 - 0906848238 Trang 171 ... tanφ1= - tanφ2 Giả sử điện áp đặt vào đoạn mạch có dạng: u = U cos(100πt + φ) (V) Khi φ1 = φ – (- π /12) = φ + π /12 φ2 = φ – 7π /12 tanφ1 = tan(φ + π /12) = - tanφ2 = - tan( φ – 7π /12) tan(φ + π /12) ... = = tan(ϕ + π/3); R R tan(ϕ - π/6) = - tan(ϕ +π/3) tan(ϕ - π/6) + tan(ϕ +π/3) = => sin(ϕ - π/6 + ϕ +π/3) = => ϕ - π/6 + ϕ +π/3 = => ϕ = - π /12 => u=U0 cos(ωt -) (V) Chọn C Câu 33: Một đoạn... xoay chiều u=U cos 120 πt+ cường độ dòng điện qua cuộn cảm A i=3 2cos ? ?120 πt- π 6 π ÷A 6 C i=3cos ? ?120 πt- ÷A π ÷A 6 π D i=2 2cos ? ?120 πt- ÷A 6 B i=2cos 120 πt+ CHỦ ĐỀ III: