Anten điều khiển búp sóng mảng pha với đặc điểm cấu trúc phẳng, hiệu suất cao, dễ chế tạo, giản đồ bức xạ hình dải quạt có độ rộng búp sóng theo phương quét hẹp: (1) Anten điều khiển búp sóng mảng pha có búp sóng hình dải quạt hẹp hoạt động ở tần số 2,45 GHz và 5,0 GHz. (2) Anten điều khiển búp sóng mảng pha có búp sóng hình dải quạt rộng hoạt động ở tần số 2,45 GHz.
BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI BÙI THỊ DUYÊN NGHIÊN CỨU PHÁT TRIỂN HỆ THỐNG ĐỊNH VỊ VÔ TUYẾN TRONG NHÀ SỬ DỤNG ANTEN ĐIỀU KHIỂN BÚP SÓNG LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA Hà Nội – 2019 BỘ GIÁO DỤC VÀ ĐÀO TẠO TRƯỜNG ĐẠI HỌC BÁCH KHOA HÀ NỘI BÙI THỊ DUYÊN NGHIÊN CỨU PHÁT TRIỂN HỆ THỐNG ĐỊNH VỊ VÔ TUYẾN TRONG NHÀ SỬ DỤNG ANTEN ĐIỀU KHIỂN BÚP SÓNG Ngành: Kỹ thuật điều khiển tự động hóa Mã số: 9520216 LUẬN ÁN TIẾN SĨ KỸ THUẬT ĐIỀU KHIỂN VÀ TỰ ĐỘNG HÓA CÁN BỘ HƯỚNG DẪN KHOA HỌC: PGS.TS NGUYỄN QUỐC CƯỜNG Hà Nội – 2019 LỜI CAM ĐOAN Tôi xin cam đoan kết khoa học trình bày luận án thành nghiên cứu thân suốt thời gian nghiên cứu sinh Các kết trình bày luận án trung thực chưa tác giả khác cơng bố Các thơng tin trích dẫn luận án trung thực, rõ nguồn gốc Hà Nội, ngày 02 tháng 12 năm 2019 Người hướng dẫn khoa học Tác giả luận án PGS.TS Nguyễn Quốc Cường Bùi Thị Duyên i LỜI CẢM ƠN Đầu tiên, xin gửi lời cảm ơn sâu sắc đến PGS.TS Nguyễn Quốc Cường, TS Lê Minh Thùy dành nhiều thời gian, tâm huyết để trực tiếp hướng dẫn, định hướng, tạo động lực nghiên cứu hỗ trợ nghiên cứu sinh mặt để hồn thành luận án Tơi xin chân thành cảm ơn ban lãnh đạo đồng nghiệp thuộc Khoa Kỹ thuật điều khiển Tự động hóa, Trường Đại học Điện lực tạo điều kiện thuận lợi cho tơi q trình học tập, nghiên cứu Xin trân trọng cảm ơn Bộ môn Kỹ thuật đo Tin học công nghiệp, Viện Điện, Phòng Đào tạo, thuộc trường Đại học Bách khoa Hà Nội giúp đỡ mặt chuyên môn hỗ trợ thủ tục q trình học tập, hồn thành luận án Xin trân trọng cảm ơn Bộ môn Thông tin vô tuyến, khoa Điện tử Viễn thông, trường Đại học Công nghệ, Đại học Quốc gia Hà Nội TS Phan Hồng Phương, phòng thí nghiệm IMEP-LAHC, Đại học Grenoble, Pháp giúp đỡ đo kiểm mẫu anten mạch điện tử cho luận án Qua đây, xin gửi lời cảm ơn chân thành đến thành viên nhóm nghiên cứu thuộc phòng Lab – RF3I, Viện Điện, bạn bè đồng nghiệp quan tâm giúp đỡ, động viên thời gian vừa qua Cuối cùng, xin gửi tình cảm yêu quý đến thành viên gia đình, người ln động viên, hỗ trợ tơi mặt để tơi hồn thành luận án ii MỤC LỤC LỜI CAM ĐOAN i LỜI CẢM ƠN ii MỤC LỤC iii DANH MỤC CÁC CHỮ VIẾT TẮT vi DANH MỤC CÁC KÝ HIỆU TOÁN HỌC viii DANH MỤC CÁC HÌNH VẼ ix DANH MỤC CÁC BẢNG BIỂU xii MỞ ĐẦU 1 Tính cấp thiết đề tài Những vấn đề tồn hướng nghiên cứu luận án 3 Mục tiêu, đối tượng phạm vi nghiên cứu Ý nghĩa khoa học đề tài Những đóng góp luận án Cấu trúc nội dung luận án TỔNG QUAN VỀ HỆ THỐNG ĐỊNH VỊ VÔ TUYẾN TRONG NHÀ SỬ DỤNG ANTEN ĐIỀU KHIỂN BÚP SÓNG 10 1.1 Tổng quan hệ thống định vị vô tuyến nhà 10 Hệ thống định vị vô tuyến sử dụng anten truyền thống 10 Hệ thống định vị vô tuyến sử dụng anten điều khiển búp sóng 14 Kết luận 15 1.2 Các cấu hình định vị 17 Cấu hình tự định vị 17 Cấu hình định vị từ xa 18 1.3 Sơ đồ khối chức hệ thống định vị 18 Đối tượng 19 Khối đo tham số vị trí 19 Thuật tốn xác định vị trí đối tượng 20 Hiển thị vị trí 21 1.4 Các kỹ thuật định vị 21 Tham số vị trí 22 Phương pháp định vị 26 1.5 Anten anten điều khiển búp sóng hệ thống định vị vơ tuyến 39 iii Anten anten mảng 39 Anten điều khiển búp sóng hệ thống định vị vơ tuyến 41 1.6 Kết luận chương 46 HỆ THỐNG ĐỊNH VỊ VÔ TUYẾN BA TRẠM TRONG NHÀ 47 2.1 Giới thiệu chương 47 2.2 Giải pháp anten điều khiển búp sóng mảng pha dải quạt hẹp 48 Giải pháp thiết kế anten phần tử lưỡng cực mạch in 48 Thiết kế dịch pha vi dải sử dụng ma trận Butler 56 Kết anten điều khiển búp sóng mảng pha dải quạt hẹp 62 2.3 Thực nghiệm hệ thống định vị ba trạm sử dụng anten điều khiển búp sóng dải quạt hẹp 70 Cấu hình hoạt động hệ thống 70 Thử nghiệm phương pháp định vị 73 Kết luận đánh giá hệ thống 79 2.4 Kết luận chương 81 HỆ THỐNG ĐỊNH VỊ VÔ TUYẾN TRONG NHÀ ĐƠN TRẠM SỬ DỤNG ANTEN ĐIỀU KHIỂN BÚP SÓNG 83 3.1 Giới thiệu chương 83 Hệ định vị đơn trạm sử dụng AĐKBS mảng pha 83 Hệ định vị đơn trạm sử dụng AĐKBS chuyển búp 84 3.2 Giải pháp thiết kế anten điều khiển búp sóng mảng pha dải quạt rộng 85 3.3 Giải pháp thiết kế anten điều khiển búp sóng chuyển búp phân cực tròn 87 Anten phân cực tròn sử dụng kỹ thuật quay 88 Thiết kế anten điều khiển búp sóng chuyển búp phân cực tròn 95 3.4 Thực nghiệm hệ thống định vị đơn trạm tích hợp anten điều khiển búp sóng mảng pha dải quạt rộng 97 Cấu hình hoạt động hệ thống 97 Thử nghiệm phương pháp định vị 98 Kết luận đánh giá hệ thống 102 3.5 Thực nghiệm hệ thống đơn trạm tích hợp anten điều khiển búp sóng chuyển búp phân cực tròn 105 Cấu hình hệ thống 105 Phương pháp định vị dấu vân tay 109 Kết luận đánh giá hệ thống 117 iv 3.6 Kết luận chương 118 KẾT LUẬN CHUNG CỦA LUẬN ÁN 120 DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN 122 TÀI LIỆU THAM KHẢO 123 v DANH MỤC CÁC CHỮ VIẾT TẮT Ký hiệu viết tắt ANN AoA AP BGI BW CSI DoA ESPRIT FNBW HPBW IPS ISM KNN LoS LS MAC ML MSoS MUSIC MVDR NICs PoA QPD RB RF RFID RP RSS RSSI Tiếng Anh Tiếng Việt Artificial Neural Networks Mạng trí tuệ nhân tạo Angle of Arrival Góc tới Access Point Điểm truy cập Bilateral Greed Iteration Lặp tham lam Bandwidth Độ rộng băng thông Channel State Information Thông tin trạng thái kênh Direction of Arrival Hướng góc tới Estimation of Signal Parameters via Ước lượng tham số tín hiệu dựa Rotational Invariance Technique vào kỹ thuật bất biến quay First Null Power Beamwidth Độ rộng không Half Power Beamwidth Độ rộng búp sóng nửa cơng suất Indoor Positioning System Hệ thống định vị nhà Industrial, Scientific and Medical Công nghiệp, khoa học y tế K-Nearest Neighbors K hàng xóm gần Line-of-Sight Truyền thẳng Least Squares Bình phương tối thiểu Medium Access Control Điều khiển truy cập môi trường Maximum Likelihood Hợp lý Tổng bình phương khoảng cách Minimizes the Sum of Square nhỏ Multiple Signal Classification Phân loại tín hiệu đa đường Minimum Variance Distortionless Đáp ứng không méo phương sai Response cực tiểu Network Interface Cards Bo mạch giao diện mạng Phase Of Arrival Pha tới Quadrature Power Divider Bộ chia đôi nguồn vuông pha Router Board Bộ định tuyến Radio Frequency Sóng vơ tuyến Radio Frequency Identification Định danh sóng điện từ Remote-Positioning Định vị từ xa Received Signal Strength Cường độ tín hiệu thu Received Signal Strength Indicator Chỉ số cường độ tín hiệu thu vi SR SSID SVD TDoA ToA UWB VSWR Wi-Fi Space and Frequency Division Đa truy cập theo không gian tần multiple access số Sequential Rotated Quay Service Set Identifier Mã định danh dịch vụ Singular Value Decomposition Phân tích giá trị riêng Time Difference of Arrival Độ lệch thời gian tới Time of Arival Thời gian tới Ultra-WideBand Băng thông siêu rộng Voltage Standing Wave Ratio Tỷ số điện áp sóng đứng Wireless Fidelity Truy cập mạng không dây WKNN Weighted K-nearest neighbor SFDMA AĐKBS CSDL ĐT ĐVTX ĐVTXGT LC-ĐaH LC-DâX LC-ĐiH TĐV TĐVGT K hàng xóm gần có trọng số Anten điều khiển búp sóng Cơ sở liệu Đối tượng Định vị từ xa Định vị từ xa gián tiếp Lưỡng cực mạch in đa hướng Lưỡng cực mạch in dẫn xạ Lưỡng cực mạch in định hướng Tự định vị Tự định vị gián tiếp vii DANH MỤC CÁC KÝ HIỆU TỐN HỌC TT Ký hiệu Mơ tả k Hệ số sóng khơng gian tự (k = 2π/) εr Hằng số điện môi εeff Hằng số điện mơi hiệu dụng θ Góc quay búp sóng ϕ Góc phương vị Hệ số tổn hao φ Góc lệch pha Bước sóng khơng gian tự g Bước sóng mơi trường 10 Hệ số sóng môi trường ( = 2π/g) 11 φ Pha ban đầu 12 Z0 Trở kháng đặc trưng đường truyền 13 Tham số ước lượng 14 (.)T Ma trận chuyển vị 15 (.)-1 Ma trận nghịch đảo 16 Tổng 17 Γ Hệ số phản xạ viii DANH MỤC CÁC CƠNG TRÌNH ĐÃ CƠNG BỐ CỦA LUẬN ÁN DANH MỤC CÁC CƠNG BỐ CHÍNH Bùi Thị Dun, Ngơ Văn Đức, Lê Minh Thùy, Nguyễn Quốc Cường, (2015) “Mô số khả điều chỉnh đồ thị xạ cho dipole antenna vi dải băng thông rộng”, Kỷ yếu hội nghị khoa học kỹ thuật đo lường toàn quốc lần thứ sáu, pp 1002-1008, Hà Nội, tháng Thi Duyen Bui, V D Ngo, B H Nguyen, Q C Nguyen, and M T Le, (2016) “Design of beam steering antenna for localization applications,” in 2016 International Symposium on Antennas and Propagation (ISAP), Japan, pp 956– 957 (Scopus) Thi Duyen Bui, Q C Nguyen, and M T Le, (2017) “Novel wideband circularly polarized antenna for wireless applications,” in Microwave Conference (APMC), 2017 IEEE Asia Pacific, KUALA LUMPUR, Malaysia, pp 430–433 DOI: 10.1109/APMC.2017.8251472 (Scopus) Thi Duyen Bui, L Minh Thuy and N Quoc Cuong, (2017) “High gain antenna with wide angle radiation for modern wireless communication applications,” in International Conference on Advanced Technologies for Communications, pp 39– 42 DOI: 10.1109/ATC.2017.8167638 Bùi Thị Duyên, Nguyễn Trì, Lê Minh Thùy, Nguyễn Quốc Cường, (2018) “Định vị môi trường hẹp dựa mạng cảm biến không dây theo chuẩn IEEE 802.15.4” Tạp chí Nghiên cứu khoa học cơng nghệ quân sự, Số 56, pp 126133, ISSN 1859 - 1043 Thi Duyen Bui, Minh Thuy Le, and Quoc Cuong Nguyen, (2018) “Electronically steerable antenna array for indoor positioning system,” Journal of Electromagnetic Waves and Applications., pp 1–15, ISSN 0920-5071 (SCIE-Q2) DANH MỤC CÁC CÔNG BỐ LIÊN QUAN Ngô Văn Đức, Bùi Thị Duyên, Lê Minh Thùy, Nguyễn Quốc Cường, (2015) “Thiết kế ăng-ten điều hướng cho hệ thống định danh/định vị dải tần UHF”, Kỷ yếu hội nghị khoa học kỹ thuật đo lường toàn quốc lần thứ sáu, pp 605-611, Hà Nội, tháng Bùi Thị Duyên, Ngô Văn Đức, Lê Minh Thùy, and Nguyễn Quốc Cường, (2015) “Anten định hướng cao sử dụng lớp siêu vật liệu phản xạ bề mặt PRS,” Tạp chí khoa học cơng nghệ lượng, Trường Đại học Điện Lực, số 9, pp 78–84, ISSN 1859 - 4557 N Nhu Huan, L Anh Dung, B Thi Duyen, N Thanh Tung, and L Minh Thuy, (2016) “Wideband left-Handed Metamaterial: Analysis, modelling, and testing for antennagain enhancement,” in Proceedings of the 2016 VIETnam-Japan, pp 7984, Nha Trang Nhu Huan Nguyen, Thi Duyen Bui, Anh Dung Le, Anh Duc Pham, Thanh Tung Nguyen, Quoc Cuong Nguyen and Minh Thuy Le, (2018) “A Novel Wideband Circularly Polarized Antenna for RF Energy Harvesting in Wireless Sensor Nodes,” Int J Antennas Propag., vol 2018, pp 1–9, ISSN: 1687-5869 (SCIE-Q3) 122 TÀI LIỆU THAM KHẢO [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] P Jensfelt, (2001) “Approaches to mobile robot localization in indoor environments,” Royal Institute of Technology, Switzerland K Pahlavan and P Krishnamurthy, (2013), Principles of wireless access and localization Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc © ELEDIA Research Center, (2016), “ELEDIA Wireless Indoor Localization,” ELEDIA WaLK [Online] Available: http://www.eledia.org/showcase/walk/ A H Ismail, H Kitagawa, R Tasaki, and K Terashima, “WiFi RSS fingerprint database construction for mobile robot indoor positioning system,” in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, pp 0001561–001566 JOSE FERMOSO, (2009 “Nokia’s Location Sensor concept ‘keychain’ to lead hybrird location-based services,” https://www.wired.com/2009/02/nokiaslocation/, Feb-2009 P Harrop, (2014) “Mobile phone indoor positioning systems create $10bn market,” Jan-2014 “7 Examples of Location-Based Services Apps.” [Online] Available: https://medium.com/@the_manifest/7-examples-of-location-based-servicesapps-82b8be3bdcac C Esposito and M Ficco, (2011), “Deployment of RSS-Based Indoor Positioning Systems,” Int J Wirel Inf Netw., vol 18, no 4, pp 224–242 Dr Rainer Mautz, (2012), “Indoor Positioning Technologies,” thesis, Institute of Geodesy and Photogrammetry, ETH Zurich, Switzerland A Yassin et al., (2017), “Recent Advances in Indoor Localization: A Survey on Theoretical Approaches and Applications,” IEEE Commun Surv Tutor., pp 1–1 Y Gu, A Lo, and I Niemegeers, (2009), “A survey of indoor positioning systems for wireless personal networks,” IEEE Commun Surv Tutor., vol 11, no 1, pp 13–32 S Doiphode, J W Bakal, and M Gedam, (2016), “Survey of Indoor Positioning Measurements, Methods and Techniques,” Int J Comput Appl., vol 140, no 7, pp 1–4 P Davidson and R Piche, (2017), “A Survey of Selected Indoor Positioning Methods for Smartphones,” IEEE Commun Surv Tutor., vol 19, no 2, pp 1347–1370 J Biswas and M Veloso, (2010), “WiFi localization and navigation for autonomous indoor mobile robots,” in 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, pp 4379–4384 Y Shi et al., (2018), “Design of a Hybrid Indoor Location System Based on Multi-Sensor Fusion for Robot Navigation,” Sensors, vol 18, no 10, p 3581 Christ, Godwin, and Lavigne, (1993), “A prison guard Duress alarm location system,” in Proceedings of IEEE International Carnahan Conference on Security Technology CCST-94, Albuquerque, NM, USA, pp 106–116 123 [17] Phạm Thị Thanh Thủy, (2017), “Nghiên cứu phát triển kỹ thuật định vị định danh kết hợp thông tin hình ảnh wifi,” Đại học Bách khoa Hà Nội, Hà Nội [18] N des Aunais et al., (2016), “Analytical method for multimodal localization combination using Wi-Fi and camera,” in 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, pp 1–6 [19] manh kha hoang, thi hang duong, trung kien vu, and vu trinh anh, (2017), “Enhancing WiFi based Indoor Positioning by Modeling Measurement Data with GMM,” in 2017 International Conference on Advanced Technologies for Communications (ATC), Quy Nhon, pp 325–328 [20] Faculty of Electronics, Hanoi University of Industry, T K Vu, H L Le, and National Center for Technological Progress, (2019), “Gaussian Mixture Modeling for Wi-Fi fingerprinting based indoor positioning in the presence of censored data,” Vietnam J Sci Technol Eng., vol 61, no 1, pp 3–8 [21] T H Dao, Q C Nguyen, V D Ngo, M T Le, and C A Hoang, (2014), “Indoor Localization System Based on Passive RFID Tags,” in 2014 5th International Conference on Intelligent Systems, Modelling and Simulation, Langkawi, Malaysia, pp 579–584 [22] T.-H Dao, M.-T Le, and Q.-C Nguyen, (2014), “Indoor localization system using passive UHF RFID tag and multi-antennas,” in 2014 International Conference on Advanced Technologies for Communications (ATC 2014), Hanoi, Vietnam, pp 405–410 [23] “911 and E911 Services,” 911 and E911 Services [Online] Available: https://www.fcc.gov/general/9-1-1-and-e9-1-1-services [24] J Werb and C Lanzl, (1998), “Designing a positioning system for finding things and people indoors,” IEEE Spectr., vol 35, no 9, pp 71–78 [25] H Koyuncu and S H Yang, (2010), “A Survey of Indoor Positioning and Object Locating Systems,” Int J Comput Sci Netw Secur., vol 10, no 5, pp 121–128 [26] L M Ni, Yunhao Liu, Yiu Cho Lau, and A P Patil, (2003), “LANDMARC: indoor location sensing using active RFID,” in Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003 (PerCom 2003)., Fort Worth, TX, USA, pp 407–415 [27] P Bahl and V N Padmanabhan, (2000), “RADAR: an in-building RF-based user location and tracking system,” , vol 2, pp 775–784 [28] M Youssef and A Agrawala, (2004), “Handling samples correlation in the Horus system,” in IEEE INFOCOM 2004, Hong Kong, China, vol 2, pp 1023– 1031 [29] Ekahau, Inc., “Ekahau Positioning EngineTM 3.0 User Guide,” https://www.ekahau.com/ [Online] Available: https://www.comp.nus.edu.sg/~medialab/graphics%20lab/Ekahau%20Positio ning%20Engine%20UserGuide.pdf [30] M M Perez, G V Gonzalez, J R V Hermida, I M Herranz, and C Dafonte, (2016), “Improving the Locating Precision of an Active WIFI RFID System to 124 [31] [32] [33] [34] [35] [36] [37] [38] [39] [40] [41] [42] [43] Obtain Traceability of Patients in a Hospital,” in 2016 30th International Conference on Advanced Information Networking and Applications Workshops (WAINA), Crans-Montana, pp 833–837 M Martínez Pérez et al., (2012), “Application of RFID Technology in Patient Tracking and Medication Traceability in Emergency Care,” J Med Syst., vol 36, no 6, pp 3983–3993 B Wagner and D Timmermann, (2012), “Classification of User Positioning Techniques and Systems for Intelligent Environments,” in GI Jahrestagung, Braunschweig, Germany, pp 537–548 Z.-A Deng, Y Hu, J Yu, and Z Na, (2015), “Extended Kalman Filter for Real Time Indoor Localization by Fusing WiFi and Smartphone Inertial Sensors,” Micromachines, vol 6, no 4, pp 523–543 V Cantón Paterna, A Calveras Augé, J Paradells Aspas, and M Pérez Bullones, (2017), “A Bluetooth Low Energy Indoor Positioning System with Channel Diversity, Weighted Trilateration and Kalman Filtering,” Sensors, vol 17, no 12, p 2927 W Chen, W Wang, Q Li, Q Chang, and H Hou, (2016), “A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI,” Sensors, vol 16, no 3, p 410 K Khoshelham and S O Elberink, (2012), “Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications,” Sensors, vol 12, pp 1437–1454 H Liu, H Darabi, P Banerjee, and J Liu, (2007), “Survey of Wireless Indoor Positioning Techniques and Systems,” IEEE Trans Syst Man Cybern Part C Appl Rev., vol 37, no 6, pp 1067–1080 C.-H Lim, Y Wan, B.-P Ng, and C.-M See, (2007), “A Real-Time Indoor WiFi Localization System Utilizing Smart Antennas,” IEEE Trans Consum Electron., vol 53, no 2, pp 618–622 S Maddio, M Passafiume, A Cidronali, and G Manes, (2015), “A Distributed Positioning System Based on a Predictive Fingerprinting Method Enabling Sub-Metric Precision in IEEE 802.11 Networks,” IEEE Trans Microw Theory Tech., vol 63, no 12, pp 4567–4580 M Passafiume, S Maddio, G Collodi, and A Cidronali, (2017), “An enhanced algorithm for 2D indoor localization on single anchor RSSI-based positioning systems,” in 2017 European Radar Conference (EURAD), Nuremberg, pp 287–290 L Brás, N B Carvalho, and P Pinho, (2012), “Pentagonal Patch-Excited Sectorized Antenna for Localization Systems,” IEEE Trans Antennas Propag., vol 60, no 3, pp 1634–1638 S.-T Sheu, M.-T Kao, Y.-M Hsu, and Y.-C Cheng, (2013), “Indoor Location Estimation Using Smart Antenna System,” in 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, pp 1–5 M Rzymowski and L Kulas, (2018), “RSS-Based Direction-of-Arrival Estimation with Increased Accuracy for Arbitrary Elevation Angles Using 125 [44] [45] [46] [47] [48] [49] [50] [51] [52] [53] [54] [55] [56] ESPAR Antennas,” in 12th European Conference on Antennas and Propagation (EuCAP 2018), London, UK, pp 219 (4 pp.)-219 (4 pp.) S Wielandt, J.-P Goemaere, and L D Strycker, (2016), “2.4 GHz Synthetic Linear Antenna Array for Indoor Propagation Measurements in Static Environments,” in Indoor Positioning and Indoor Navigation (IPIN), Madrid, Spain L Brás, N B Carvalho, P Pinho, L Kulas, and K Nyka, (2012), “A Review of Antennas for Indoor Positioning Systems,” Int J Antennas Propag., vol 2012, pp 1–14 G Giorgetti, A Cidronali, S Gupta, and G Manes, (2009), “Single-anchor indoor localization using a switched-beam antenna,” IEEE Commun Lett., vol 13, no 1, pp 58–60 A Cidronali, S Maddio, G Giorgetti, and G Manes, (2010), “Analysis and Performance of a Smart Antenna for 2.45-GHz Single-Anchor Indoor Positioning,” IEEE Trans Microw Theory Tech., vol 58, no 1, pp 21–31 Ayman M El-Tager and Mohamed A Eleiwa, (2009), “Design and Implementation of a Smart Antenna Using Butler Matrix for ISM-band,” in Progress In Electromagnetics Research Symposium, Beijing, China W H Wan Mohamed, (2011), “Integration of PIN diode switching circuit with butler matrix for 2.45 GHz frequency band,” Optoelectron Adv Mater – RAPID Commun., vol 5, no 7, pp 793–798 M Fernandes, A Bhandare, C Dessai, and H Virani, (2013), “A wideband switched beam patch antenna array for LTE and Wi-Fi,” in Annual IEEE India Conference, Mumbai, India, pp 1–6 F Y Zulkifli, N Chasanah, Basari, and E T Rahardjo, (2015), “Design of Butler matrix integrated with antenna array for beam forming,” in 2015 International Symposium on Antennas and Propagation (ISAP), pp 1–4 L Brás, M Oliveira, N B Carvalho, and P Pinho, (2011), “Improved sectorised antenna for indoor localization systems,” in 2011 41st European Microwave Conference, pp 1003–1006 M Cremer, U Dettmar, C Hudasch, R Kronberger, R Lerche, and A Pervez, (2016), “Localization of Passive UHF RFID Tags Using the AoAct Transmitter Beamforming Technique,” IEEE Sens J., vol 16, no 6, pp 1762–1771 M Rzymowski, P Woznica, and L Kulas, (2016), “Single-Anchor Indoor Localization Using ESPAR Antenna,” IEEE Antennas Wirel Propag Lett., vol 15, pp 1183–1186 Ruey-Hsuan Lee, Zong-Da Tsai, Chung-Ting Lang, Chia-Chan Chang, and Sheng-Fuh Chang, (2011), “A switched-beam FMCW radar for wireless indoor positioning system,” in 8th European Radar Conference, Manchester, UK S Nagaraju, L J Gudino, B V Kadam, R Ookalkar, and S Udeshi, (2016), “RSSI based indoor localization with interference avoidance for Wireless Sensor Networks using anchor node with sector antennas,” in 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET), Chennai, India, pp 2233–2237 126 [57] Y Fu, (2017), “Single anchor node real-time positioning algorithm based on the antenna array,” Int J Distrib Sens Netw., vol 13, no 5, p 155014771770996 [58] M Burtowy, M Rzymowski, and L Kulas, (2019), “Low-Profile ESPAR Antenna for RSS-Based DoA Estimation in IoT Applications,” IEEE Access, vol 7, pp 17403–17411 [59] A Cidronali, S Maddio, G Giorgetti, I Magrini, S K S Gupta, and G Manes, (2009), “A 2.45 GHz smart antenna for location-aware single-anchor indoor applications,” in 2009 IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, pp 1553–1556 [60] S Maddio, M Passafiume, A Cidronali, and G Manes, (2014), “Impact of the dihedral angle of switched beam antennas in indoor positioning based on RSSI,” in 2014 11th European Radar Conference, Italy, pp 317–320 [61] R Szumny, K Kurek, and J Modelski, (2007), “Attenuation of multipath components using directional antennas and circular polarization for indoor wireless positioning systems,” in 2007 European Radar Conference, Munich, Germany, pp 401–404 [62] C Drane, M Macnaughtan, and C Scott, (1998), “Positioning GSM telephones,” IEEE Commun Mag., vol 36, no 4, pp 46–54, 59 [63] S A Zekavat and R M Buehrer, Eds., (2012), Handbook and Position location: theory, practice and advances Hoboken, N.J: Wiley-IEEE Press [64] Fernando Joaquim Leite Pereira, (2016), “Positioning systems for underground tunnel environments,” Faculdade de engenharia da universidade porto, Portugal [65] F Zafari, A Gkelias, and K K Leung, (2017), “A Survey of Indoor Localization Systems and Technologies,” Cornell Univ Libr [66] A Khalajmehrabadi, N Gatsis, and D Akopian, (2017),“Modern WLAN Fingerprinting Indoor Positioning Methods and Deployment Challenges,” IEEE Commun Surv Tutor., vol 19, no 3, pp 1974–2002 [67] W Sakpere, M Adeyeye Oshin, and N B Mlitwa, (2017), “A State-of-theArt Survey of Indoor Positioning and Navigation Systems and Technologies,” South Afr Comput J., vol 29, no [68] P Bahl, V N Padmanabhan, and A Balachandran, (2000), “Enhancements to the RADAR User Location and Tracking System,” Technical Report MSR-TR2000-12 [69] J Hightower and G Borriello, (2001), “Location systems for ubiquitous computing,” Computer, vol 34, no 8, pp 57–66 [70] K W Kolodziej and J Hjelm, (2006), Local positioning systems: LBS applications and services Boca Raton, FL: CRC/Taylor & Francis [71] M A Youssef, A Agrawala, and A Udaya Shankar, (2003), “WLAN location determination via clustering and probability distributions,” in Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003 (PerCom 2003)., Fort Worth, TX, USA, pp 143–150 [72] Ekahau, Inc., (2012), “RF Localization for the Next Generation Wireless Devices,” in WPI Campus Workshop 2012, Boynton Hall, USA 127 [73] A Alarifi et al., (2016), “Ultra Wideband Indoor Positioning Technologies: Analysis and Recent Advances,” Sensors, vol 16, no 5, p 707 [74] A R Jimenez Ruiz and F Seco Granja, (2017), “Comparing Ubisense, BeSpoon, and DecaWave UWB Location Systems: Indoor Performance Analysis,” IEEE Trans Instrum Meas., vol 66, no 8, pp 2106–2117 [75] X Luo, W J O’Brien, and C L Julien, (2011), “Comparative evaluation of Received Signal-Strength Index (RSSI) based indoor localization techniques for construction jobsites,” Adv Eng Inform., vol 25, no 2, pp 355–363 [76] Y B Bai et al., (2014), “A new method for improving Wi-Fi-based indoor positioning accuracy,” J Locat Based Serv., vol 8, no 3, pp 135–147 [77] S He and S.-H G Chan, (2017), “INTRI: Contour-Based Trilateration for Indoor Fingerprint-Based Localization,” IEEE Trans Mob Comput., vol 16, no 6, pp 1676–1690 [78] H Liu, H Darabi, P Banerjee, and J Liu, (2007), “Survey of Wireless Indoor Positioning Techniques and Systems,” IEEE Trans Syst Man Cybern Part C Appl Rev., vol 37, no 6, pp 1067–1080 [79] C A Balanis and P I Ioannides, (2007), “Introduction to Smart Antennas,” Synth Lect Antennas, vol 2, no 1, pp 1–175 [80] L Brás, N B Carvalho, P Pinho, L Kulas, and K Nyka, (2012), “A Review of Antennas for Indoor Positioning Systems,” Int J Antennas Propag., vol 2012, pp 1–14 [81] S Wielandt et al., (2017), “2.4 GHz single anchor node indoor localization system with angle of arrival fingerprinting,” in Wireless Days, Porto, Portugal, pp 152–154 [82] S Wielandt, A Van Nieuwenhuyse, J.-P Goemaere, B Nauwelaers, and L De Strycker, (2014), “Evaluation of angle of arrival estimation for localization in multiple indoor environments,” in Ubiquitous Positioning Indoor Navigation and Location Based Service (UPINLBS), USA, pp 36–43 [83] J.-R Jiang, C.-M Lin, F.-Y Lin, and S.-T Huang, (2013), “ALRD: AoA Localization with RSSI Differences of Directional Antennas for Wireless Sensor Networks,” Int J Distrib Sens Netw., vol 9, no 3, p 529489 [84] C.-Y Chen, (2016), “The Sectored Antenna Array Indoor Positioning System with Neural Networks,” Autom Control Intell Syst., vol 4, no 2, p 21 [85] N Honma, R Tazawa, A Miura, Y Sugawara, and H Minamizawa, (2018), “RSS-Based DOA / DOD Estimation Using Bluetooth Signal and its Application for Indoor Tracking,” in 2018 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Nantes, pp 1–7 [86] Mohammad Heidari, (2005), “A Testbed for Real-Time Performance Evaluation of RSS-based Indoor Geolocation Systems in Laboratory Environment,”, Masters Theses, Worcester Polytechnic Institute, USA [87] A A Khudhair, S Q Jabbar, M Qasim Sulttan, and D Wang, (2016), “Wireless Indoor Localization Systems and Techniques: Survey and Comparative Study,” Indones J Electr Eng Comput Sci., vol 3, no 2, p 392 128 [88] Bai, Y, Wu, S, Wu, H and Zhang, K, (2012), “Overview of RFID-Based Indoor Positioning Technology,” in Proceedings of the Geospatial Science_2, Melbourne, Australia, pp 1–10 [89] X Li, Z D Deng, L T Rauchenstein, and T J Carlson, (2016), “Contributed Review: Source-localization algorithms and applications using time of arrival and time difference of arrival measurements,” Rev Sci Instrum., vol 87, no 4, p 041502 [90] G Mao and B Fidan, Eds., (2009), Localization algorithms and strategies for wireless sensor networks Hershey, PA: Information Science Reference, 2009 [91] Cisco Systems, Wi-Fi Location-Based Services 4.1 Design Guide https://www.cisco.com/, 2008 [92] Savannah Redetzke, Andrew Vanner, and Raymond Otieno, (2017), “Smart Room Attendance Monitoring and Location Tracking with iBeacon Technology,” Worcester Polytechnic Institute, Project [93] A Buchman and C Lung, (2013), “On the relationship between received signal strength and received signal strength index of IEEE 802.11 compatible radio transceivers,” Carpathian J Electron Comput Eng., vol 6, no 2, pp 15–20 [94] H T Friis, (1946), “A Note on a Simple Transmission Formula,” Proc IRE, vol 34, no 5, pp 254–256 [95] Constantine A Balanis, (2005), Antenna Theory: Analysis and Design, 3rd ed Wiley-Interscience [96] A Goldsmith, (2005), Wireless communications Cambridge ; New York: Cambridge University Press [97] Z Ren, G Wang, Q Chen, and H Li, (2011), “Modelling and simulation of Rayleigh fading, path loss, and shadowing fading for wireless mobile networks,” Simul Model Pract Theory, vol 19, no 2, pp 626–637 [98] S Mazuelas et al., (2009), “Robust Indoor Positioning Provided by Real-Time RSSI Values in Unmodified WLAN Networks,” IEEE J Sel Top Signal Process., vol 3, no 5, pp 821–831 [99] J Yang, Y Li, and W Cheng, (2018), “An improved geometric algorithm for indoor localization,” Int J Distrib Sens Netw., vol 14, no 3, p 155014771876737 [100] J Wang, W Wei, W Wang, and R Li, (2018), “RFID Hybrid Positioning Method of Phased Array Antenna Based on Neural Network,” IEEE Access, vol 6, pp 74953–74960 [101] M Lott and I Forkel, (2001), “A multi-wall-and-floor model for indoor radio propagation,” in IEEE VTS 53rd Vehicular Technology Conference, Spring 2001 Proceedings (Cat No.01CH37202), Rhodes, Greece, vol 1, pp 464– 468 [102] C B Andrade and R P F Hoefel, (2010), “IEEE 802.11 WLANs: A comparison on indoor coverage models,” in CCECE 2010, Calgary, AB, Canada, pp 1–6 [103] A F Molisch, (2011), Wireless communications, 2nd ed Chichester, West Sussex, U.K: Wiley : IEEE 129 [104] S R Saunders and A Aragón-Zavala, (2007),Antennas and propagation for wireless communication systems, 2nd ed Chichester, England ; Hoboken, NJ: J Wiley & Sons [105] X Wen, W Tao, C.-M Own, and Z Pan, (2016), “On the Dynamic RSS Feedbacks of Indoor Fingerprinting Databases for Localization Reliability Improvement,” Sensors, vol 16, no 8, p 1278 [106] Genming Ding, Zhenhui Tan, Jinbao Zhang, and Lingwen Zhang, (2013), “Regional propagation model based fingerprinting localization in indoor environments,” in 2013 IEEE 24th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), London, pp 291–295 [107] Junyang Zhou, K M Chu, and J K Ng, (2005), “Providing Location Services within a Radio Cellular Network Using Ellipse Propagation Model,” vol 1, pp 559–564 [108] M Peng, Q F Zhou, and X Cheng, (2015), “NLOS aware TOF positioning in WLAN,” in International Conference on Wireless Communications & Signal Processing, Nanjing, China, pp 1–5 [109] A Teuber, B Eissfeller, and T Pany, (2006), “A Two-Stage Fuzzy Logic Approach for Wireless LAN Indoor Positioning,” in IEEE/ION Position, Location, And Navigation Symposium, Coronado, CA, USA, pp 730–738 [110] A Olowolayemo, A O M Tap, and T Mantoro, (2013), “Fuzzy Logic Based Compensated Wi-Fi Signal Strength for Indoor Positioning,” in International Conference on Advanced Computer Science Applications and Technologies, Kuching, Malaysia, pp 444–449 [111] N Baccar and R Bouallegue, (2015), “Intelligent type fuzzy-based mobile application for indoor geolocalization,” in International Conference on Software, Telecommunications and Computer Networks (SoftCOM), Split, Croatia, vol 23, pp 165–169 [112] Meiling Luo, (2014), “Indoor radio propagation modeling for system performance prediction,” INSA de Lyon, French [113] Ayad M H Khalel, (2010), “Position Location Techniques in Wireless Communication Systems,” Blekinge Institute of Technology Karlskrona, SWEDEN [114] A Pages-Zamora, J Vidal, and D H Brooks, (2002), “Closed-form solution for positioning based on angle of arrival measurements,” vol 4, pp 1522–1526 [115] A Küpper, (2005),Location-based services: fundamentals and operation Chichester, England ; Hoboken, NJ: John Wiley [116] X Wang, L Gao, S Mao, and S Pandey, (2016), “CSI-based Fingerprinting for Indoor Localization: A Deep Learning Approach,” IEEE Trans Veh Technol., pp 1–1 [117] K Wu, J Xiao, Y Yi, D Chen, X Luo, and L M Ni, (2013), “CSI-Based Indoor Localization,” IEEE Trans Parallel Distrib Syst., vol 24, no 7, pp 1300–1309 130 [118] X Fang, L Nan, Z Jiang, and L Chen, (2017), “Fingerprint localisation algorithm for noisy wireless sensor network based on multi-objective evolutionary model,” IET Commun., vol 11, no 8, pp 1297–1304 [119] W Xue, W Qiu, X Hua, and K Yu, (2017), “Improved Wi-Fi RSSI Measurement for Indoor Localization,” IEEE Sens J., vol 17, no 7, pp 2224– 2230 [120] N C Karmakar, Ed., (2010), Handbook of smart antennas for RFID systems Hoboken, N.J: Wiley [121] R Mehra and A Singh, (2013), “Real time RSSI error reduction in distance estimation using RLS algorithm,” in 2013 3rd IEEE International Advance Computing Conference (IACC), Ghaziabad, pp 661–665 [122] R Zhang, G Chen, Q Zeng, and L Shen, (2018), “Single-Site Positioning Method Based on High-Resolution Estimation in VANET Localization,” IEEE Access, vol 6, pp 54674–54682 [123] R Zhang, F Yan, L Shen, and Y Wu, (2017), “A Vehicle Positioning Method Based on Joint TOA and DOA Estimation with V2R Communications,” in 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), Sydney, NSW, pp 1–5 [124] W Dargie and C Poellabauer, (2010), Fundamentals of wireless sensor networks: theory and practice Chichester, West Sussex, U.K. ; Hoboken, NJ: Wiley [125] A Aboodi and T.-C Wan, (2012), “Evaluation of WiFi-Based Indoor (WBI) Positioning Algorithm,” in 2012 Third FTRA International Conference on Mobile, Ubiquitous, and Intelligent Computing, Vancouver, Canada, pp 260– 264 [126] K Langendoen and N Reijers, (2003), “Distributed localization in wireless sensor networks: a quantitative comparison,” Comput Netw., vol 43, no 4, pp 499–518 [127] Z Li, (2016), “Constrained weighted least Squares location algorithm using Received Signal Strength measurements,” China Commun., vol 13, no 4, pp 81–88, [128] N Patwari, A O Hero, M Perkins, N S Correal, and R J O’Dea, (2003), “Relative location estimation in wireless sensor networks,” IEEE Trans Signal Process., vol 51, no 8, pp 2137–2148 [129] J Desai and U Tureli, (2007), “Evaluating Performance of Various Localization Algorithms in Wireless and Sensor Networks,” in 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, Athens, Greece, pp 1–5 [130] M Sugano, T Kawazoe, Y Ohta, and M Murata, (2006), “Indoor localization system using rssi measurement of wireless sensor network based on zigbee standard,” in The IASTED International Conference on Wireless Sensor Networks, Banff, Canada [131] Youngjune Gwon, R Jain, and T Kawahara, (2004), “Robust indoor location estimation of stationary and mobile users,” in IEEE INFOCOM 2004, Hong Kong, China, vol 2, pp 1032–1043 131 [132] M ARUN, N SIVASANKARI, P T VANATHI, and P MANIMEGALAI, (2017), “Analysis of Average Weight Based Centroid Localization Algorithm for Mobile Wireless Sensor Networks,” Adv Wirel Mob Commun., vol 10, no 4, pp 757–780 [133] L Gui, M Yang, P Fang, and S Yang, (2017), “RSS-based indoor localisation using MDCF,” IET Wirel Sens Syst., vol 7, no 4, pp 98–104 [134] A Awad, T Frunzke, and F Dressler, (2007), “Adaptive Distance Estimation and Localization in WSN using RSSI Measures,” in 10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007), Lubeck, pp 471–478 [135] Wei-Yu Chiu, Bor-Sen Chen, and Chang-Yi Yang, (2012), “Robust Relative Location Estimation in Wireless Sensor Networks with Inexact Position Problems,” IEEE Trans Mob Comput., vol 11, no 6, pp 935–946 [136] J.-A Jiang et al., (2010), “Collaborative Localization in Wireless Sensor Networks via Pattern Recognition in Radio Irregularity Using Omnidirectional Antennas,” Sensors, vol 10, no 1, pp 400–427 [137] A Bel, J L Vicario, and G Seco-Granados, (2011), “Localization Algorithm with On-line Path Loss Estimation and Node Selection,” Sensors, vol 11, no 7, pp 6905–6925 [138] L C Godara, (1997), “Application of antenna arrays to mobile communications II Beam-forming and direction-of-arrival considerations,” Proc IEEE, vol 85, no 8, pp 1195–1245 [139] R Schmidt, (1986), “Multiple emitter location and signal parameter estimation,” IEEE Trans Antennas Propag., vol 34, no 3, pp 276–280 [140] S He and S.-H G Chan, (2016), “Wi-Fi Fingerprint-Based Indoor Positioning: Recent Advances and Comparisons,” IEEE Commun Surv Tutor., vol 18, no 1, pp 466–490 [141] C Basri and A El Khadimi, (2016), “Survey on indoor localization system and recent advances of WIFI fingerprinting technique,” in 2016 5th International Conference on Multimedia Computing and Systems (ICMCS), Marrakech, Morocco, pp 253259 [142] Ville HONKAVIRTA, Tommi PER ă AL ¨ A, Simo ALI-L ¨ OYTTY and Robert PICH´ E, (2009), “A Comparative Survey of WLAN Location Fingerprinting Methods,” in Proc of the 6th Workshop on Positioning, Navigation and Communication 2009 (WPNC’09), pp 243–251 [143] A Smailagic and D Kogan, (2002), “Location sensing and privacy in a context-aware computing environment,” IEEE Wirel Commun., vol 9, no 5, pp 10–17 [144] Rong-Hong Jan and Yung Rong Lee, (2003), “An indoor geolocation system for wireless LANs,” in 2003 International Conference on Parallel Processing Workshops, 2003 Proceedings., Kaohsiung, Taiwan, pp 29–34 [145] I Lee, M Kwak, and D Han, (2016), “A Dynamic k -Nearest Neighbor Method for WLAN-Based Positioning Systems,” J Comput Inf Syst., vol 56, no 4, pp 295–300 132 [146] A Ault, X Zhong, and E J Coyle, (2005), “K-Nearest-Neighbor Analysis of Received Signal Strength Distance Estimation Across Environments,” in Proceedings of First workshop on Wireless Network Measurements (WiNMee), Trentino, Italy, pp 1–6 [147] M Youssef and A Agrawala, (2005), “The Horus WLAN location determination system,” in Proceedings of the 3rd international conference on Mobile systems, applications, and services - MobiSys ’05, Seattle, Washington, p 205 [148] Muhammad Al Amin Amali Mazlan, M H Md Khir, Naufal M Saad, and S C Dass, (2017), “Wifi fingerprinting indoor positioning with multiple access points in a single base station using probabilistic method,” Int J Appl Eng Res., vol 12, no 6, pp 1102–1113 [149] Phan Anh, (2007), Lý thuyết kỹ thuật anten nhà xuất khoa học kỹ thuật [150] G Lovat, P Burghignoli, F Capolino, and D R Jackson, (2006), “Bandwidth analysis of highly-directive planar radiators based on partially-reflecting surfaces,” pp 1–6 [151] X Chen, T M Grzegorczyk, B.-I Wu, J Pacheco, and J A Kong, (2004), “Robust method to retrieve the constitutive effective parameters of metamaterials,” Phys Rev E, vol 70, no 1, p 016608 [152] R C Hadarig, M E de Cos, and F Las-Heras, (2012), “Microstrip Patch Antenna Bandwidth Enhancement Using AMC/EBG Structures,” Int J Antennas Propag., vol 2012, pp 1–6 [153] B Sahu, P Tripathi, R Singh, and S P Singh, (2013), “Simulation study of dielectric resonator antenna with metamaterial for improvement of bandwidth and gain,”, pp 1–4 [154] M T Le, Q C Nguyen, and T P Vuong, (2014), “Design of High-Gain and Beam Steering Antennas Using a New Planar Folded-Line Metamaterial Structure,” Int J Antennas Propag., vol 2014, pp 1–16 [155] “Radar Basics.” [Online] Available: http://www.radartutorial.eu/19.kartei/karte111.en.html [Accessed: 09-May2016] [156] No-Weon Kang, Changyul Cheon, and Hyun-Kyo Jung, (2002), “Feasibility study on beam-forming technique with 1-D mechanical beam steering antenna using niching genetic algorithm,” IEEE Microw Wirel Compon Lett., vol 12, no 12, pp 494–496 [157] ETSI TR 101 938, (2006), “Electronically steerable antennas.” ETSI,650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE [158] IMST, “Steerable Antennas | Steerable Antennas | Antennas | Development | IMST GmbH.” [Online] Available: http://www.imst.com/imst/en/development/antennas/steerableantennas.php?navanchor=2110047 [Accessed: 10-May-2016] [159] J Litva and T K.-Y Lo, (1996), Digital beamforming in wireless communications Boston, Mass: Artech House [160] V Rabinovich and N Alexandrov, (2013), Antenna arrays and automotive applications New York, NY: Springer 133 [161] M Jusoh, M F Jamlos, T Sabapathy, M I Jais, and M R Kamarudin, (2013), “A beam steering compact patch antenna with high gain application,” in 2013 IEEE Antennas and Propagation Society International Symposium (APSURSI), pp 202–203 [162] A Sibille, C Roblin, and G Poncelet, (1997), “Circular switched monopole arrays for beam steering wireless communications,” Electron Lett., vol 33, no 7, pp 551–552 [163] D V Thiel, (2004), “Switched parasitic antennas and controlled reactance parasitic antennas: a systems comparison,” in IEEE Antennas and Propagation Society International Symposium, 2004, vol 3, pp 3211-3214 Vol.3 [164] M Donelli, R Azaro, L Fimognari, and A Massa, (2007), “A Planar Electronically Reconfigurable Wi-Fi Band Antenna Based on a Parasitic Microstrip Structure,” IEEE Antennas Wirel Propag Lett., vol 6, pp 623– 626 [165] H Kawakami and T Ohira, (2005), “Electrically steerable passive array radiator (ESPAR) antennas,” IEEE Antennas Propag Mag., vol 47, no 2, pp 43–50 [166] H Liu, S Gao, and T H Loh, (2009), “Compact-size Electronically Steerable Parasitic Array Radiator antenna,”, pp 265–268 [167] H.-T Liu, S Gao, and T.-H Loh, (2012), “Electrically Small and Low Cost Smart Antenna for Wireless Communication,” IEEE Trans Antennas Propag., vol 60, no 3, pp 1540–1549 [168] M R Islam and M Ali, (2013), “A 900 MHz Beam Steering Parasitic Antenna Array for Wearable Wireless Applications,” IEEE Trans Antennas Propag., vol 61, no 9, pp 4520–4527 [169] M M Abusitta, R A Abd-Alhameed, I T E Elfergani, A D Adebola, and P S Excell, (2011), “Beam Steering of Time Modulated Antenna Arrays Using Particle Swarm Optimization,”, European Conference on Antennas and Propagation, Gothenburg, Sweden [170] M M Abusitta, R A Abd-Alhameed, D Zhou, C H See, S Jones, and P S Excell, (2009), “New approach for designing beam steering uniform antenna arrays using Genetic Algorithms,” in Antennas Propagation Conference, 2009 LAPC 2009 Loughborough, pp 617–620 [171] T Sabapathy, M F B Jamlos, R B Ahmad, M Jusoh, M I Jais, and M R Kamarudin, (2013), “Electrically reconfigurable baem steering antenna using ambedded RF PIN based parasitic array (ERPPA),” Prog Electromagn Res., vol 140, pp 241–261 [172] Tống Văn Luyên, (2017), “Nghiên cứu phát triển định dạng điều khiển búp sóng thích nghi để chống nhiễu anten thông minh,” Đại học Đại học Công nghệ, Đại học Quốc gia Hà nội [173] I Uchendu and J R Kelly, (2016), “Survey of Beam Steering Techniques Available for Millimeter Wave Applications,” Prog Electromagn Res B, vol 68, pp 35–54 134 [174] L Brás, N Borges Carvaloh, and P Pinho, (2013), “Evaluation of a sectorised antenna in an indoor localisation system,” IET Microw Antennas Propag., vol 7, no 8, pp 679–685 [175] S Wielandt, J.-P Goemaere, and L De Strycker, (2016), “Multipath-assisted angle of arrival indoor positioning system in the 2.4 GHz and GHz band,” in 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Alcala de Henares, Spain, pp 1–6 [176] I E Rana and N G Alexopoulos, (1979), “On the Theory of Printed Wire Antennas,” pp 687–691 [177] Z Fan, S Qiao, H.-F Jiang Tao, and L.-X Ran, (2007), “A miniaturized printed dipole antenna with V-Shaped ground for 2.45GHz RFID readers,” Prog Electromagn Res., vol 71, pp 149–158 [178] W Roberts, (1957), “A New Wide-Band Balun,” Proc IRE, vol 45, no 12, pp 1628–1631 [179] H Moody, (1964), “The systematic design of the Butler matrix,” IEEE Trans Antennas Propag., vol 12, no 6, pp 786–788 [180] D M Pozar, (2012),Microwave engineering, 4th ed Hoboken, NJ: Wiley [181] Tokio Kaneda, Atsushi Sanada, and Hiroshi Kubo, (2006), “Design of an 8element planar composite right/left-handed leaky wave antenna array for 2-D beam steering,” in 2006 Asia-Pacific Microwave Conference, Yokohama, Japan, pp 1067–1070 [182] Chia-Chan Chang, Ruey-Hsuan Lee, and Ting-Yen Shih, (2010), “Design of a Beam Switching/Steering Butler Matrix for Phased Array System,” IEEE Trans Antennas Propag., vol 58, no 2, pp 367–374 [183] L.-H Zhong, Y.-L Ban, J.-W Lian, Q.-L Yang, and J Guo, (2017), “Miniaturized SIW Multibeam Antenna Array Fed by Dual-Layer × Butler Matrix,” IEEE Antennas Wirel Propag Lett., vol 16, pp 3018–3021 [184] X Wang et al., (2018), “28 GHz Multi-Beam Antenna Array Based On A Compact Wideband 8×8 Butler Matrix,” in 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, pp 2177–2178 [185] A Cidronali, G Collodi, S Maddio, M Passafiume, and G Pelosi, (2018), “2D DoA Anchor Suitable for Indoor Positioning Systems Based on Space and Frequency Diversity for Legacy WLAN,” IEEE Microw Wirel Compon Lett., vol 28, no 7, pp 627–629 [186] S Gao, Q Luo, and F Zhu, (2014),Circularly polarized antennas Chichester, West Sussex, United Kingdom: John Wiley & Sons Inc [187] G Kumar and K P Ray, (2003),Broadband microstrip antennas Boston, Mass.: Artech House [188] T Tasuku and T Nasato, (1985), “Wideband circularly polarised array antenna with sequential rotationsand phase shifts of elements,” in ISAP, Tokyo, Japan, pp 117–120 [189] J Huang, (1986), “A technique for an array to generate circular polarization with linearly polarized elements,” IEEE Trans Antennas Propag., vol 34, no 9, pp 1113–1124 135 [190] C.-L Tang, J.-Y Chiou, and K.-L Wong, (2002), “Beamwidth enhancement of a circularly polarized microstrip antenna mounted on a three-dimensional ground structure,” Microw Opt Technol Lett., vol 32, no 2, pp 149–153 [191] J R James and P S Hall, Eds, (1989), Handbook of microstrip antennas London, U.K: P Peregrinus on behalf of the Institution of Electrical Engineers [192] W.-S Lee, K.-S Oh, and J.-W Yu, (2012), “A wideband circular polarized planar monopole antenna array with circular polarized and band-notched characteristics,” Prog Electromagn Res., vol 128, pp 381–398 [193] Y Li, Z Zhang, and Z Feng, (2013), “A Sequential-Phase Feed Using a Circularly Polarized Shorted Loop Structure,” IEEE Trans Antennas Propag., vol 61, no 3, pp 1443–1447 [194] Y Luo, Q.-X Chu, and L Zhu, (2015), “A Low-Profile Wide-Beamwidth Circularly-Polarized Antenna via Two Pairs of Parallel Dipoles in a Square Contour,” IEEE Trans Antennas Propag., vol 63, no 3, pp 931–936 [195] S Maddio, (2015), “A circularly polarized antenna array with a convenient bandwidth- size ratio based on non-identical disc elements,” Prog Electromagn Res Lett., vol 57, pp 47–54 [196] P S Hall, J S Dahele, and J R James, (1989), “Design principles of sequentially fed, wide bandwidth, circularly polarised microstrip antennas,” IEE Proc H Microw Antennas Propag., vol 136, no 5, p 381 [197] P S Hall, (1989), “Application of sequential feeding to wide bandwidth, circularly polarised microstrip patch arrays,” IEE Proc H Microw Antennas Propag., vol 136, no 5, p 390 [198] Nasimuddin, Z N Chen, and K P Esselle, (2008), “Wideband circularly polarized microstrip antenna array using a new single feed network,” Microw Opt Technol Lett., vol 50, no 7, pp 1784–1789 [199] Nasimuddin, Z N Chen, X Qing, and T S P See, (2009), “Sectorised antenna array and measurement methodology for indoor ultra-wideband applications,” IET Microw Antennas Propag., vol 3, no 4, p 621 [200] S A Vorobyov, A B Gershman, and K M Wong, (2005), “Maximum likelihood direction-of-arrival estimation in unknown noise fields using sparse sensor arrays,” IEEE Trans Signal Process., vol 53, no 1, pp 34–43 [201] Janis Werner, (2015), “Directional Antenna System-Based DoA/RSS Estimation, Localization and Tracking in Future Wireless Networks: Algorithms and Performance Analysis,” Tampere University of Technology, Finland 136 ... tham số vị trí sử dụng hệ thống định vị vô tuyến 1.1 Tổng quan hệ thống định vị vô tuyến nhà Hệ thống định vị vô tuyến sử dụng anten truyền thống Một nghiên cứu định vị nhà dựa sóng vơ tuyến phải... KHIỂN BÚP SÓNG 10 1.1 Tổng quan hệ thống định vị vô tuyến nhà 10 Hệ thống định vị vô tuyến sử dụng anten truyền thống 10 Hệ thống định vị vô tuyến sử dụng anten điều khiển búp sóng. .. 1.5 Anten anten điều khiển búp sóng hệ thống định vị vô tuyến 39 iii Anten anten mảng 39 Anten điều khiển búp sóng hệ thống định vị vô tuyến 41 1.6 Kết luận chương 46 HỆ