1. Trang chủ
  2. » Thể loại khác

A reliability aware fusion concept toward robust ego lane estimation incorporating multiple sources, 1st ed , tuan tran nguyen, 2020 685

180 11 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 180
Dung lượng 9,17 MB

Nội dung

AutoUni – Schriftenreihe Tuan Tran Nguyen A Reliability-Aware Fusion Concept Toward Robust Ego-Lane Estimation Incorporating Multiple Sources AutoUni – Schriftenreihe Band 140 Reihe herausgegeben von/Edited by Volkswagen Aktiengesellschaft AutoUni Die Volkswagen AutoUni bietet Wissenschaftlern und Promovierenden des Volkswagen Konzerns die Möglichkeit, ihre Forschungsergebnisse in Form von Monographien und Dissertationen im Rahmen der „AutoUni Schriftenreihe“ kostenfrei zu veröffentlichen Die AutoUni ist eine international tätige wissenschaftliche Einrichtung des Konzerns, die durch Forschung und Lehre aktuelles mobilitätsbezogenes Wissen auf Hochschulniveau erzeugt und vermittelt Die neun Institute der AutoUni decken das Fachwissen der unterschiedlichen Geschäftsbereiche ab, welches für den Erfolg des Volkswagen Konzerns unabdingbar ist Im Fokus steht dabei die Schaffung und Verankerung von neuem Wissen und die Förderung des Wissensaustausches Zusätzlich zu der fachlichen Weiterbildung und Vertiefung von Kompetenzen der Konzernangehörigen fördert und unterstützt die AutoUni als Partner die Doktorandinnen und Doktoranden von Volkswagen auf ihrem Weg zu einer erfolgreichen Promotion durch vielfältige Angebote – die Veröffentlichung der Dissertationen ist eines davon Über die Veröffentlichung in der AutoUni Schriftenreihe werden die Resultate nicht nur für alle Konzernangehưrigen, sondern auch für die Ưffentlichkeit zugänglich The Volkswagen AutoUni offers scientists and PhD students of the Volkswagen Group the opportunity to publish their scientific results as monographs or doctor’s theses within the “AutoUni Schriftenreihe” free of cost The AutoUni is an international scientific educational institution of the Volkswagen Group Academy, which produces and disseminates current mobility-related knowledge through its research and tailor-made further education courses The AutoUni’s nine institutes cover the expertise of the different business units, which is indispensable for the success of the Volkswagen Group The focus lies on the creation, anchorage and transfer of knew knowledge In addition to the professional expert training and the development of specialized skills and knowledge of the Volkswagen Group members, the AutoUni supports and accompanies the PhD students on their way to successful graduation through a variety of offerings The publication of the doctor’s theses is one of such offers The publication within the AutoUni Schriftenreihe makes the results accessible to all Volkswagen Group members as well as to the public Reihe herausgegeben von/Edited by Volkswagen Aktiengesellschaft AutoUni Brieffach 1231 D-38436 Wolfsburg http://www.autouni.de Weitere Bände in der Reihe http://www.springer.com/series/15136 Tuan Tran Nguyen A Reliability-Aware Fusion Concept Toward Robust Ego-Lane Estimation Incorporating Multiple Sources Tuan Tran Nguyen AutoUni Wolfsburg, Germany Dissertation, Otto von Guericke University Magdeburg, 2019 Any results, opinions and conclusions expressed in the AutoUni – Schriftenreihe are solely those of the author(s) AutoUni – Schriftenreihe ISBN 978-3-658-26948-7 ISBN 978-3-658-26949-4  (eBook) https://doi.org/10.1007/978-3-658-26949-4 © Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations This Springer imprint is published by the registered company Springer Fachmedien Wiesbaden GmbH part of Springer Nature The registered company address is: Abraham-Lincoln-Str 46, 65189 Wiesbaden, Germany Contents List of Figures IX List of Tables XIII List of Algorithms XV List of Acronyms XVII Introduction 1.1 Motivation and Challenges 1.2 Application Problem 1.3 Research Gaps and Contributions 1 Related Work 2.1 Modalities for Ego-Lane Estimation 2.1.1 Lane Markings 2.1.2 Trajectories of Leading Vehicles 2.1.3 Free Space Detection 2.1.4 GPS and Digital Maps 2.1.5 End-to-End Road Estimation 2.2 Multi-Source Fusion within Road Estimation 2.2.1 What is Fusion? 2.2.2 Low-Level and Intermediate-Level Fusion 2.2.3 High-Level Fusion 2.3 Reliability in Fusion of Multiple Sources 2.3.1 Information Quality 2.3.2 Definition and Assessment of Reliability 2.3.3 Integration of Reliability 2.4 Conclusion 9 10 12 12 13 13 14 15 16 17 17 21 24 26 Reliability-Based Fusion Framework 3.1 Related Work 3.2 Basic Idea 3.3 Detailed Concept 3.3.1 Sensor Setup and Perception Layer 3.3.2 Model-based Ego-Lane Estimation 27 27 29 31 31 36 VI Contents 3.4 3.3.3 Data-Driven Reliability Estimation 3.3.4 Reliability-Aware Fusion Conclusion 39 40 40 Assessing Reliability for Ego-Lane Detection 4.1 Related Work 4.1.1 Pixel-based representations 4.1.2 Model-based Representations 4.2 Concept 4.3 Sensor-Independent Performance Measure 4.3.1 Requirements 4.3.2 Performance Measure Based on Angle Difference 4.3.3 Evaluation Framework 4.4 Experimental Results 4.4.1 Detailed Map versus Human-Driven Path 4.4.2 Relation of the metrics 4.4.3 Identification of Proper Thresholds for Angle Metrics 4.4.4 KPIs for Overall Performance 4.5 Conclusion 41 41 42 43 46 46 47 48 51 52 52 54 55 57 60 Learning Reliability 5.1 Concept 5.2 Scenario Feature Generation and Selection 5.2.1 Sensor-Related Features 5.2.2 Consensus Features 5.2.3 Contextual Information 5.2.4 Feature Selection 5.3 Estimating Reliability with Supervised Learning 5.3.1 k-Nearest Neighbors (kNN) 5.3.2 Decision Tree (DT) 5.3.3 Random Forests (RF) 5.3.4 Bayesian Network (BN) 5.3.5 Mapping Reliability using UTM coordinates (MP) 5.3.6 Naive Bayes (NB) 5.3.7 Support Vector Machine (SVM) 5.3.8 Neural Network (NN) 5.4 Experimental Results 5.4.1 Evaluation Concept 5.4.2 Evaluating Feature Selection 5.4.3 Evaluating Reliability Estimation 5.5 Conclusion 61 61 64 64 67 68 70 71 72 73 73 75 76 78 79 80 81 83 85 88 92 Information Fusion 6.1 Reliability-Aware Fusion 6.1.1 Concept 95 95 95 Contents 6.2 6.3 6.4 VII 6.1.2 Basic Approaches 6.1.3 Advanced Fusion Based on DST and Reliabilities Direct Fusion Using Neural Networks 6.2.1 Concept 6.2.2 Reconstruction of Training Dataset for ANNs 6.2.3 Structure and Learning Process of ANNs Experimental Results 6.3.1 Evaluation Concept 6.3.2 Evaluation Information Fusion 6.3.3 Evaluation Fusion Methods in Combination with RF Conclusion 96 99 102 102 103 105 106 106 108 112 116 Conclusion 117 Bibliography 121 A Appendix 137 List of Figures 1.1 1.2 Levels of vehicle autonomy Different scenarios with detection results and the generated ego-lanes 2.1 2.2 Different configurations of combining sources Different aspects of information quality and the assignment of reliability as a underlying class of quality of information sources Different aspects of imprecision quality 14 2.3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Approaches to incorporate reliability values at different stages of ego-lane estimation A reliability-aware fusion framework for ego-lane detection Detailed workflow of the reliability-based ego-lane detection framework as a specification of the basic concept Built-in sensors of the experimental vehicle Illustration of the detected objects and road markings Occupancy grid as a result of the free space detection module Illustration of four estimated ego-lanes Construction of the vehicle hypothesis 4.1 4.2 4.3 4.4 Review of performance measures for ego-lane detection Limits of free space detection in urban scenarios Capabilities and applications of our sensor-independent metric Angle deviation of a hypothesis to the manually driven path with focus on the parallelism 4.5 Angle deviation between the hypothesis and the reference of Hartmann et al 4.6 Evaluation framework to assess the performance of different processing levels of road estimation 4.7 Comparison of the accurate lane center extracted from the map with the manually-driven path regarding different measures 4.8 Relation between the three metrics 4.9 Correlation of different measures at several ranges 4.10 Angle difference of hypotheses in highways and urban situations 4.11 Distribution of the two angle metrics of highway recordings regarding different run lengths 4.12 Comparing different KPIs 5.1 Reliability estimation based on supervised learning 18 20 28 30 32 34 35 36 37 38 41 44 47 49 50 51 53 55 56 57 58 60 62 X List of Figures 5.2 5.3 5.4 5.5 5.6 Generation and selection of scenario features Feature selection methods Example of a simple kNN Example of using decision tree to predict the reliability of FLH Example of using random forest to predict the reliability coefficient of a ego-lane hypothesis Example of a subgraph of the created Bayesian network to predict the reliability coefficients of four ego-lane hypotheses Examples for the resulted reliabilities of FCH and FLH from several drives Structure of a naive Bayes classifier Example of a linear support vector machine Example of a simple neural network with three layers Traveled roads for the recording of training and testing data Examples of the driven routes with different scenarios and visibility of the lane markings The most important features to predict ego-lane reliabilities Determining the threshold for an optimal performance Classification performance regarding different scenarios 65 70 72 73 Reliability-aware fusion concept Clustering the available ego-lane estimations into several groups regarding their angles Direct ego-lane estimation using artificial neural networks Reconstruction of reference data for direct ego-lane estimation Structure of an ANN to estimate each clothoid parameter Availability as the overall performance of different fusion strategies Investigating the fusion results regarding the number of hypothetical interventions and the number of hypothesis switches in different scenarios Performance of different fusion strategies measured by the angle difference 96 113 115 A.1 Classification performance regarding different scenarios with poorly visible left and right lane markings A.2 Overall - Classification performance A.3 Highways - Classification performance A.4 Rural - Classification performance A.5 Urban - Classification performance A.6 Connection - Classification performance A.7 Poorly visible left markings - Classification performance A.8 Poorly visible right markings - Classification performance A.9 Poorly visible left markings & highways - Classification performance A.10 Poorly visible left markings & rural - Classification performance A.11 Poorly visible left markings & urban - Classification performance A.12 Poorly visible left markings & connection - Classification performance A.13 Poorly visible right markings & highways - Classification performance A.14 Poorly visible right markings & rural - Classification performance 138 139 140 141 142 143 144 145 146 147 148 149 150 151 5.7 5.8 5.9 5.10 5.11 5.12 5.13 5.15 5.16 5.17 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 74 75 78 79 80 81 82 83 87 89 91 100 103 104 105 109 150 A Appendix 0.6 0.6 0.4 0.4 0.2 0.2 0 (a) DT (b) kNN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (d) SVM 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (f) BN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (h) MP 100 200 (g) RF TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (e) NB TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (c) NN TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (i) Number of samples Figure A.13: Poorly visible right markings & highways - Classification performance A Appendix 151 0.6 0.6 0.4 0.4 0.2 0.2 0 (a) DT (b) kNN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (d) SVM 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (f) BN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (h) MP 1500 3000 (g) RF TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (e) NB TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (c) NN TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (i) Number of samples Figure A.14: Poorly visible right markings & rural - Classification performance 152 A Appendix 0.6 0.6 0.4 0.4 0.2 0.2 0 (a) DT (b) kNN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (d) SVM 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (f) BN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (h) MP (g) RF 104 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (e) NB TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (c) NN TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (i) Number of samples Figure A.15: Poorly visible right markings & urban - Classification performance A Appendix 153 0.6 0.6 0.4 0.4 0.2 0.2 0 (a) DT (b) kNN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (d) SVM 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 (f) BN 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (h) MP 400 800 (g) RF TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (e) NB TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (c) NN TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH 0.8 TCH TRH TLH SCH SRH SLH VH FCH FRH FLH (i) Number of samples Figure A.16: Poorly visible right markings & connection - Classification performance 154 A Appendix 1 0.99 0.99 0.98 0.97 0.98 0.96 (a) Poorly visible left markings & highways 0.97 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.95 (b) Poorly visible right markings & highways 0.99 0.97 0.99 0.95 0.98 0.91 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.97 0.93 (c) Poorly visible left markings & rural 0.95 (d) Poorly visible right markings & rural 0.96 0.92 0.93 0.87 0.83 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.9 0.86 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.89 (f) Poorly visible right markings & Urban 0.93 (e) Poorly visible left markings & Urban 0.89 0.83 0.78 0.73 0.67 (g) Poorly visible left markings & Connection NN BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.63 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.56 (h) Poorly visible right markings & Connection RF MP Figure A.17: Availability as the overall performance of different fusion strategies and reliability estimators based on various classifiers A Appendix 155 0.95 0.95 0.9 0.9 0.85 0.85 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.95 0.95 0.9 0.9 0.85 0.85 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.18: Overall - Fusion performance using different classifiers 0.99 0.99 0.98 0.98 0.97 0.97 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.99 0.99 0.98 0.98 0.97 0.97 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.19: Highways - Fusion performance using different classifiers 156 A Appendix 0.98 0.98 0.96 0.96 0.94 0.94 0.92 0.92 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.98 0.98 0.96 0.96 0.94 0.94 0.92 0.92 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.20: Rural Roads - Fusion performance using different classifiers 0.95 0.95 0.9 0.9 0.85 0.85 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.95 0.95 0.9 0.9 0.85 0.85 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.21: Urban roads - Fusion performance using different classifiers A Appendix 157 0.85 0.85 0.7 0.7 0.55 0.55 0.4 0.4 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.85 0.85 0.7 0.7 0.55 0.55 0.4 0.4 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.22: Connections - Fusion performance using different classifiers 0.92 0.92 0.88 0.88 0.84 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.96 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.96 0.96 0.96 0.92 0.92 0.88 0.88 0.84 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP (c) RF True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.23: Poorly visible left lane markings - Fusion performance using different classifiers 158 A Appendix 0.96 0.96 0.92 0.92 0.88 0.88 0.84 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.96 0.96 0.92 0.92 0.88 0.88 0.84 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP (c) RF True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.24: Poorly visible left right markings - Fusion performance using different classifiers 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.99 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.99 0.99 0.99 0.98 0.98 0.97 0.97 0.96 0.96 0.95 0.95 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.25: Poorly visible left markings & highways - Fusion performance A Appendix 159 0.99 0.99 0.98 0.98 0.97 0.97 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.99 0.99 0.98 0.98 0.97 0.97 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.26: Poorly visible left markings & rural roads - Fusion performance 0.94 0.94 0.88 0.88 0.82 0.82 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.94 0.94 0.88 0.88 0.82 0.82 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP (c) RF True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.27: Poorly visible left markings & urban roads - Fusion performance 160 A Appendix 0.89 0.89 0.78 0.78 0.67 0.67 0.56 0.56 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.89 0.89 0.78 0.78 0.67 0.67 0.56 0.56 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP (c) RF True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.28: Poorly visible left markings & connections - Fusion performance 0.99 0.99 0.98 0.98 0.97 0.97 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.99 0.99 0.98 0.98 0.97 0.97 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP (c) RF True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.29: Poorly visible right markings & highways - Fusion performance A Appendix 161 0.98 0.98 0.96 0.96 0.94 0.94 0.92 0.92 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.98 0.98 0.96 0.96 0.94 0.94 0.92 0.92 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative Max Availability F1-Score False Positive True Negative Figure A.30: Poorly visible right markings & rural roads - Fusion performance 0.92 0.92 0.88 0.88 0.84 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.96 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.96 0.96 0.96 0.92 0.92 0.88 0.88 0.84 0.84 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP (c) RF True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.31: Poorly visible right markings & urban roads - Fusion performance 162 A Appendix 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 (c) RF DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) BN DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (a) NN (d) MP True Positive False Negative False Positive True Negative Max Availability F1-Score Figure A.32: Poorly visible right markings & connections - Fusion performance 163 1.5 70 22.5 10 650 15 (d) Connection 104 60 15 37.5 17.5 2000 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (g) Poorly visible left markings 200 (f) Poorly visible right markings 30 4000 500 1000 1500 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (e) Poorly visible left markings 150 0 900 400 45 10000 5000 0 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (c) Urban 104 140 DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE DST DS1 WTA WIF WBF AVG MED RAN MIN CNN ANN BE (b) Rural 104 (a) Highways 1600 0 500 4.5 500 1000 1000 A Appendix (h) Poorly visible right markings Figure A.33: Interventions and changes of the fusion strategies regarding different situations with poorly right and left road markings 164 A Appendix 0.8 0.8 0.4 0.4 0 -0.4 -0.4 -0.8 -0.8 (a) Highways (b) Rural 0.8 1.6 0.4 0.8 0 -0.4 -0.8 -0.8 -1.6 (c) Urban (d) Connection 1.2 1.2 0.6 0.6 0 -0.6 -0.6 -1.2 -1.2 (e) Poorly visible left markings (f) Poorly visible right markings 0.8 0.4 -0.4 -0.8 (g) Overall Figure A.34: Performance of different fusion strategies measured by the lateral offset Δd to the ground truth at a distance of 31m Please note that the plots have different scales on the y-axis ... accelerating © Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020 T T Nguyen, A Reliability-Aware Fusion Concept Toward Robust Ego-Lane Estimation Incorporating Multiple Sources, AutoUni... © Springer Fachmedien Wiesbaden GmbH, part of Springer Nature 2020 T T Nguyen, A Reliability-Aware Fusion Concept Toward Robust Ego-Lane Estimation Incorporating Multiple Sources, AutoUni – Schriftenreihe... evaluation using real-world data recordings, our reliability-based fusion approach can improve the overall availability of automated driving Besides, our reliability-aware framework can be generalized

Ngày đăng: 08/05/2020, 06:40