I. phần mở đầu : Tìm chử số tận cùng của một luỷ thừa đây là những bài toán tơng đối phức tạp của học sinh các lớp 6,7 nhng lại là những bài toán hết sức lí thú , nó tạo cho học sinh lòng say mê khám phá từ đó các em ngày càng yeu môn toán hơn . có những bài có số mủ rất lớn tởng nh là mình không thể giãi đợc . Nhng nhờ phát hiện và nắm bắt đợc qui luật , vận dungj qui luật đó các em tự giãi đợc và tự nhiên thấy mình làm đợc một việc vô cùng lớn lao . từ đó gieo vào trí tuệ các em khả năng khám phá , khả năng tự nghiên cứu Tuy là khó nhng chúng ta hớng dẩn các em một cách từ từ có hệ thống ,lô rích và chặt chẻ thì các em vẩn tiếp fhu tốt . đây là một kinh nghiệm nhỏ mà tôi muốn trình bày và trao đổi cùng các bạn II. Nội dung cụ thể : 1. Lí thuyết về tìm chử số tận cùng : phần này rất quan trọng , cần lí giải cho học sinh một cách kỉ lởng ,đầy đủ ( ) 0X n = 0A một số có tận cùng là 0 khi luỷ thừa bậc n có tận cùng vẩn là 0 ( ) 1X n = 1B một số có tận cùng là 1 khi luỷ thừa bậc n có tận cùng vẩn là 1 ( ) 5X n = 5C một số có tận cùng là 5 khi luỷ thừa bậc n có tận cùng vẩn là 5 ( ) 6X n = 6D một số có tận cùng là 6 khi luỷ thừa bậc n có tận cùng vẩn là 6 5X *a = 0F với a chẳn : một số có tận cùng là 5 khi nhân với mmột số chắn sẻ có chử số tận cùng là 0 5x *a = 5N với a lẻ : một số có tận cùng là 5 khi nhân với một số lẻ sẻ có tận cùng là 5 Qua các công thức trên ta có quy tắc sau : Một số tn nhiên có chử số tận cùng là : (0,1,5,6) khi nâng lên luỷ thừa với số mủ tự nhiên thì có chử số tự nhiên không thay đổi Kết luận trên là chìa khoá để giả các bài toán về tìm chử số tận cùng của một luỷ thừa 2. Các bài toán cơ bản . Bài toán 1 : Tìm chử số tận cùng của các luỷ thừa sau a) 2 100 ; b) 3 100 ; c) 4 100 d) 5 100 ; e) 6 100 ; f) 7 100 g) 8 100 ; 9 100 Ta nhận thấy các luỷ thừa 5 100 , 6 100 thuộc về dạng cơ bản đả trình bày ở trên nay còn lại các luỷ thừa mà cơ số là 2, 3 , 4 , 7 , 8 , 9 Muốn giãi các bài toán này thì ta phai đa chúng về một trong 4 dạng cơ bản trên . thực chất chỉ có đa về hai dạng cơ bản đó là : ( ) 1X n = 1M , ( ) 6X n = 6N giải bài toán 1 a) 2 100 = 2 4*25 = ( ( ) 2 4 ) 25 = (16) 25 = 6A b) 3 100 = 3 4*25 = ( ( ) 3 4 ) 25 = (81) 25 = 1B c) 4 100 = 4 4*50 =( ( ) 4 2 ) 50 = (16) 50 = 6C d) 7 100 = 7 4*25 =( ( ) 7 4 ) 25 = 2401 25 = 1D e) 8 100 = 8 4*25 = ( ( ) 8 4 ) 25 = 4096 25 = 6E f) 9 100 = 9 2*50 = ( ( ) 9 2 ) 50 = 81 50 = 1F Bài toán 2 : tìm chử số tận cùng của các số sau : a) 2 101 ; b) 3 101 ; c) 4 1o1 , d) 7 101 ; e) 8 101 ; f) 9 101 Giải bài toán 2 _ nhận xét đầu tiên . số mủ ( 101 không chia hết cho 2 và 4 ) _ Ta viết 101 = 4.25 +1 101 = 2 .50 +1 _ áp dụng công thức a m+n = a m .a n ta có : a) 2 101 = 2 4.25+1 = 2 100 . 2 = 6Y .2 = 2M b) 3 101 = 3 100+1 = 3 100 . 3 = 1B .3 = 3Y c) 4 1o1 = 4 100 +1 = 4 100 . 4 = 6C . 4 = 4k d) 7 101 = 7 100+1 = 7 100 . 7 = 1D .7 = 7F e) 8 101 = 8 100+1 = 8 100 . 8 = 6E .8 = 8N f) 9 101 = 9 100 +1 = 9 100 . 9 = 1F . 9 = 9M 3. Một số bài toán phức tạp hơn Bài toán 3: Tìm chử số tận cùng của các luỷ thừa sau : a) 1292 1997 ; b) 3333 1997 ; c) 1234 1997 ; d) 1237 1997 ; e) 1238 1997 ; f) 2569 1997 Bài giải Nhận xét quan trọng : Thực chất chử số tận cùng của luỷ thừa bậc n của mộtsố tự nhiên chỉ phụ thuộc vào chử số tận cùng của số tự nhiên đó mà thôi (cơ số) . Nh vậy bài toá 3 thực chất là bài toán 2 a) 1292 1997 = 1292 4. 499 +1 = (1292 4 ) 499 .1292 = 21292.6 MA = b) 3333 1997 = 3333 4. 499 +1 =(3333 4 ) 499 +1 . 3333 = )1(B 499 .3333 = 3D c) 1234 1997 = 1234 4 .499 +1 = (1234 4 ) 499 . 1234 = ( 6C ) 499 . 1234 = 4G d) 1237 1997 = 1237 4 .499 +1 = (1237 4 ) 499 . 1237 = ).1(D 499 .1237 = 7X 4. vận dụng vào các bài toán chứng minh chia hết áp dụng dấu hiệu chia hết Ta dể dàng nhận thấy : Nếu hai số có chử số tận cùng giống nhau thì khi thực hiện phép trừ sẻ có chử số tận cùng là 0 ta sẻ có các bài toán chứng minh chia hết cho { 2,5,10 } . Nếu một số có tận cùng là 1 và một số có tận cùng là 3 chẳng hạn ta sẻ có bài toán chứng minh tổng hai số đó chia hết cho 2 (vì chử số tận cùng của tổng là 4) Các bài toán cụ thể : Hảy chứng minh a) 1292 1997 + 3333 1997 5 Theo bài toán trên ta có 1292 1997 = 2M 3333 1997 = 3D nh vậy tổng của hai số này sẻ có tận cùng là 5 1292 1997 + 3333 1997 5 b) Chứng minh 1628 1997 + 1292 1997 10 Ap dụng qui tắc tìm chử số tận cùng ta có 1628 1997 sẻ có tận cùng là 8M 1292 1997 Sẻ Có tận cùng là 2N Nh vậy 1628 1997 + 1292 1997 10 (vì chử số tận cùng của tổng này sẻ là 0) Ta củng có thể vận dung hiệu của hai số hoặc tích của hai số để ra các bài toán chứng minh tơng tự III. Kết luận : Trên đây tôi đã trình bày phần cơ bản của vấn đề tìm chử số tận cùng của một luỷ thừa và những ứng dụng của nó trong bài toán chứng minh chia hết trong tập hợp số tự nhiên Trong những năm học qua tôi đã trực tiếp hớng dẩn cho một số học sinh các em tỏ ra rất thích thú và xem đó nh là những khám phá mới của chính các em với cách đặt vấn đề nh trên các em đã tự ra đề đợc và có nhiều bài rất hay . Cách đặt vấn đề cung nh trình bày nội chắc sẻ không tránh khỏi phần sai sót mong các đồng nghiệp góp ý chân thành đề thi Ô-lim -pic huyện Môn Toán Lớp 7 Năm học 2006-2007 (Thời gian làm bài 120 phút) Bài 1. Tìm giá trị n nguyên dơng: a) 1 .16 2 8 n n = ; b) 27 < 3 n < 243 Bài 2. Thực hiện phép tính: 1 1 1 1 1 3 5 7 . 49 ( . ) 4.9 9.14 14.19 44.49 89 + + + + Bài 3. a) Tìm x biết: 2x3x2 +=+ b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC Đáp án toán 7 Bài 1. Tìm giá trị n nguyên dơng: (4 điểm mỗi câu 2 điểm) a) 1 .16 2 8 n n = ; => 2 4n-3 = 2 n => 4n 3 = n => n = 1 b) 27 < 3 n < 243 => 3 3 < 3 n < 3 5 => n = 4 Bài 2. Thực hiện phép tính: (4 điểm) 1 1 1 1 1 3 5 7 . 49 ( . ) 4.9 9.14 14.19 44.49 89 + + + + = 1 1 1 1 1 1 1 1 1 2 (1 3 5 7 . 49) ( . ). 5 4 9 9 14 14 19 44 49 12 + + + + + + + + + = 1 1 1 2 (12.50 25) 5.9.7.89 9 ( ). 5 4 49 89 5.4.7.7.89 28 + = = Bài 3. (4 điểm mỗi câu 2 điểm) a) Tìm x biết: 2x3x2 +=+ Ta có: x + 2 0 => x - 2. + Nếu x - 2 3 thì 2x3x2 +=+ => 2x + 3 = x + 2 => x = - 1 (Thoả mãn) + Nếu - 2 x < - 2 3 Thì 2x3x2 +=+ => - 2x - 3 = x + 2 => x = - 3 5 (Thoả mãn) + Nếu - 2 > x Không có giá trị của x thoả mãn b) Tìm giá trị nhỏ nhất của A = x20072006x + Khi x thay đổi + Nếu x < 2006 thì: A = - x + 2006 + 2007 x = - 2x + 4013 Khi đó: - x > -2006 => - 2x + 4013 > 4012 + 4013 = 1 => A > 1 + Nếu 2006 x 2007 thì: A = x 2006 + 2007 x = 1 + Nếu x > 2007 thì A = x - 2006 - 2007 + x = 2x 4013 Do x > 2007 => 2x 4013 > 4014 4013 = 1 => A > 1. Vậy A đạt giá trị nhỏ nhất là 1 khi 2006 x 2007 Bài 4. Hiện nay hai kim đồng hồ chỉ 10 giờ. Sau ít nhất bao lâu thì 2 kim đồng hồ nằm đối diện nhau trên một đờng thẳng. (4 điểm mỗi) Gọi x, y là số vòng quay của kim phút và kim giờ khi 10giờ đến lúc 2 kim đối nhau trên một đờng thẳng, ta có: x y = 3 1 (ứng với từ số 12 đến số 4 trên đông hồ) và x : y = 12 (Do kim phút quay nhanh gấp 12 lần kim giờ) Do đó: 33 1 11: 3 1 11 yx 1 y 12 x 1 12 y x == ===>= => x = 11 4 x)vũng( 33 12 ==> (giờ) Vậy thời gian ít nhất để 2 kim đồng hồ từ khi 10 giờ đến lúc nằm đối diện nhau trên một đờng thẳng là 11 4 giờ Bài 5. Cho tam giác vuông ABC ( A = 1v), đờng cao AH, trung tuyến AM. Trên tia đối tia MA lấy điểm D sao cho DM = MA. Trên tia đối tia CD lấy điểm I sao cho CI = CA, qua I vẽ đờng thẳng song song với AC cắt đờng thẳng AH tại E. Chứng minh: AE = BC (4 điểm mỗi) Đờng thẳng AB cắt EI tại F ABM = DCM vì: AM = DM (gt), MB = MC (gt), ã AMB = DMC (đđ) => BAM = CDM =>FB // ID => ID AC Và FAI = CIA (so le trong) (1) IE // AC (gt) => FIA = CAI (so le trong) (2) D B A H I F E M Từ (1) và (2) => CAI = FIA (AI chung) => IC = AC = AF (3) và E FA = 1v (4) Mặt khác EAF = BAH (đđ), BAH = ACB ( cùng phụ ABC) => EAF = ACB (5) Từ (3), (4) và (5) => AFE = CAB =>AE = BC BI TP V CC I LNG T L 3. Ba n v kinh doanh gúp vn theo t l 2 : 3 : 5. Hi mi n v c chia bao nhiờu tin nu tng s tin lói l 350 000 000 v tin lói c chia theo t l thun vi s vn úng gúp. 4. Hai nn nh hỡnh ch nht cú chiu di bng nhau. Nn nh th nht cú chiu rng l 4 một, nn nh th hai cú chiu rng l 3,5 một. lỏt ht nn nh th nhtngi ta dựng 600 viờn gch hoa hỡnh vuụng. Hi phi dựng bao nhiờu viờn gch cựng loi lỏt ht nn nh th hai? 5. Khi tng kt cui nm hc ngi ta thy s hc sinh gii ca trng phõn b cỏc khi 6,7,8,9theo t l 1,5 : 1,1 : 1,3 : 1,2. Hi s hc sinh gii ca mi khi lp, bit rng khi 8 nhiu hn khi 9 l 3 hc sinh gii. 6. Ba i mỏy san t lm 3 khi lng cụng vic nh nhau. i th nht, th hai, th ba hon thnh cụng vic ln lt trong 4 ngy, 6 ngy, 8 ngy. Hi mi i cú my mỏy, bit rng i th nht cú nhiu hn i th hai l 2 mỏy v nng sut cỏc mỏy nh nhau. 7. Vi thi gian mt ngi th lnh ngh lm c 11 sn phm thỡ ngi th hc ngh ch lm c 7 sn phm. Hi ngi th hc vic phi dựng bao nhiờu thi gian hon thnh mt khi lng cụng vic m ngi th lnh ngh lm trong 56 gi? 8. Mt vt chuyn ng trờn cỏc cnh ca mt hỡnh vuụng. Trờn hai cnh u vt chuyn ng vi vn tc 5m/s, trờn cnh th ba vi vn tc 4m/s, trờn cnh th t vi vn tc 3m/s. Hi di ca cnh hỡnh vuụng bit rng tng s thi gian vt chuyn ng trờn 4 cnh l 59s. 9. BI TP HèNH HC 10.Cho 2 gúc xOz v yOz k bự. Ot v Ot ln lt l phõn giỏc ca hai gúc xOy v yOz t im M bt k trờn Ot h MH Ox ( H Ox ). Trờn tia Oz ly im N sao cho ON = MH. ng vuụng gúc k t N ct tia Ot ti K. Tớnh s o gúc KM ^ O ? 11.Cho tam giỏc ABC cú B ^ = 30 0 , C ^ = 20 0 .ng trung trc cựa AC ct BC ti E ct BA ti F.Chng minh rng : FA = FE. 12. Cho tam giỏc ABC tia phõn giỏc ca gúc B v gúc C ct nhau ti O. Qua O k ng thng song song vi BC ct AB D v AC E. Chng minh rng : DE = BD + EC. 13.Cho tam giỏc ABD cú B = D2 . K AH vuụng gúc vi BD (H BD ) trờn tia i ca tia BA ly BE = BH, ng thng EH ct AD ti F. Chng minh rng : FH = FA = FD. 14. Cho tam giỏc cõn ABC (AB = AC) trờn tia i ca tia CA ly im D bt k . 15.Chng minh rng : ABD = 2 CBD + CDB . 16.Gi s A = 30 0 , ABD = 90 0 , hóy tớnh gúc CBD. 17. MT S BI TON KHể 18. Tìm x, y, biết : 19.(x – 1) 2 + (y + 2) 2 = 0 20. 2005 + x + 1 + y = 0 21.Trong một cuộc chạy đua tiếp sức 4 × 100m ( Mỗi đội tham gia gồm 4 vận động viên, mỗi VĐV chạy xong 100m sẽ truyền gậy tiếp sức cho VĐV tiếp theo. Tổng số thời gian chạy của 4 VĐV là thành tích của cả đội, thời gian chạy của đội nào càng ít thì thành tích càng cao ). Giả sử đội tuyển gồm : chó, mèo, gà, vịt có vận tốc tỉ lệ với 10, 8, 4, 1. Hỏi thời gian chạy của đội tuyển là ? giây. Biết rằng vịt chạy hết 80 giây? 22.Tìm các số nguyên x, y thỏa mãn : 8 31 8 =− y x QuËn t©n phó - tphcm Năm học 2003 – 2004 (90 phút) Bài 1 (3đ): 1, Tính: P = 1 1 1 2 2 2 2003 2004 2005 2002 2003 2004 5 5 5 3 3 3 2003 2004 2005 2002 2003 2004 + − + − − + − + − 2, Biết: 13 + 23 + . . . . . . .+ 103 = 3025. Tính: S = 23 + 43 + 63 + . . . .+ 203 3, Cho: A = 3 2 2 2 3 0,25 4x x xy x y − + − + Tính giá trị của A biết 1 ; 2 x y= là số nguyên âm lớn nhất. Bài 2 (1đ): Tìm x biết: 3x + 3x + 1 + 3x + 2 = 117 Bài 3 (1đ): Một con thỏ chạy trên một con đường mà hai phần ba con đường băng qua đồng cỏ và đoạn đường còn lại đi qua đầm lầy. Thời gian con thỏ chạy trên đồng cỏ bằng nửa thời gian chạy qua đầm lầy. Hỏi vận tốc của con thỏ trên đoạn đường nào lớn hơn ? Tính tỉ số vận tốc của con thỏ trên hai đoạn đường ? Bài 4 (2đ): Cho ∆ABC nhọn. Vẽ về phía ngoài ∆ABC các ∆ đều ABD và ACE. Gọi M là giao điểm của BE và CD. Chứng minh rằng: 1, ∆ABE = ∆ADC 2, · 0 120BMC = Bài 5 (3đ): Cho ba điểm B, H, C thẳng hàng, BC = 13 cm, BH = 4 cm, HC = 9 cm. Từ H vẽ tia Hx vuông góc với đường thẳng BC. Lấy A thuộc tia Hx sao cho HA = 6 cm. 1, ∆ABC là ∆ gì ? Chứng minh điều đó. 2, Trên tia HC lấy điểm D sao cho HD = HA. Từ D vẽ đường thẳng song song với AH cắt AC tại E. Chứng minh: AE = AB thÞ x· hµ ®«ng – hµ t©y Năm học 2003 – 2004 (120 phút) Bài 1 (4đ): Cho các đa thức: A(x) = 2x 5 – 4x 3 + x 2 – 2x + 2 B(x) = x 5 – 2x 4 + x 2 – 5x + 3 C(x) = x 4 + 4x 3 + 3x 2 – 8x + 3 4 16 1, Tính M(x) = A(x) – 2B(x) + C(x) 2, Tính giá trị của M(x) khi x = 0,25− 3, Có giá trị nào của x để M(x) = 0 không ? Bài 2 (4đ): 1, Tìm ba số a, b, c biết: 3a = 2b; 5b = 7c và 3a + 5b – 7c = 60 2, Tìm x biết: 2 3 2x x x− − = − Bài 3 (4đ): Tìm giá trị nguyên của m và n để biểu thức 1, P = 2 6 m− có giá trị lớn nhất 2, Q = 8 3 n n − − có giá trị nguyên nhỏ nhất Bài 4 (5đ): Cho tam giác ABC có AB < AC; AB = c, AC = b. Qua M là trung điểm của BC kẻ đường vuông góc với đường phân giác trong của góc A, cắt các đường thẳng AB, AC lần lượt tại D, E. 1, Chứng minh BD = CE. 2, Tính AD và BD theo b, c Bài 5 (3đ): Cho ∆ABC cân tại A, · 0 100BAC = . D là điểm thuộc miền trong của ∆ABC sao cho · · 0 0 10 , 20DBC DCB= = . Tính góc ADB ? Tp hcm Năm học 2004 – 2005 (90 phút) Bài 1 (3đ): Tính: 1, 3 1 1 1 6. 3. 1 1 3 3 3 − − − − + − − ÷ ÷ ÷ 2, (6 3 + 3. 6 2 + 3 3 ) : 13 3, 9 1 1 1 1 1 1 1 1 1 10 90 72 56 42 30 20 12 6 2 − − − − − − − − − Bài 2 (3đ): 1, Cho a b c b c a = = và a + b + c ≠ 0; a = 2005. Tính b, c. 2, Chứng minh rằng từ hệ thức a b c d a b c d + + = − − ta có hệ thức: a c b d = Bài 3 (4đ): Độ dài ba cạnh của tam giác tỉ lệ với 2; 3; 4. Ba chiều cao tương ứng với ba cạnh đó tỉ lệ với ba số nào ? Bài 4 (3đ): Vẽ đồ thị hàm số: y = 2 ; 0 ; 0 x x x x ≥ < Bài 5 (3đ): Chứng tỏ rằng: A = 75. (4 2004 + 4 2003 + . . . . . + 4 2 + 4 + 1) + 25 là số chia hết cho 100 Bài 6 (4đ): Cho tam giác ABC có góc A = 60 0 . Tia phân giác của góc B cắt AC tại D, tia phân giác của góc C cắt AB tại E. Các tia phân giác đó cắt nhau tại I. Chứng minh: ID = IE [...]... BH,CK AE, (H,K AE) Chứng minh MHK vuông cân Đề thi học sinh giỏi toán lớp 7 Câu 1: (2đ) Rút gọn A= x x2 x 2 + 8 x 20 Câu 2 (2đ) Ba lớp 7A,7B,7C có 94 học sinh tham gia trồng cây Mỗi học sinh lớp 7A trồng đợc 3 cây, Mỗi học sinh lớp 7B trồng đợc 4 cây, Mỗi học sinh lớp 7C trồng đợc 5 cây, Hỏi mỗi lớp có bao nhiêu học sinh Biết rằng số cây mỗi lớp trồng đợc đều nh nhau Câu 3: (1,5đ) 102006 + 53 Chứng... (AI chung) (3) P N V HNG DN CHM MễN TON 7 Bi 1:(4 im): ỏp ỏn Thang im a) (2 im) 212.35 46.92 510 .73 255.492 10 212.35 212.34 510 .73 5 7 4 A= = 12 6 12 5 9 3 9 3 3 6 3 2 4 5 125 .7 ) + 59.143 2 3 + 2 3 5 7 + 5 2 7 ( 2 3) + 8 3 ( 212.34 ( 3 1) 510 .7 3 ( 1 7 ) = 12 5 2 3 ( 3 + 1) 59 .73 ( 1 + 23 ) 0,5 im 0,5 im 10 3 2 3 2 5 7 ( 6 ) = 12 5 2 3 4 59 .73 .9 1 10 7 = = 6 3 2 12 0,5 im 4 0,5 im b) (2... 5 3 5 5 5 1 4 14 x + = 3 5 5 x 1 =2 1 3 x = 2 1 x =2 3 3 x=2+ 1 = 7 3 3 x=2+1 = 5 3 3 b) (2 im) 0,5 im 0,5 im 0,5 im 0,5 im 0,5 im 0,5 im ( x 7) x +1 ( x 7) ( x 7) x +11 =0 0,5 im 1 ( x 7 ) 10 = 0 ( x +1) 1 ( x 7 ) 10 = 0 ( x 7) x +1 0,5 im x 7 x +1=0 ữ 1( x 7) 10 =0 x 7= 0 x =7 10 ( x 7) =1 x=8 Bi 3: (4 im) ỏp ỏn Thang im a) (2,5 im) Gi a, b, c l ba s c chia... với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC Câu 5: (1 điểm) Tìm số tự nhiên n để phân số 7n 8 có giá trị lớn nhất 2n 3 Đề số 7 Câu 1: (2 điểm) a) Tính: 3 7 A = 0 ,75 0,6 + + 3 11 11 : + + 2 ,75 2,2 13 7 13 10 1,21 22 0,25 5 225 : + + B= 7 3 b) Tìm các giá trị của x để: 49 9 x +3 + x +1 = 3 x Câu 2: (2 điểm) a b c + + không là số nguyên a+b b+c c+a...Nm 20 07 2008: (120 phỳt) Bi 1 (5): 1, Tỡm n N bit (33 : 9)3n = 72 9 2, Tớnh : 2 A= Bi 2 (3): Cho a,b,c 4 2 9 2 R v a,b,c 1 2 3 0, ( 4) + 3 5 7 + 2 4 6 3 5 7 0 tho món b2 = ac Chng minh rng: ( a + 2007b) 2 a = c (b + 2007c) 2 Bi 3 (4): Ba i cụng nhõn lm 3 cụng vic cú khi lng nh nhau Thi gian hon thnh cụng vic ca i , , ln lt l 3, 5, 6 ngy... ABC có góc ABC = 50 0 ; góc BAC = 70 0 Phân giác trong góc ACB cắt AB tại M Trên MC lấy điểm N sao cho góc MBN = 400 Chứng minh: BN = MC PHềNG GIO DC V O TO THI THễNG TIN PHT HINHC SINH GII BC THCS CP TH X MễN TON 7 NM HC 2008 - 2009 Thi gian : 120 (Khụng k thi gian phỏt ) Bi 1:(4 im) a) Thc hin phộp tớnh: A= 212.35 46.92 ( 2 3) 2 6 + 8 3 4 5 510 .73 255.492 ( 125 .7 ) 3 + 59.143 b) Chng minh rng... c đều chia hết cho 3 a c 7a 2 + 5ac 7b 2 + 5bd b) CMR: nếu = thì (Giả sử các tỉ số đều có nghĩa) = b d 7a 2 5ac 7b 2 5bd Câu 4: (3 điểm) Cho tam giác ABC có AB < AC Gọi M là trung điểm của BC, từ M kẻ đờng thẳng vuông góc với tia phân giác của góc A, cắt tia này tại N, cắt tia AB tại E và cắt tia AC tại F Chứng minh rằng: a) AE = AF b) BE = CF c) AE = AB + AC 2 Câu 5: (1 điểm) Đội văn nghệ khối 7. .. Tìm số nguyên tố p sao cho: 3 p 2 +1 ; 24 p 2 +1 là các số nguyên tố Đề số 16 Câu 1: (2 điểm) a) Thực hiện phép tính: 3 3 + 7 13 ; A= 11 11 2 ,75 2,2 + + 7 3 B = (251.3 + 281) + 3.251 (1 281) 0 ,75 0,6 + b) Tìm các số nguyên tố x, y sao cho: 51x + 26y = 2000 Câu 2: ( 2 điểm) a) Chứng minh rằng: 2a - 5b + 6c 17 nếu a - 11b + 3c 17 (a, b, c Z) b) Biết bz cy cx az ay bx = = a b c a b c Chứng minh... = 17 (loi) Ta cú Vi (x- 2009)2 = 0 thay vo (*) ta cú y2 =25 suy ra y = 5 (do y Ơ ) T ú tỡm c (x=2009; y=5) 0.5 0.5 0.5 đề thi Ô-lim -pic huyện Môn Toán Lớp 7 (Thời gian làm bài 120 phút) 1 1 1 1 + + + + 1.6 6.11 11.16 96.101 Bài 1 Tính Bài 2 Tìm giá trị nguyên dơng của x và y, sao cho: 1 1 1 + = x y 5 Bài 3 Tìm hai số dơng biết: tổng, hiệu và tích của chúng tỷ lệ nghịch với các số 20, 140 và 7 Bài... Tính góc IBN ? Câu 5: (2 điểm) Số 2100 viết trong hệ thập phân tạo thành một số Hỏi số đó có bao nhiêu chữ số ? Đề số 17 Bài 1: (2 điểm) a) Tính giá trị của biểu thức 5 3 3 2,5 + 1,25 0, 375 0,3 + + 3 11 12 P = 2005 : 0,625 + 0,5 5 5 1,5 + 1 0 ,75 11 12 b) Chứng minh rằng: 3 5 7 19 + 2 2 + 2 2 + + 2 2 < 1 2 2 1 2 2 3 3 4 9 10 Câu 2: (2 điểm) a) Chứng minh rằng với mỗi số nguyên dơng . cùng của các luỷ thừa sau : a) 1292 19 97 ; b) 3333 19 97 ; c) 1234 19 97 ; d) 12 37 19 97 ; e) 1238 19 97 ; f) 2569 19 97 Bài giải Nhận xét quan trọng : Thực. 499 . 1234 = ( 6C ) 499 . 1234 = 4G d) 12 37 19 97 = 12 37 4 .499 +1 = (12 37 4 ) 499 . 12 37 = ).1(D 499 .12 37 = 7X 4. vận dụng vào các bài toán chứng minh