Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 16 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
16
Dung lượng
1,01 MB
Nội dung
Chương I : MỆNH ĐỀ – TẬP HP §1: Mệnh đề và mệnh đề chứa biến A: TÓM TẮT LÝ THUYẾT 1.Đònh nghóa : Mệnh đề là một câu khẳng đònh Đúng hoặc Sai . Một mệnh đề không thể vừa đúng hoặc vừa sai 2.Mệnh đề phủ đònh: Cho mệnh đề P.Mệnh đề “Không phải P ” gọi là mệnh đề phủ đònh của P Ký hiệu là P . Nếu P đúng thì P sai, nếu P sai thì P đúng Ví dụ: P: “ 3 > 5 ” thì P : “ 3 ≤ 5 ” 3. Mệnh đề kéo theo và mệnh đề đảo : Cho 2 mệnh đề P và Q. Mệnh đề “nếu P thì Q” gọi là mệnh đề kéo theo Ký hiệu là P ⇒ Q. Mệnh đề P ⇒ Q chỉ sai khi P đúng Q sai Cho mệnh đề P ⇒ Q. Khi đó mệnh đề Q ⇒ P gọi là mệnh đề đảo của P ⇒ Q 4. Mệnh đề tương đương Cho 2 mệnh đề P và Q. Mệnh đề “P nếu và chỉ nếu Q” gọi là mệnh đề tương đương , ký hiệu P ⇔ Q.Mệnh đề P ⇔ Q đúng khi cả P và Q cùng đúng 5. Phủ đònh của mệnh đề “ ∀x∈ X, P(x) ” là mệnh đề “∃x∈X, P(x) ” Phủ đònh của mệnh đề “ ∃x∈ X, P(x) ” là mệnh đề “∀x∈X, P(x) ” Ví dụ: Cho x là số nguyên dương ;P(x) : “ x chia hết cho 6” ; Q(x): “ x chia hết cho 3” Ta có : • P(10) là mệnh đề sai ; Q(6) là mệnh đề đúng • ( )P x : “ x không chia hết cho 6” • Mệnh đề kéo theo P(x)⇒ Q(x) là mệmh đề đúng. • “∃x∈ N * , P(x)” đúng có phủ đònh là “∀x∈ N * , P(x) ” có tính sai B: BÀITẬP B.1: BÀITẬP TRẮC NGHIỆM : Câu 1: Cho A = “∀x∈R : x 2 +1 > 0” thì phủ đònh của A là: a) A = “ ∀x∈R : x 2 +1 ≤ 0” b) A = “∃ x∈R: x 2 +1≠ 0” c) A = “∃ x∈R: x 2 +1 < 0” d) A = “ ∃ x∈R: x 2 +1 ≤ 0” Câu 2:Xác đònh mệnh đề đúng: a) ∃x∈R: x 2 ≤ 0 b) ∃x∈R : x 2 + x + 3 = 0 c) ∀x ∈R: x 2 >x d) ∀x∈ Z : x > - x Câu 3:Phát biểu nào sau đây là đúng: a) x ≥ y ⇒ x 2 ≥ y 2 b) (x +y) 2 ≥ x 2 + y 2 c) x + y >0 thì x > 0 hoặc y > 0 d) x + y >0 thì x.y > 0 Câu 4:Xác đònh mệnh đề đúng: a) ∀x ∈R,∃y∈R: x.y>0 b) ∀x∈ N : x ≥ - x c) ∃x∈N, ∀y∈ N: x chia hết cho y d) ∃x∈N : x 2 +4 x + 3 = 0 Câu 5: Cho các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng : a) Nếu tứ giác ABCD là hình thoi thì AC ⊥ BD b) Nếu 2 tam giác vuông bằng nhau thì 2 cạnh huyền bằng nhau c) Nếu 2 dây cung của 1 đường tròn bằng nhau thì 2 cung chắn bằng nhau d) Nêu số nguyên chia hết cho 6 thì chia hết cho 3 Câu 6: Cho các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng : a)Nếu tứ giác ABCD là hình thang cân thì 2 góc đối bù nhau b)Nếu a = b thì a.c = b.c c)Nếu a > b thì a 2 > b 2 d)Nếu số nguyên chia hết cho 6 thì chia hết cho 3 và 2 Câu 7: Xác đònh mệnh đề sai : a) ∃x∈Q: 4x 2 – 1 = 0 b) ∃x∈R : x > x 2 c) ∀n∈ N: n 2 + 1 không chia hết cho 3 d) ∀n∈ N : n 2 > n Câu 8: Cho các mệnh đề sau, mệnh đề nào sai : a)Một tam giác vuông khi và chỉ khi nó có 1 góc bằng tổng 2 góc kia b) Một tam giác đều khi và chỉ khi nó có 2 trung tuyến bằng nhau và 1 góc = 60 0 c) hai tam gíac bằng nhau khi và chỉ khi chúng đồng dang và có 1 cạnh bằng nhau d) Một tứ giác là hình chữ nhật khi và chỉ khi chúng có 3 góc vuông Câu 9: Cho các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng : d) Nếu tứ giác ABCD là hình thang cân thì 2 góc đối bù nhau e) Nếu a = b thì a.c = b.c c)Nếu a > b thì a 2 > b 2 d)Nếu số nguyên chia hết cho 10 thì chia hết cho 5 và 2 Câu 10: Mệnh đề nào sau đây có mệnh đề phủ đònh đúng : a) ∃x∈ Q: x 2 = 2 b) ∃x∈R : x 2 - 3x + 1 = 0 c) ∀n ∈N : 2n ≥ n d) ∀x∈ R : x < x + 1 B2: BÀITẬP TỰ LUẬN : Bài 1: Các câu sau dây, câu nào là mệnh đề, và mệnh đề đó đúng hay sai : a) Ở đây là nơi nào ? b) Phương trình x 2 + x – 1 = 0 vô nghiệm c) x + 3 = 5 d) 16 không là số nguyên tố Bài 2: Nêu mệnh đề phủ đònh của các mệnh đề sau : a) “Phương trình x 2 –x – 4 = 0 vô nghiệm ” b) “ 6 là số nguyên tố ” c) “∀n∈N ; n 2 – 1 là số lẻ ” Bài 3: Xác đònh tính đúng sai của mệnh đề A , B và tìm phủ đònh của nó : A = “ ∀x∈ R : x 3 > x 2 ” B = “ ∃ x∈ N , : x chia hết cho x +1” Bài 4: Phát biểu mệnh đề P ⇒ Q và xét tính đúng sai của nó và phát biểu mệnh đề đảo : a) P: “ ABCD là hình chữ nhật ” và Q:“ AC và BD cắt nhau tại trung điểm mỗi đường” b) P: “ 3 > 5” và Q : “7 > 10” c) P: “Tam giác ABC là tam giác vuông cân tại A” và Q :“ Góc B = 45 0 ” Bài 5: Phát biểu mệnh đề P ⇔ Q bằng 2 cách và và xét tính đúng sai của nó a) P : “ABCD là hình bình hành ” và Q : “AC và BD cắt nhau tại trung điểm mỗi đường” b) P : “9 là số nguyên tố ” và Q: “ 9 2 + 1 là số nguyên tố ” Bài 6:Cho các mệnh đề sau a) P: “ Hình thoi ABCD có 2 đường chéo AC vuông góc với BD” b) Q: “ Tam giác cân có 1 góc = 60 0 là tam giác đều” c) R : “13 chia hết cho 2 nên 13 chia hết cho 10 ” - Xét tính đúng sai của các mệnh đề và phát biểu mệnh đề đảo : - Biểu diễn các mệnh đề trên dưới dạng A ⇒ B Bài 7: Cho mệnh đề chứa biến P(x) : “ x > x 2 ” , xét tính đúng sai của các mệnh đề sau: a) P(1) b) P( 1 3 ) c) ∀x∈N ; P(x) d) ∃x∈ N ; P(x) Bài 8: Phát biểu mệnh đề A ⇒ B và A ⇔ B của các cặp mệnh đề sau và xét tính đúng sai a) A : “Tứ giác T là hình bình hành ” B: “Hai cạnh đối diện bằng nhau” b) A: “Tứ giác ABCD là hình vuông ” B: “ tứ giác có 3 góc vuông” c) A: “ x > y ” B: “ x 2 > y 2 ” ( Với x y là số thực ) d) A: “Điểm M cách đều 2 cạnh của góc xOy ” B: “Điểm M nằm trên đường phân giác góc xOy” Bài 9: Hãy xem xét các mệnh đề sau đúng hay sai và lập phủ đònh của nó : a) ∀x∈N : x 2 ≥ 2x b) ∃x∈ N : x 2 + x không chia hết cho 2 c) ∀x∈Z : x 2 –x – 1 = 0 Bài10 : Trong các mệnh đề sau, mệnh đề nào có mệnh đề đảo đúng a) A : “Một số tự nhiên tận cùng là 6 thì số đó chia hết cho 2” b) B: “ Tam giác cân có 1 góc = 60 0 là tam giác đều ” c) C: “ Nếu tích 3 số là số dương thì cả 3 số đó đều là số dương ” d) D : “Hình thoi có 1 góc vuông thì là hình vuông” Bài 11:Phát biểu thành lời các mệnh đề ∀x: P(x) và ∃x : P(x) và xét tính đúng sai của chúng : a) P(x) : “x 2 < 0” b)P(x) :“ 1 x > x + 1” c) P(x) : “ 2 x 4 x 2 − − = x+ 2” x) P(x): “x 2 -3x + 2 > 0” §2: ÁP DỤNG MỆNH ĐỀ VÀO PHÉP SUY LUẬN TOÁN HỌC A: TÓM TẮT LÝ THUYẾT 1:Trong toán học đònh lý là 1 mệnh đề đúng Nhiều đònh lý được phát biểu dưới dạng “∀x∈X , P(x) ⇒ Q(x)” 2: Chứng minh phản chứng đinh lý “∀x∈X , P(x) ⇒ Q(x)” gồm 2 bước sau: - Giả sử tồn tại x 0 thỏa P(x 0 )đúng và Q(x 0 ) sai - Dùng suy luận và các kiến thức toán học để đi đến mâu thuẫn 3: Cho đònh lý “∀x∈X , P(x) ⇒ Q(x)” . Khi đó P(x) là điều kiện đủ để có Q(x) Q(x) là điều kiện cần để có P(x) 4: Cho đònh lý “∀x∈X , P(x) ⇒ Q(x)” (1) Nếu mệnh đề đảo “∀x∈X , Q(x) ⇒ P(x)” đúng được gọi là dònh lý đảo của (1) Lúc đó (1) được gọi là đònh lý thuận và khi đó có thể gộp lại “∀x∈X , P(x) ⇔ Q(x)” Gọi là P(x) là điều kiện cần và đủ để có Q(x) B: BÀITẬP : Bài 1: Phát biểu các mệnh đề sau với thuật ngữ “Điều kiện cần”, “Điều kiện đủ ” a) Nếu 2 tam giác bằng nhau thì chúng có cùng diện tích b) Số nguyên dương chia hết cho 6 thì chia hết cho 3 c) Mộthình thang có 2 đường chéo bằng nhau là hình thang cân Bài 2: Dùng phương pháp chứng minh phản chứng để chứng minh : a) Với n là số nguyên dương, nếu n 2 chia hết cho 3 thì n chia hết cho 3 b) Chứng minh rằng 2 là số vô tỷ c) Với n là số nguyên dương , nếu n 2 là số lẻ thì n là số lẻ Bài 3: Phát biểu các đònh lý sau đây bằng cách sử dụng khái niệm “Điều kiện đủ ” a)Nếu trong mặt phẳng, hai đường thẳng cùng vuông góc với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau b)Nếu 2 tam giác bằng nhau thì chúng có diện tích bằng nhau c)Nếu số nguyên dương a tận cùng bằng 5 thì chia hết cho 5 d)Nếu tứ giác là hình thoi thì 2 đường chéo vuông góc với nhau Bài 4: Phát biểu các đònh lý sau đây bằng cách sử dụng khái niệm“Điều kiện cần ” a)Nếu trong mặt phẳng, hai đường thẳng cùng song song với đường thẳng thứ 3 thì hai đường thẳng đó song song với nhau b)Nếu 2 tam giác bằng nhau thì chúng có các góc tương ứng bằng nhau c)số nguyên dương a chia hết cho 24 thì chia hết cho 4 và 6 d)Nếu tứ giác ABCD là hình vuông thì 4 cạnh bằng nhau Bài 5: Chứng minh bằng phương pháp phản chứng a) Nếu a≠b≠c thì a 2 +b 2 + c 2 > ab + bc + ca b) Nếu a.b chia hết cho 7 thì a hoặc b chia hết cho 7 c) Nếu x 2 + y 2 = 0 thì x = 0 và y = 0 Bài 6 :Cho các đinh lý sau, đònh lý nào có đònh lý đảo, hãy phát biểu : a) “Nếu 1 số tự nhiên chia hết cho 3 và 4 thì chia hết cho 12” b) “Một tam giác vuông thì có trung tuyến tương ứng bằng nửa cạnh huyền ” c) “Hai tam giác đồng dạng và có 1 cạnh bằng nhau thì hai tam giác đó bằng nhau” d) “Nếu 1 số tự nhiên n không chia hết cho 3 thì n 2 chia 3 dư 1” §3: Tập hợp và các phép toán trên tập hợp A. TÓM TẮT LÝ THUYẾT : 1. Tập hợp là khái niệm của toán học . Có 2 cách trình bày tập hợp Liệtkê các phần tử : VD : A = {a; 1; 3; 4; b} hoặc N = { 0 ; 1; 2; . . . . ; n ; . . . . } Chỉ rõ tính chất đặc trưng của các phần tử trong tập hợp ; dạng A = {{x/ P(x)} VD : A = {x∈ N/ x lẻ và x < 6} ⇒ A = {1 ; 3; 5} *. Tập con : A⊂ B ⇔(x, x∈A ⇒ x∈B) Cho A ≠ ∅ có ít nhất 2 tập con là ∅ và A 2. các phép toán trên tập hợp : Phép giao Phép hợp Hiệu của 2 tập hợp A∩B = {x /x∈A và x∈B} A∪B = {x /x∈A hoặc x∈B} A\ B = {x /x∈A và x∉B} Chú ý: Nếu A ⊂ E thì C E A = A\ B = {x /x∈E và x∉A} 3. các tập con của tập hợp số thực Tên gọi, ký hiệu Tập hợp Hình biểu diễn Đoạn [a ; b] {x∈R/ a ≤ x ≤ b} Khoảng (a ; b ) Khoảng (-∞ ; a) Khoảng(a ; + ∞) {x∈R/ a < x < b} {x∈R/ x < a} {x∈R/ a< x } Nửa khoảng [a ; b) Nửa khoảng (a ; b] Nửa khoảng (-∞ ; a] Nửa khoảng [a ; ∞ ) {∈R/ a ≤ x < b} {x∈R/ a < x ≤ b} {x∈R/ x ≤ a} {x∈R/ a ≤ x } B: BÀITẬP : /////// [ ] ///////////// //////////// [ ] //////// )///////////////////// ////////////( ) ///////// ///////////////////( ////////////[ ) ///////// ////////////( ] ///////// ]///////////////////// ///////////////////[ B1.BÀI TRẮC NGHIỆM Câu 1: Cho tập hợp A ={a;{b;c};d}, phát biểu nào là sai: a) a∈A b) {a ; d} ⊂ A c) {b; c} ⊂ A d) {d} ⊂ A Câu 2: Cho tập hợp A = {x∈ N / (x 3 – 9x)(2x 2 – 5x + 2 )= 0 }, A được viết theo kiểu liệt kê là : a) A = {0, 2, 3, -3} b) A = {0 , 2 , 3 } c) A = {0, 2 1 , 2 , 3 , -3} d) A = { 2 , 3} Câu 3: Cho A = {x∈ N / (x 4 – 5x 2 + 4)(3x 2 – 10x + 3 )= 0 }, A được viết theo kiểu liệt kê là : a) A = {1, 4, 3} b) A = {1 , 2 , 3 } c) A = {1,-1, 2 , -2 , 3 1 } d) A = { -1,1,2 , -2, 3} Câu 4: Cho tập A = {x∈ N / 3x 2 – 10x + 3 = 0 hoặc x 3 - 8x 2 + 15x = 0}, A được viết theo kiểu liệt kê là : a) A = { 3} b) A = {0 , 3 } c) A = {0, 3 1 , 5 , 3 } d) A = { 5, 3} Câu 5:Cho A là tập hợp . xác đònh câu đúng sau đây ( Không cần giải thích ) a) {∅}⊂ A b) ∅∈ A c) A ∩ ∅ = A d) A∪ ∅ = A Câu 6: Tìm mệnh đề đúng trong các mệnh đề sau: a) R + ∩ R - = {0} b) R \ R - = [ 0 , + ∞ ) c) R * + ∪ R * - = R d) R \ R + = R – Câu 7: Cho tập hợp sô’ sau A = ( - 1, 5] ; B = ( 2, 7) . tập hợp A\B nào sau đây là đúng: a) ( -1, 2] b) (2 , 5] c) ( - 1 , 7) d) ( - 1 , 2) Câu 8: Cho A = {a; b; c ; d ; e}. Sốtập con của A có 3 phần tử là: a)10 b)12 c) 32 d) 8 Câu 9: Tập hợp nào là tập hợp rỗng: a) {x∈ Z / x<1} b) {x∈ Q / x 2 – 4x +2 = 0} c) {x∈ Z / 6x 2 – 7x +1 = 0} d) {x∈ R / x 2 – 4x +3 = 0} Câu 10: Trong các tập hợp sau, tập nào có đúng 1 tập con a) ∅ b){x} c) {∅} d) {∅; 1} Câu 11: Cho X= {n∈ N/ n là bội số của 4 và 6} Y= {n∈ N/ n là bội số của 12} Các mệnh đề sau, mệnh đề nào sai : a) X⊂Y b) Y ⊂ X c) X = Y d) ∃ n: n∈X và n∉ Y Câu 12 : Cho H = tập hợp các hình bình hành V = tập hợp các hình vuông N = tập hợp các hình chữ nhật T = tập hợp các hình thoi Tìm mệnh đề sai a) V⊂ T b)V⊂ N c)H⊂ T d)N⊂ H Câu 13 : Cho A ≠∅ . Tìm câu đúng a) A\ ∅ =∅ b) ∅\A = A c) ∅ \ ∅ = A d) A\ A =∅ B2.BÀI TỰ LUẬN Bài 1: Cho tập hợp A = {x∈ N / x 2 – 10 x +21 = 0 hay x 3 – x = 0} Hãy liệt kê tất cả các tập con của A chỉ chứa đúng 2 phần tử Bài 2: Cho A = {x ∈R/ x 2 +x – 12 = 0 và 2x 2 – 7x + 3 = 0} B = {x ∈R / 3x 2 -13x +12 =0 hay x 2 – 3x = 0 } Xác đònh các tập hợp sau A ∩ B ; A \ B ; B \ A ; A∪B Bài 3: Cho A = {x∈N / x < 7} và B = {1 ; 2 ;3 ; 6; 7; 8} a) Xác đònh AUB ; A∩B ; A\B ; B\ A b) CMR : (AUB)\ (A∩B) = (A\B)U(B\ A) Bài 4: Cho A = {2 ; 5} ; B = {5 ; x} C = {x; y; 5} Tìm các giá trò của cặp số (x ; y) để tập hợp A = B = C Bài 5: Xác đònh các tập hợp sau bẳng cách nêu tính chất đặc trưng A = {0 ; 1; 2; 3; 4} B = {0 ; 4; 8; 12;16} C = {-3 ; 9; -27; 81} D = {9 ; 36; 81; 144} E = Đường trung trực đoạn thẳng AB F = Đường tròn tâm I cố đònh có bán kính = 5 cm Bài 6: Biểu diễn hình ảnh tập hợp A ; B ; C bằng biểu đồ Ven A = {0 ; 1; 2; 3} B = {0 ; 2; 4; 6} C = {0 ; 3; 4; 5} Bài 7 : Hãy liệt kê tập A, B: A= {(x;x 2 ) / x ∈ {-1 ; 0 ; 1}} B= {(x ; y) / x 2 + y 2 ≤ 2 và x ,y ∈Z} Bài 8: Cho A = {x ∈R/ x ≤ 4} ; B = {x ∈R / -5 < x -1 ≤ 8 } Viết các tập hợp sau dưới dạng khoảng – đoạn – nửa khoảng A ∩ B ; A \ B ; B \ A ; R \ ( A∪B) Bài 9: Cho A = {x ∈R/ x 2 ≤ 4} ; B = {x ∈R / -2 ≤ x +1 < 3 } Viết các tập hợp sau dưới dạng khoảng – đoạn – nửa khoảng A ∩ B ; A \ B ; B \ A ; R \ ( A∪B) Bài 10: Gọi N(A) là số phần tử của tập A . Cho N(A) = 25; N(B)=29, N(AUB)= 41. Tính N(A∩B) ; N(A\B); N(B\A) Bài 11: a) Xác đònh các tập hợp X sao cho {a ; b}⊂ X ⊂ {a ; b ;c ;d ; e} b)Cho A = (1 ; 2} ; B = {1 ; 2 ; 3; 4; 5} Xác đònh các tập hợp X sao cho A ∪ X = B c) Tìm A; B bietá A∩ B = {0;1;2;3;4}; A\B = {-3 ; -2} ; B\A = {6 ; 9;10} Bài 12: Cho A = {x∈R/ x ≤ -3 hoặc x >6 } B={x∈R / x 2 – 25 ≤ 0} a) Tìm các khoảng , doạn, nửa khoảng sau : A\B ; B\ A ; R \ ( A∪B); R \ (A∩B) ; R \(A\B) b)Cho C={x∈R / x ≤ a} ; D={x∈R / x ≥ b }. Xác đònh a và b biết rằng C∩B và D∩B là các đoạn có chiều dài lần lượt là 7 và 9. Tìm C∩D Bài 13: Cho A = {x ∈R/ x 2 ≤ 4} ; B = {x ∈R / -3 ≤ x < 2 } Viết các tập hợp sau dưới dạng khoảng – đoạn – nửa khoảng A ∩ B ; A \ B ; B \ A ; R \ ( A∪B) Bài 14: Viết phần bù trong R của các tập hợp sau : A= {x∈R / – 2 ≤ x < 1 0} B= {x∈R / x> 2} C = {x∈R / -4 < x + 2 ≤ 5} Bài 15: Cho Tv = tập hợp tất cả các tam giác vuông T = tập hợp tất cả các tam giác Tc = tập hợp tất cả các tam giác cân Tđ = tập hợp tất cả các tam giác đều Tvc= tập hợp tất cả các tam giác vuông cân Xác đònh tất cả các quan hệ bao hàm giữa các tập hợp trên [...]... + 2 x + 7 + ( x − 2) x + 4 1− x Bài 2: Cho hàm số y = 5 − x + 2x + 3a Đònh a để tập xác đònh của hàm số là đoạn thẳng có độ dài = 2 đơn vò x x +1, x > 0 Bài 3:Cho hàm số f ( x) = 3 x + 1 , −1 ≤ x ≤ 0 x −1 a) Tìm tập xác đònh của hàm số y=f(x) b) Tính f(0), f(2),f(-3),f(-1) Bài 4: Cho hàm số f ( x) = x + x − 1 a) Tìm tập xác đònh của hàm số b) Dùng bảng số hoặc máy tính bỏ túi, tính giá... nào? Bài 8: Giả sử hàm số y = Bài 9: Cho hàm số y = f(x) có miền xác đònh R thỏa f(x + y) = f(x) + f(y) , ∀x,y∈ R a) Tính f(0) b) CMR : y = f(x) là hàm số lẻ Bài 10: Cho hàm số y = f(x) có miền xác đònh R thỏa f(x + y) + f( x – y) = 2f(x).f(y) , ∀x,y∈ R c) Tính f(0) d) Xét tính chẵn lẻ của hàm số §2: HÀM SỐ BẬC NHẤT A:TÓM TẮT LÝ THUYẾT 1: Hàm số dạng y = ax = b , a;b∈ R và a≠ 0 Hàm số bậc nhất có tập. .. sách toán lớp 10 nâng cao Làm các bài 1.42 đến hết bài 1.50 sách bài tập toán lớp 10 nâng cao Chương II: HÀM SỐ §1: Đại cương về hàm số A:TÓM TẮT LÝ THUYẾT 1: Cho D ⊂ R hàm số f xác đònh trên D là 1 quy tắc ứng với mỗi x∈D là 1 và chỉ 1 số Khi đó f(x) gọi là giá trò hàm số, x gọi là biến số , D gọi là tập xác đònh 2: Sự biến thiên hàm số Cho f(x) xác đònh trên K f đồng biến ( tăng) trên K ⇔∀x1;x2∈K... f(x) là hàm số chẵn b) f(x) không là hàm số lẻ c) f(x) vừa là hàm số chẵn và lẻ d) f(x) là hàm số lẻ x +1 x − 1; x < 0 Câu 6:Cho hàm số y = 2 x thì phát biểu nào là đúng ;x ≥ 0 x + 2 a) Hàm số không xác đònh khi x = 1 b) Hàm số không xác đònh khi x = - 2 c) Tập xác đònh của hàm số là R d) Hàm số không xđ khi x = 1 hoặc x = - 2 x − 2 x −3;x 0 Ta có :Với x1 , x2 ∈ ( −∞ ;3) ⇒ x2 − 3 < 0 ∆x x1 − 3 > 0 ∆y ⇒ >0 Với x1 , x2 ∈ ( 3; +∞ ) ⇒ x2 − 3 > 0 ∆x Vậy hàm số đã cho đồng biến trong ( −∞ ;3) ∪ ( 3; +∞ ) C:BÀI TẬP 2 x−3 C1: Bàitập trắc nghiệm : Câu 1: hàm số y = a) [ -... −1 Bài 7 : Cho hàm số y = f(x) có miền xác đònh là R Tìm công thức của hàm số đó biết rằng hàm số y = f(x) vứa là hàm số chẵn , vừa lẻ −2 có đồ thò là (H) x a) Nếu tònh tiến (H) xuống dưới 3 đơn vò thì ta được đồ thò của hàm số nào? b) Nếu tònh tiến (H) sang phải 2 đơn vò thì ta được đồ thò của hàm số nào? c) Nếu tònh tiến (H) lên trên 1 đơn vò, rồi sang trái 4 đơn vò thì ta được đồ thò của hàm số. .. +1 a)A( 2;0) b)A (0;0) Câu 8: Cho hàm số y = a) chẵn 1 − x2 x3 + x b)lẻ c) A(1 ; 1) d) A( 1; 2 ) 3 là: c)Vừa chẵn, vừa lẻ d) Không có tính chẵn lẻ Câu 9: Cho hàm số y = x + 1 ;thì đồ thò của hàm số đó: a) cắt trục hoành tại 2 điểm b) cắt trục hoành tại 1 điểm c) Không cắt trục tung d) Không cắt trục hoành C2: BÀITẬP TỰ LUẬN : Bài 1:Tìm tập xác đònh của các hàm số sau: x −1 2x +1 a) y = 2 b) y = 2... x2 − 6x + 8 9− x 2 có miền xác đònh là : b) [-3; 2] x −2 c) ( -3 ; 2] d) ( - 3 ; 2) Câu 2: Hàm số y = ( x − 2)( x −1) a) M( 2 ;1) c) M( 2 ; 0) thì điểm nào thuôc đồ thò của hàm số Câu 3 :Tập xác đònh của hàm số y= x2 −4 + a) [-2 ; 2] c) (- ∞ ; -2]∪ [ 2 ; +∞ ) b) [- 2 ; 2]\ {1} Câu 4: Tập xác đònh của hàm số y= a) ∅ c) (- ∞ ; 2]∪ [ 6 ; +∞ ) b) M(0 ; -1) d) M(1 ; 1) 2 x −4 + 1 là : x − 4x + 3 2 d) (-... 0 hàm số đồng biến trên R a < 0 hàm số nghòch biến trên R 2 Bảng biến thiên : X y = ax + b (a > 0) -∞ +∞ +∞ x y = ax + b (a < 0) -∞ -∞ +∞ +∞ -∞ B: VÍ DỤ Tìm hàm số bậc nhất y=f(x) biết đồ thò của nó đi qua 2 điểm A(0 ; 4) , B (-1;2) Vẽ đồ thò và lập bảng biến thiên của hàm số y = g ( x) = − f ( x) Hàm số bậc nhất có dạng y = ax + b , a ≠ 0 Giải b = 4 a = 2 ⇔ 2 = − a + b b = 4 Đồ thò hàm số qua . Làm các bài 50 đến hết bài 60 sách toán lớp 10 nâng cao Làm các bài 1.42 đến hết bài 1.50 sách bài tập toán lớp 10 nâng cao Chương II: HÀM SỐ §1: Đại cương. Tìm tập xác đònh của hàm số y=f(x). b) Tính f(0), f(2),f(-3),f(-1). Bài 4: Cho hàm số 2 ( ) 1f x x x = + − a) Tìm tập xác đònh của hàm số. b) Dùng bảng số