1. Trang chủ
  2. » Đề thi

67 đề đáp án thi HSG chuyên

407 19 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 407
Dung lượng 6,72 MB

Nội dung

https://nguyenthienhuongvp77.violet.vn/ SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐIỆN BIÊN KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP THCS NĂM HỌC 2018-2019 MƠN THI: TỐN Ngày thi: 09/4/2019 ĐỀ THI CHÍNH THỨC Câu (5,0 điểm)  x    Cho biểu thức P  1   :  1 x  x  x x  x  x  1     a) Rút gọn biểu thức P b) Tìm giá trị x để biểu thức Q  x  P nhận giá trị nguyên    Cho x  x  y  y   Tính giá trị biểu thức x3  y3  2019 Câu (4,0 điểm) Giải phương trình: x2  x   3x x   x  y   Giải hệ phương trình:  3 x   2  y3 Câu (3,0 điểm) Chứng minh: 1 1    1  n  * 2 1 3  2 n 1  n  1 n   n n Tìm giá trị nhỏ biểu thức: A  5x2  y  12 xy  24 x  48 y  82 Câu (6,0 điểm) Cho ABC có ba góc nhọn, nội tiếp đường tròn  O  Kẻ đường cao BE, CF ABC  E  AC, F  AB  Các đường cao BE, CF cắt (O) M N a) Chứng minh MN song song với EF ; OA vng góc với EF b) Gọi H trực tâm ABC Chứng minh CH CF  BH BE  BC 2 Cho điểm O thuộc miền ABC Các tia AO, BO, CO cắt cạnh BC , OA OB OC AC, AB G, E, F Chứng minh tổng   khơng phụ thuộc vào AG BE CF vị trí điểm O Câu (2,0 điểm) Chứng minh P  x3  3x2  3x  số phương x    Tìm x, y  thỏa mãn x  y  https://nguyenthienhuongvp77.violet.vn/ ĐÁP ÁN Câu 1 a) Điều kiện : x  0; x   x     1 P  1  : x    x  x x  x  x     x 1 x    P :  x    x   x  1 x   P    1   x 1 x x 1 : 1 x 1  x  1 x     x  1   x  1 x   x  x  1  x 1 x 1   x 1 x x 1 x   x 1 x 1 x 1 Q xP x  b) Để Q  x  x 1 x  x 1 1 x 1   1 x 1 x 1 x 1 x  ước  x 1 1  x  0(tm)     x   1  x  2(VN ) Vậy x  Q  2) Ta có: x    x  1 y  y   x  x   2 y  y   x  x   x  y  x   y  (1) Tương tự ta có: 4y    y  1 x  x   y  y    x  x   y  y   x  y  y   x  (2) https://nguyenthienhuongvp77.violet.vn/ Cộng vế với vế (1) (2) ta được:  x  y    x  y  Mặt khác x3  y3  2019   x  y   x  xy  y   2019  2019(Vi x  y  0) Câu 1.Đặt x  a, x   b  Ta có phương trình: 2a  b2  3ab    a  b  2a  b   TH1: a  b  x  x  x     13 x   13   x    x 2  x  x     13   x    TH2: 2a  b  x  x  x   x   x    x 1     x x   x     1  13  ;1 Vậy S       x  y  2(1)  DK : y   3x   2 (2)  y3 Cộng PT (1) với PT (2) ta được:      6  2x   x3     3x      x   x    3  y   y y  y y    https://nguyenthienhuongvp77.violet.vn/ TH1: x  thay vào phương trình (1) ta được: y    y  y     y  1 y    y y  y 1 x    y  2  x  1    2x 2x  TH2:   x        x2    30 y y y y  y     1   x      0(VN ) y y  Vậy hệ phương trình cho có nghiệm  x; y    2;1;  1; 2  Câu Ta có:  n  1  n   n n  n n    n  1 n   n  1  n 1  n   n   n   n  1 1    n   n n n n    n  1 n n n 1 1 1      2 1  n  1 n   n n   n  1 n   n  1 n 1 1 1       2 n n 1 1    1 2 1 n 1  n  1 n   n n Ta có: A  x  y  12 xy  24 x  48 y  82  2  9 y  12 y  x     x      x    x  24 x  82   A  3 y   x     x  x  18 A  3 y   x      x    2 A   y  x  8   x     2  https://nguyenthienhuongvp77.violet.vn/  16 3 y  x    x   A  Dấu xảy  x    x  x   GTNN A    16  y  Câu A M E F N O H C B D a) Ta có Tứ giác BFEC nội tiếp BCF  FEB (cùng chắn cung BF đường tròn ngoại tiếp tứ giác BFEC ) BCF  BMN (cùng chắn cung BN đường tròn (O))  BMN  FEB  MN / / FE (dfcm) (*) https://nguyenthienhuongvp77.violet.vn/ Ta có: OM  ON  R (1) Mặt khác : ECF  FBE (cùng chắn cung EF đường tròn ngoại tiếp tứ giác BFEC )  ECF  FBE  AM  AN  AM  AN (2) Từ (1) (2) suy OA đường trung trực MN ** Từ (*) (**)  OA  EF 1b) Gọi D giao AH với BC Ta có : AD  BC CH CD   CH CF  CB.CD(3) CDH CFB ( C chung; D  F  900 )  CB CF BH BD BDH BEC ( B chung; D  E  900 )    BH BE  BC.BD(4) BC BE Cộng vế với vế (3) (4) ta được: CH CF  BH BE  CB.CD  BD.BC  CH CF  BH BE  BC. CD  BD   BC 2 A E F O B C G Đặt S AOB  S1; S AOC  S2 ; SBOC  S3 Ta có: S1 BO S3 BO S S  S3 BO ;      S ABE BE S BEC BE S ABE S ABC BE (1) https://nguyenthienhuongvp77.violet.vn/ S3 CO S2 CO S S S  S3 CO ;       S BCF CF S ACF CF S BCF S ACF S ABC CF (2) S1 AO S2 AO S S S  S1 AO ; (3)       S ABG AG S AGC AG S ABG S AGC S ABC AG AO BO CO  S1  S2  S3     2 AG BE CF S ABC Cộng vế với vế: Vậy tổng AO BO CO khơng phụ thuộc vào vị trí điểm O   AG BE CF Câu  1   4 1) x     1  x 234 1 3    x   x3   x  1 1  x3   x  1   x3  3x  3x    x3  3x  3x    P   22 số phương 2) x  y  (5) Từ phương trình (5)  x lẻ  x  2m  1 m  Thay vào phương trình (5) ta được:  2m  1  y   4m2  4m  y   2m  m  1  y  2(6) Từ pt (6)  y chẵn  y  2k  k   Thay vào (6) : 2m  m  1   2k    2m  m  1  4k  2  m  m  1  2k  (7) Ta thấy VT phương trình (7) chẵn; VP phương trình (7) lẻ Vậy phương trình cho khơng có nghiệm ngun  https://nguyenthienhuongvp77.violet.vn/ SỞ GD&ĐT HÀ NỘI ĐỀ CHÍNH THỨC KỲ THI CHỌN HỌC SINH GIỎI CÁP THÀNH PHỐ LỚP NĂM HỌC 2018-2019 MƠN TỐN Bài a) Giải phương trình:  x   x       b) Cho S  1  1   .1   tích 2019 thừa số  2.3  3.4   2020.2021  Bài a) Biết a, b số nguyên dương thỏa mãn a  ab  b2 chia hết cho Chứng minh a b chia hết cho b) Tìm số nguyên dương n cho 9n  11 tích k  k  ; k   số tự nhiên liên tiếp Bài a) Cho x, y, z số thực dương nhỏ Chứng minh số 1 1 1  ;  ;  ln ln tồn x 4 y y 4 z z 4 x số lớn b) Với số thực dương a, b, c thỏa mãn a2  b2  c2  2abc  Tìm GTLN biểu thức P  ab  bc  ca  abc Bài Cho tam giác ABC vuông A AB  AC  Đường tròn  I  nội tiếp tam giác ABC tiếp xúc với cạnh BC, CA, AB D, E, F Gọi S giao điểm AI DE a) Chứng minh IAB EAS b) Gọi K trung điểm AB, O trung điểm BC Chứng minh ba điểm K , O, S thẳng hàng c) Gọi M giao điểm KI AC Đường thẳng chứa đường cao AH tam giác ABC cắt đường thẳng DE N Chứng minh AM  AN Bài Xét bảng vng cở 10 10 gồm có 100 hình vng có cạnh đơn vị Người ta điền vào ô vuông bảng số nguyên tùy ý cho hiệu hai số điền hai ô chung cạnh có giá trị tuyệt đối không vượt Chứng minh tồn số nguyên xuất bảng lần https://nguyenthienhuongvp77.violet.vn/ ĐÁP ÁN Bài a  b  3    2 x a  2  x  a a) ĐKXĐ: x  Đặt    a   b    x b     x b     b   a Do : a  b   a  1  a  a    a  a  1 a     a    a  2 2  x  TH 1: a   b     x  2(tm)   x 1  2  x  TH : a   b     x  1(tm) x    2  x  8 TH 3: a  2  b     x  10(tm) x    Vậy S  1;2;10 b) Với n * ta có: n2  n   n  1 n     1 Thay n  2;3 .;2020 ta có: n  n  1 n  n  1 n  n  1 S 1.4 2.5 3.6 2019.2022 1.2.3 2019   4.5.6 2022 2022 337    2.3 3.4 4.5 2020.2021  2.3.4 2020  3.4.5 .2021 2020.3 1010 Bài 2 a) Ta có :  a  ab  b2    a  ab  b2   3 a  b    a  b   (*)   2  3 a  b    a  b     a  b    a  b  Từ (*) ta lại suy ra:    a  b  a 2  2a   3 a  b    a  b    a  b  Do  b  a  b  b) Nhận xét : tích số tự nhiên liên tiếp chia hết cho Ta thấy với n ngun dương 9n  11 khơng chia hết k  https://nguyenthienhuongvp77.violet.vn/ Đặt 9n  11  a  a  1 với a nguyên dương Ta có 9n  11  a  a  1  4.9n  45  4a  4a    2a  1   2.3n   45   2a   2.3n  2a   2.3n   45 2 Vì a, n nguyên dương nên 2a   2.3n  Ta có trường hợp sau: n 2a   2.3   4a   14  a   9n  11  12  n  0(ktm) TH 1:  n 2a   2.3  n 2a   2.3  15  4a   18  a   9n  11  20  n  1(tm) TH :  n 2a   2.3  2a   2.3n  45  4a   46  a  11  9n  11  132  9n  121(ktm) TH 3:  n 2a   2.3  Vậy n  1, k  thỏa mãn toán Bài 1 1 1  0;   0;   Áp dụng BĐT Bunhia ta có: a) Ta có :  x 4 y y 4 z z 4 x  1 1 1    y  y   z  z   x 36   x   x y y z z x 4      1 1 1    x   y  y   z  z   x        x 4 y y 4 z z 4 x 1 1 1  1  1   ;  ; Do số             x 4 y y 4 z  x 4 y  y 4 z  z 4 x 1 ;  ln ln tồn số lớn z 4 x b) Ta có 2P   ab  bc  ca   2abc   ab  bc  ca   a  b2  c    a  b  c   Mặt khác : a2  b2  c2  2abc   a2b  2abc  c2   a  b2  a 2b2   ab  c  2   a  b   a  b2   a  b2 ab c  1  a 1  b       c  2   2 10 https://nguyenthienhuongvp77.violet.vn/ ĐÁP ÁN Câu x  1  1a) A    x  1 x  2  x  1  x  x    x     x  1 x  2 x  4 x  x     x  1 x  1 x    x  1 x   x 2 1 x  5  Với x  ta có: x   nên x 1 x 1  Giá trị lớn A  x  Do A  5  x 1 Câu 1b) A  2.1 x 1   x   x  1  x   (1) Điều kiện 1  x  t2  Đặt x    x  t    x  1  x   t  1(ktm) t2  Phương trình (1) trở thành: t  1  t  3(tm)  x  0(tm) 32     x  3x    t    x  1  x    x  3(tm) Vậy S  0;3 2    x    y   y   x  y  (1) 2.2      x x y xy      2 x   x  y   xy   (2) Thế  x  y từ phương trình (1) vào phương trình (2) ta được: 2x3   x  y   x  xy  y   x3  y  x  y Thay x  y vào phương trình (1) ta được: x2   x   Hệ phương trình có nghiệm   2; ;  2;  Câu  Có :  a  b    a  b2   n4   n3   hay n3  n     393 6 x 1 https://nguyenthienhuongvp77.violet.vn/ Nếu n  n3  n     n3   0(ktm)  n 0;1;2 Với n  0;1 Khơng có số ngun a, b thỏa mãn  a  1; b  Với n    (tm) Vậy  n; a; b   2;1;3 ; 2;3;1   a  3; b  Câu O1 C I A O H MB D O2 F E a) Chỉ IM / / AE suy MIH  EAH , mà EAH  ECH nên MIH  MCH Suy tứ giác CIMH nội tiếp b) Chỉ ED tiếp tuyến  O  suy HED  HCE Do tứ giác CIMH nội tiếp nên CHM  900 suy HCM  HMC  900 394 (1) https://nguyenthienhuongvp77.violet.vn/ Mà HMD  HMC  900 nên CHM  HMD (2) Từ (1) (2) suy HED  HMD nên tứ giác EMHD nội tiếp Do HDM  HEM mà HEM  HCM mà HDM  HCD Từ chứng minh BD tiếp tuyến  O1  c) Sử dụng tính chất đường nối tâm vuong góc với dây chung ta có: OO2  HE, O2O1  HD ED  HD suy OO2  O2O1 Chỉ COM  450 suy CAE  450 nên O2OO1  450 Tam giác O2OO1 vuông cân O2 Chỉ tam giác OCDE hình vng cạnh R O2 trung điểm DE 5R 5R Vậy diện tích tam giác OO1O2 Tính O2O  Câu 5.1 Từ giả thiết ta có:  a  1 b  1 c  1  1  a 1  b 1  c   Suy  a  1 b  1 c  1  1  a 1  b 1  c   Rút gọn ta có: 2  ab  bc  ca   Mặt khác :  a  b  c   a  b2  c   ab  bc  ca    a  b2  c  2  ab  bc  ca   a  b2  c  Dấu "  " xảy hạn a  0, b  1, c  1 5.2 Xét tứ giác ABCD thỏa mãn đề Gọi C  0; c  ; D  0; d  c  d  , suy c.d  p8 p9  p17 Tứ giác ABCD nội tiếp OC.OD  OAOB (1) Do p nguyên tố c, d nguyên dương nên có cặp  c; d  với c  d thỏa mãn (1) :  p ;1 ,  p 17 16 ; p  , ,  p9 , p8  Vậy có tứ giác thỏa mãn đề 395 https://nguyenthienhuongvp77.violet.vn/ PHÒNG GD-ĐT HỒNG LĨNH KỲ THI CHỌN HỌC SINH GIỎI THỊ XÃ LỚP NĂM HỌC 2018-2019 ĐỀ THI CHÍNH THỨC Mơn : TỐN I PHẦN GHI KẾT QUẢ (Thí sinh cần ghi kết quẩ vào giấy thi) Câu Tính giá trị biểu thức A  28  10   Câu Giả sử * phép toán thỏa mãn với số nguyên x, y, ta có x * y  x y  x  y (với phép toán nhân   , phép cộng    thơng thường Tìm số ngun khơng âm x, y biết x * y  Câu Tìm  x; y  biết x  y  x  y  2 100 Câu Cho số thực không âm a, b thỏa mãn a biểu thức B  a  b100  a101  b101  a102  b102 Tính giá trị  b2019 Câu Cho C  999 99 Tính tổng chữ số C 2018 2018 cs 1 1 ; ; ; ; ; Tìm số hạng thứ 12 dãy 10 17 26 2018 Câu Tìm giá trị nhỏ biểu thức P  x  2018x  2018 Câu Cho  góc nhọn thỏa mãn tan   cot   Giá trị D  sin .cos  ? Câu Tam giác ABC vuông A, biết AC  16cm, AB  12cm Các đường phân giác ngồi góc B cắt đường thẳng AC D E Tính DE Câu 10 Cho tam giác ABC vng A, phân giác góc B C cắt I, gọi H hình chiếu I BC.Giả sử BH  5cm, CH  7cm Tính diện tích tam giác ABC Câu Cho dãy số II PHẦN TỰ LUẬN (Thí sinh trình bày lời giải vào giấy thi) Câu 11 a) Tính giá trị biểu thức 1 1     2 3 4 99 100  100 99 b) Giải phương trình:  x  14  x   x  15 x  38 Q x  x y  y  x y  x  y 3 Câu 12 Cho O trung điểm đoạn AB Trên nửa mặt phẳng có bờ đường thẳng AB vẽ tia Ax, By vng góc với AB Trên tia Ax lấy điểm C (khác A), qua O kẻ đường thẳng vng góc với OC cắt tia By D a) Chứng minh AB  AC.BD b) Kẻ OM vng góc với CD M Chứng minh AC  CM c) Từ M kẻ MH vng góc với AB H Chứng minh BC qua trung điểm MH c) Chứng minh nếu: Câu 13 Hai phụ nữ An, Chi hai người đàn ơng Bình, Danh vận động viên Một người vận động viên bơi lội, người thứ hai vận động viên trượt băng, người thứ ba vận động viên thể dục dụng cụ người thứ tư vận động viên cầu lơng Có ngày nọ, họ ngồi xung quanh bàn vuông (mỗi người ngồi cạnh người) Biết (i) Chi Danh ngồi cạnh (ii) Vận động viên thể dục dụng cụ ngồi đơi diện Bình (iii) Vận động viên bơi lội ngồi bên trái An (iv) Một người phụ nữ ngồi bên trái vận động viên trượt băng Hãy cho biết người vận động viên chơi mơn ? 396 https://nguyenthienhuongvp77.violet.vn/ ĐÁP ÁN Câu A  Câu  x; y   1;4  ;  4;1 ;  0;9  ;  9;0  Câu  x; y   1;2  Câu B  0,1,2 Câu Ta có :      C  999 992   999 992  1    999 99  1 999 99  1  2018 CS  2018 CS   2018 CS  2018 CS   999 98.102018   999 98000 001 2017 CS 2017 CS 2017 CS Vậy tổng chữ số C 9.2018  18162 1 1 1 Câu Số hạng thứ 12 dãy ; ; ; ; 10 17 26 145 Câu Giá trị nhỏ biểu thức P  x2018  2018x  2018 P  x 2018       2018 x  2017 so P  2018.2018 x 2018 1.1.1  2018 x   P  Min P   x  1 Câu D  Câu DE  30cm Câu 10 Diện tích tam giác ABC  5.7  35(cm2 ) Câu 11 Với số nguyên k , ta có : 1  k k    k  1 k k  k  1 k   k   k 1  k k  k  1   1  k k 1 Cho k  1.2.3 99 , ta được: 1 1 Q     2 3 4 99 100  100 99   1   1                 2  3  4 100    99 1    100 10 b) Điều kiện x  5 397 https://nguyenthienhuongvp77.violet.vn/ ta viết lại phương trình:  x  14 x   x2  15x  38   x   x    x     x  5  16 Đặt a  x  7; b  x  Khi phương trình cho trở thành: a  b  2ab  a  b2   a  b   16    a  b  4 Nếu a  b   x   x    x  Nếu a  b  4  x   x   4  x   x    0(*) Dễ có phương trình * vơ nghiệm vì: t  t   có   23  Vậy phương trình cho có nghiệm x  1 c) Đặt a  x , b  y  a  0, b  0 x  x y  y  x y   a  a 6b  b  a 3b  Ta có:  a3  a 2b  b3  ab   a  a  b   b2  a  b    a a  b  b a  b    a  b a  b   a  b   a  b  Hay x2  y  Câu 12 D I B C A K H B O a) Chứng minh OAC DBO( g.g ) 398 https://nguyenthienhuongvp77.violet.vn/ OA AC AB AB    OA.OB  AC.BD   AC.DB  AB  AC.BD(dfcm) DB OB 2 OC AC b) Theo câu a ta có: OAC DBO( g.g )   OD OB OC AC OC OD Mà OA  OB     OD OA AC OA Chứng minh OCD ACO(c.g.c)  OCD  ACO Chứng minh OAC  OMC (ch  gn)  AC  MC (dfcm) c) Ta có OAC  OMC  OA  OM , CA  CM  OC trung trực AM  OC  AM Mặt khác OA  OM  OB  AMB vng M  OC / / BM (vì vng góc với AM ) hay OC / / BI Chứng minh C trung điểm AI Do MH / / AI theo hệ định lý Talet ta có: MK BK KH   IC BC AC Mà IC  AC  MK  HK  BC qua trung điểm MH (đpcm) Câu 13 Vì Chi Danh ngồi cạnh nên ta giả sử Chi Danh ngồi tên hai cạnh liên tiếp hình vng ABCD Khi ta có trường hợp: Danh (nam) TDDC An (nữ) Chi (nữ) Bình (nam) Bơi lội Trường hợp 1: hình 399 https://nguyenthienhuongvp77.violet.vn/ +Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Danh vận động viên thể dục dụng cụ (TDDC) +Vận động viên bơi lội ngồi bên trái An nên Bình vận động viên bơi lội Khi Chi An hai vận động viên bạn nữ trược băng cầu lông, điều nầy trái với mệnh đề “Một phụ nữ ngồi bên trái vận động viên trượt băng” Danh (nam) Bình (nam) Chi (nữ) TDDC An (nữ) Trường hợp 2, hình +Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Chi vận động viên thể dục dụng cụ (TDDC) Chi vận động viên ngồi bên trái An nên không thỏa mãn “Vận động viên bơi lội ngồi bên trái An” Trường hợp 3, hình Chi (nữ) Danh (nam) TDDC Bình (nam) An (nữ) Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Chi vận động viên thể dục dụng cụ (TDDC) nên Danh vận động viên TDDC vận động viên bên trái An nên Danh không thỏa mãn với “vận động viên bơi lội ngồi bên trái An” Trường hợp Hình 400 https://nguyenthienhuongvp77.violet.vn/ Chi (nữ) TDDC Danh (nam) Trượt băng An (nữ) Cầu lơng Bình (nam) Bơi lội +Vì vận động viên thể dục dụng cụ ngồi đối diện Bình nên Chi vận động viên thể dục dụng cụ (TDDC) +Vận động viên bơi lội ngồi bên trái An nên Bình vận động viên bơi lội +Một phụ nữ ngồi bên trái vận động viên trượt băng nên trường hợp Danh vận động viên trượt băng Do An vận động viên cầu lông Vậy +An vận động viên cầu lơng +Bình vận động viên bơi lội +Chi vận động viên TDDC +Danh vận động viên trượt băng 401 https://nguyenthienhuongvp77.violet.vn/ ĐỀ THI CHỌN HỌC SINH GIỎI HUYỆN NĂM HỌC 2018-2019 Mơn: TỐN LỚP Thời gian: 150 phút UBND HUYỆN KHỐI CHÂU PHỊNG GIÁO DỤC & ĐÀO TẠO ĐỀ CHÍNH THỨC Bài (3,0 điểm) Cho biểu thức : P  a) Rút gọn P b) Tìm x để P  x x  26 x  19 x x 3   x x 3 x 1 x 3  x   10 x c) Tìm GTNN P Bài (3,0 điểm) a) Cho x      Tính giá trị biểu thức P  x3  3x2  x  b) Chứng minh : 1 1      1 2 3 4037 2018  2019         Bài (3,0 điểm) Cho hàm số y   2m  3 x  (1) a) Tìm m để đồ thị hàm số 1 qua điểm  2; 3  b) Đồ thị 1 đường thẳng cắt trục tọa độ tạo thành tam giác có diện tích Bài (4,0 điểm) mx  y  ( m tham số) a) Cho hệ phương trình :     x my m  Tìm m để hệ có nghiệm  x; y  thỏa mãn x  y  m 1 b) Giải phương trình :  x8  x3   x  11x  24   Bài 5.(6,0 điểm) Cho đường tròn  O; R  , hai đường kính AH DE Qua H kẻ tiếp tuyến với đường tròn  O  cắt AD AE kéo dài B C Gọi M , N trung điểm BH HC a) Chứng minh DM , EN tiếp tuyến đường tròn  O; R  b) Chứng minh trực tâm I tam giác AMN trung điểm OH c) Hai đường kính AH DE  O; R  phải thỏa mãn điều kiện để diện tích tam giác AMN bé 61 Bài (1,0 điểm) Cho x  Tìm GTNN biểu thức S  x  x   2x 402 https://nguyenthienhuongvp77.violet.vn/ ĐÁP ÁN Bài a)ĐKXĐ: x  0, x  x x  26 x  19 x   x2 x 3 x 1 P      x  1 x  3  x  1 x  3  x x x  26 x  19    x 3 x 3 x 3   x  1 x 3  x  3 x 1 x x  26 x  19  x  x  x  x    x 1 x x  16 x  x  16  x 1  x   10 x b) P   x 3  x 3   x  x  16    x  16    x 1 x 3    x  16     x  16  x  1 x  3 x  x 1  x  16 x 3   x   10 x  x  16  10 x  x  10 x  16   x   x  64   x   x  c) P  25 25  x  16 x   25    x 3   x 3 6 x 3 x 3 x 3  x 3 Áp dụng BĐT Cơ si ta có: x 3 25 2 x 3 Do P  10   Vậy Cmin   x  403   x 3 25  10 x 3 https://nguyenthienhuongvp77.violet.vn/ Bài a) x       62 62  1  2  1 1  1  1 2   1 2    1 1 Suy x   nên x2  x  Có P  x3  3x  x   x  x  x    x  x   x  Thay x2  x  1vào biểu thức P  x   x   Vậy P  b) Có:  2n  1  n  n 1  n 1  n n 1  n n 1  n  1        Do 2n  n 1  4n  4n  4n  4n  n  đó:  1   5 2    3    4037  2018  2019 1 1 1 1   1          2 2 3 2018 2019  1   1   2 2019  Bài a) Vì đồ thị hàm số 1 qua điểm  2; 3  Nên tọa độ  2; 3 thỏa mãn phương trình (1) Thay x  2; y  3 vào pt (1) ta được:  2m  3. 2    3  m  b) Xét OAB vuông O 404  https://nguyenthienhuongvp77.violet.vn/ 1 1  SOAB  OA.OB  2 2m  6 2m  1  2m    2m    6 19  m   12 Vậy m  19 ;17     17 12 12   m   12  Bài  b) ĐKXĐ: x  3 x8  x3       x  11x  24    x   x     x  11x  24   x8  x  11x  24   x   x   x8   x  1 x8  x3  x8  x3   x  1   x8  x3 0  x   x  3(VL)   x  7   x  1   x  1    x  2   x   x      Kết hợp ĐKXĐ có x  2 a) Từ 1 có y   mx Thay vào (2) x  m   mx   2m   1  m2  x   m Hệ có nghiệm m  1 m 2m   ; y  3 Ta có : x  m 1 m 1 m 1 2m    Để x  y  m 1 m 1 m 1 m 1 Do 2m    m  405 x8  x3  https://nguyenthienhuongvp77.violet.vn/ Bài A E O D K I N B M C H a) ODH  OHD (vì DHO cân O) MDH  MHD (vì DM trung tuyến BDH vuông D) ADHE hình chữ nhật  OHD  MHD  900  ODH  MDH  900  MD  DO  MD tiếp tuyến  O; R  Tương tự NE tiếp tuyến  O; R  b) Gọi I trung điểm OH , gọi K giao điểm MI AN AH CH  ABC vuông A, đường cao AH  AH  BH CH  BH AH AH CH OH NH      BHO AHN (cgc) BH AH 2.BH AH  OBH  NAH  BO  AN Lại có MI đường trung bình HBO  MI / / BO  MK  AN Mặt khác AH  MN Vậy trung điểm I OH trực tâm tam giác AMN 406 https://nguyenthienhuongvp77.violet.vn/ AH MN R R  R.MN   BH  HC   BH HC  R AH  R 2 2 Đẳng thức xảy  BH  HC  ABC vuông cân A  AH  DE Vậy MinS AMN  2R  AH  DE c) Ta có S AMN  Bài 61  3      x     x    13 Ta có : S  x  x  2x  2  2x  Áp dụng bất đẳng thức Cô si cho số dương: 9  2 x  Dấu "  " xảy 2x  2x 2x  4 x  2 x  x 2x    x   x  3  Mà  x     x  Dấu "  " xảy x  2  3    Nên S   x     x    13    13  19 Dấu "  " xảy x  2  2x   Vậy MinS  19  x  407 ... 18 https://nguyenthienhuongvp77.violet.vn/ SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH LẠNG SƠN KỲ THI CHỌN HỌC SINH GIỎI TỈNH LỚP THCS NĂM HỌC 2018-2019 MƠN THI: TỐN Ngày thi: 23/3/2019 ĐỀ THI CHÍNH THỨC Câu... đường thẳng qua E vng góc với AD đường thẳng qua F vng góc với BC So sánh GA GB 25 https://nguyenthienhuongvp77.violet.vn/ ĐÁP ÁN Câu a) ĐKXĐ: x  3, x  Ta có: A  1  x     x  1 x 1... HG  AB mà HA  HB GAB cân G nên GA  GB 28 https://nguyenthienhuongvp77.violet.vn/ SỞ GIÁO DỤC VÀ ĐÀO TẠO GIA LAI ĐỀ CHÍNH THỨC ĐỀ THI HỌC SINH GIỎI CẤP TỈNH MƠN: TỐN LỚP NĂM HỌC : 2018-2019

Ngày đăng: 05/04/2020, 14:46

TỪ KHÓA LIÊN QUAN

w