1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Mitsu 14 TECHNICAL DATA

52 51 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 52
Dung lượng 497,48 KB

Nội dung

TECHNICAL DATA RECOMMENDED CUTTING CONDITIONS FOR TURNING G002 RECOMMENDED CUTTING CONDITIONS FOR DIMPLE BARS G004 RECOMMENDED CUTTING CONDITIONS FOR BORING BARS G005 TROUBLE SHOOTING FOR TURNING G006 REDUCING COSTS WITH CUTTING TOOLS FOR TURNING G008 EFFECTS OF CUTTING CONDITIONS FOR TURNING G009 FUNCTION OF TOOL FEATURES FOR TURNING G011 FORMULAE FOR CUTTING POWER G015 RECOMMENDED CUTTING CONDITIONS FOR FACE MILLING G016 TROUBLE SHOOTING FOR MILLING G017 FUNCTION OF TOOL FEATURES FOR FACE MILLING G018 FORMULAE FOR MILLING G020 TROUBLE SHOOTING FOR END MILLING G022 PITCH SELECTION OF PICK FEED G023 END MILL FEATURES AND SPECIFICATION G024 TROUBLE SHOOTING FOR DRILLING G026 FORMULAE FOR DRILLING G027 DRILL FEATURES AND SPECIFICATION G028 TOOL WEAR AND DAMAGE G030 CUTTING TOOL MATERIALS G031 GRADE CHAIN G032 GRADES COMPARISON TABLE G033 INSERT CHIP BREAKER COMPARISON TABLE G038 MATERIAL CROSS REFERENCE LIST G040 SURFACE ROUGHNESS G044 HARDNESS COMPARISON TABLE G045 FIT TOLERANCE TABLE (HOLE) G046 FIT TOLERANCE TABLE (SHAFT) G048 TAPER STANDARD G050 DRILL DIAMETERS FOR TAPPING G051 HEXAGON SOCKET HEAD BOLT HOLE SIZE / INTERNATIONAL SYSTEM OF UNITS G052 G001 TECHNICAL DATA RECOMMENDED CUTTING CONDITIONS FOR TURNING Recommended Cutting Conditions and Grades 160 Alloy Steel 280 350 HB Austenitic < Stainless 200 Steel HB Semi-Heavy Medium Cutting Light Cutting Cutting < 1.0 < 0.3 SY Dry 290 (235 ņ 335) 1ņ6 MS Dry 350 (260 ņ 440) UE6110 4ņ9 0.6 (0.5 ņ 0.8) high speed cutting to fracture during interrupted cutting a Continuous cutting a Easy a Easy UE6110 0.4 (0.2 ņ 0.6) Problem/Condition a Long chips when finishing a Rapid wear occurrence in NX3035 Countermeasure FY Breaker UE6020 MS Breaker UE6020 Wet cutting is possible to fracture during interrupted cutting a Poor finished surface a Continuous cutting UE6020 or MH or MA Breaker a Easy to fracture a Continuous cutting UE6020 or GH Breaker Wet cutting is possible a Long chips when finishing a Rapid wear occurrence FH Breaker UE6005 a Easy to fracture during UE6020 or MV Breaker a Continuous cutting a High feed cutting(f > 0.3) a Rapid wear occurrence Wet cutting is possible SW Breaker UE6005 a Easy to fracture during UE6020 or MH Breaker NX3035 Wet cutting is possible MH Dry 350 (260 ņ 440) UE6110 < 1.0 < 0.3 SH Dry 280 (210 ņ 355) UE6110 1ņ6 0.4 (0.2 ņ 0.6) 260 (190 ņ 325) UE6110 4ņ9 0.6 (0.5 ņ 0.8) GH Dry when high speed cutting interrupted cutting when high speed cutting MV Dry interrupted cutting a Long chips a High feed cutting(f > 0.4) a Continuous cutting SH Breaker GH Breaker or MW Breaker Wet cutting is possible a Rapid wear occurrence and short tool life a Easy to fracture UE6005 a Rapid wear occurrence UE6005 when high speed cutting a Easy to fracture a Long chips a Interrupted cutting UE6020 FH Breaker Dry cutting a Easy to fracture a Interrupted cutting UE6020 or GH Breaker Dry cutting a Long chips a Easy to fracture a Poor finished surface FH Breaker US735 MS Breaker NX3035(ap < 0.5) a Rapid wear occurrence and short tool life a Easy to fracture a Long chips US7020 or lower cutting speed MA Breaker MA Breaker a Easy to fracture a Interrupted cutting UE6020 UE6020 a Rapid wear occurrence and short tool life a Easy to fracture a Interrupted cutting RT9005 a Rapid RT9005 UE6020 250 (180 ņ 310) < 1.0 < 0.3 Water Soluble Oil Water 1ņ4 1.0 < 0.3 Soluble (0.2 ņ 0.4) Oil 0.2 < Water Soluble Oil Water 1ņ4 0.3 Soluble (0.2 ņ 0.4) Oil UE6110 SH 180 (120 ņ 230) UE6110 MH 170 (120 ņ 210) US735 SH 140 (95 ņ 185) US735 MS 120 (85 ņ 155) UE6110 High Manganese Steel < 200HB Pure Titanium 0.15 Soluble < 200HB 0.5 ņ 1.5 (0.1 ņ 0.2) Oil Titanium Alloy G002 280 HB ņ TECHNICAL DATA Carbon Steel ņ RECOMMENDED CUTTING CONDITIONS FOR TURNING Mild Steel Semi-Heavy Medium Cutting Light Cutting Cutting 160 HB Medium Cutting Light Cutting Medium Cutting Light Cutting < When Recommended Conditions are Insufficient Depth Feed Recommended Cutting Speed and Grades Breaker Coolant of Cut 100 200 300 400 (mm/rev) (mm) Work Material 1ņ4 0.2 (0.1 ņ 0.4) MS Dry 170 (120 ņ 210) Water Water 0.15 < 350HB 0.5 ņ 1.5 (0.1 ņ 0.2) Soluble Oil RT9010 MJ 100 (80 ņ 120) RT9010 MJ 70 (40 ņ 90) wear occurrence and short tool life a Easy to fracture a Interrupted cutting TF15 or GJ Breaker Use cutting oil TF15 or GJ Breaker Use cutting oil Recommended Cutting Conditions and Grades a Rapid wear and short tool life VP10RT MJ MJ Dry 1ņ4 Water 0.3 Soluble (0.2 ņ 0.4) Oil Die Steel High Speed Steel 50 ņ 60 HRC < 350 Gray Cast Iron N/mm2 < 450 N/mm2 -0.5 Water 0.2 (0.1 ņ 0.3) Soluble Oil 1ņ6 Water 0.4 Soluble (0.2 ņ 0.6) Oil 1ņ6 Water 0.4 Soluble (0.2 ņ 0.6) Oil Ductile Cast Iron < 500 ņ 800 N/mm2 Malleable Iron 1ņ6 Water 0.4 Soluble (0.2 ņ 0.6) Oil 1ņ6 Water 0.4 (0.2 ņ 0.6) Soluble Oil Chilled Cast Iron Aluminium Alloy 1ņ6 1ņ6 Water 0.4 Soluble (0.2 ņ 0.6) Oil Water 0.4 Soluble (0.2 ņ 0.6) Oil Copper Alloy 1ņ6 Water 0.4 (0.2 ņ 0.6) Soluble Oil UE6110 MH 1ņ4 0.2 (0.1 ņ 0.3) cutting Countermeasure MB730 (Cutting speed vc=100ņ 250) VP05RT Increase lead angle to 30°ņ 60° Use cutting oil VP15TF wear and short tool life a Hardness > 35HRC a Lead angle < 15° VP05RT a Rapid wear and short tool life a Interrupted cutting UE6005 a Rapid wear and short tool life a Lead angle < 15° MBC10 (Cutting speed vc=80 ņ 250) Increase lead angle to 30°ņ 60° a Rapid wear and short tool life a Easy to fracture UC5105 a Rapid wear and short tool life a Easy to fracture UC5105 a Rapid wear and short tool life a Easy to fracture UC5105 a Rapid wear and short tool life a Easy to fracture (interrupted cutting) UC5105 a Rapid wear and short tool life a Easy to fracture (interrupted cutting) UC5105 a High speed cutting MD220 (Cutting speed vc=200 ņ 1500) a High speed cutting MD220 (Cutting speed vc=200 ņ 1200) VP05RT Increase lead angle to 30°ņ 60° UE6020, Dry cutting 210 (150 ņ 260) MBC020 Flat Top 200 (80 ņ 250) UC5115 Standard 230 (160 ņ 295) UC5115 Standard 200 (160 ņ 295) UC5115 Standard 150 (100 ņ 200) UC5115 Standard 150 (100 ņ 200) UC5115 Standard 150 (100 ņ 200) HTi10 High Rake Breaker 400 (200 ņ 600) HTi10 230 (150 ņ 300) MB710 Sintered Alloy Steel angle < 15° a Rapid 30 (20 ņ 40) 200 ņ 280HB a Lead a Interrupted 40 (20 ņ 50) VP10RT 0.15 0.5 ņ 1.5 (0.1 ņ 0.2) Problem/Condition Dry 200 (150 ņ 250) High Rake Breaker Flat Top a Low carbon steel a Medium carbon steel a High carbon steel a Thermal resistance UE6005 No breaker, chamfer honing, dry cutting UE6005 No breaker, chamfer honing, dry cutting UE6005 No breaker, chamfer honing, dry cutting UE6005 No breaker, chamfer honing, dry cutting UE6110 No breaker, chamfer honing, dry cutting RECOMMENDED CUTTING CONDITIONS FOR TURNING Nickel Base Alloy Water 0.15 (Inconel, 0.5 ņ 1.5 Soluble (0.1 ņ 0.2) Oil Waspalloy) Stellite ( < 35HRC) When Recommended Conditions are Insufficient Depth Feed Recommended Cutting Speed and Grades Breaker Coolant of Cut 100 200 300 400 (mm/rev) (mm) TECHNICAL DATA Work Material Cutting speed vc=200 ņ 250 Cutting speed vc=180 ņ 220 Cutting speed vc=150 ņ 180 Cutting speed vc=100 ņ 150 G003 TECHNICAL DATA RECOMMENDED CUTTING CONDITIONS FOR DIMPLE BARS Work Material P Cutting Mode Finish Cutting Mild Steel < 180HB Light Cutting TECHNICAL DATA RECOMMENDED CUTTING CONDITIONS FOR DIMPLE BARS Medium Cutting Finish Cutting Carbon Steel Alloy Steel 180ņ280HB Light Cutting Medium Cutting M Finish Cutting Stainless Steel 180ņ280HB Light Cutting Medium Cutting K Cast Iron Tensile Strength < 350N/mm2 H Heat Treated Steel 35 ņ65HRC Grade z NX2525 170 (120ņ 220) 0.10 (0.05 ņ 0.15) ņ 0.5 0.10 (0.05 ņ 0.15) ņ 0.5 z NX3035 150 (110 ņ 190) 0.20 (0.10 ņ 0.25) ņ 1.0 0.15 (0.05 ņ 0.20) ņ 1.0 x VP15TF 180 (130 ņ 230) 0.20 (0.10 ņ 0.25) ņ 1.0 0.15 (0.05 ņ 0.20) ņ 1.0 z NX3035 140 (100ņ 180) 0.25 (0.15 ņ 0.35) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.5 x VP15TF 160 (110ņ 210) 0.25 (0.15 ņ 0.35) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.5 z VP15TF 140 (90 ņ 190) 0.10 (0.05 ņ 0.15) ņ 0.5 0.10 (0.05 ņ 0.15) ņ 0.5 x NX2525 130 (80 ņ 180) 0.10 (0.05 ņ 0.15) ņ 0.5 0.10 (0.05 ņ 0.15) ņ 0.5 z VP15TF 130 (80 ņ 180) 0.20 (0.10 ņ 0.25) ņ 1.0 0.15 (0.05 ņ 0.20) ņ 1.0 x UE6020 140 (90 ņ 190) 0.20 (0.10 ņ 0.25) ņ 1.0 0.15 (0.05 ņ 0.20) ņ 1.0 z VP15TF 120 (70 ņ 170) 0.25 (0.15 ņ 0.35) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.5 x UE6020 130 (80 ņ 180) 0.25 (0.15 ņ 0.35) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.5 z VP15TF 150 (110ņ 190) 0.10 (0.05 ņ 0.15) ņ 0.5 0.10 (0.05 ņ 0.15) ņ 0.5 z US7020 150 (110ņ 190) 0.20 (0.10 ņ 0.25) ņ 1.0 0.15 (0.05 ņ 0.20) ņ 1.0 x VP15TF 130 (90 ņ 170) 0.20 (0.10 ņ 0.25) ņ 1.0 0.15 (0.05 ņ 0.20) ņ 1.0 z US7020 140 (100ņ 180) 0.20 (0.15 ņ 0.25) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.0 x VP15TF 120 (80 ņ 160) 0.20 (0.15 ņ 0.25) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.0 SV MV F FS SV MV F FS SV MV F FS z HTi10 130 (90 ņ 160) 0.15 (0.10 ņ 0.20) ņ 0.5 0.15 (0.10 ņ 0.20) ņ 0.5 Medium Cutting MV z US7020 90 (60 ņ 120) 0.20 (0.15 ņ 0.25) ņ 2.0 0.20 (0.15 ņ 0.25) ņ 1.5 Finish Cutting Flat Top z MB825 100 (80 ņ 200) 0.10 (0.05 ņ 0.15) ņ 0.15 0.10 (0.05 ņ 0.15) ņ 0.1 F FS z HTi10 300 (200ņ 400) 0.10 (0.05 ņ 0.15) ņ 0.5 0.10 (0.05 ņ 0.15) ņ 0.5 Flat Top z MD220 200 (150ņ 250) 0.10 (0.05 ņ 0.15) ņ 2.0 0.10 (0.05 ņ 0.15) ņ 1.0 Finish Cutting (Note 1) When vibrations occur, reduce cutting speed by 30% (Note 2) The depth of cut needs to be less than the nose diameter when using FSVJ type G004 l/d=4 ņ (Steel shank) l/d=7 ņ (Carbide shank) Feed D.O.C (mm/rev) (mm) Finish Cutting N Aluminium Alloy F FS l/d < (Steel shank) l/d < (Carbide shank) D.O.C Feed (mm) (mm/rev) Cutting Speed (m/min) RecomBreaker mendation RECOMMENDED CUTTING CONDITIONS FOR BORING BARS y S TYPE, F TYPE BORING BAR Work Material Cutting Mode Hardness < l / d= – (Shank Diameter > &25mm) D.O.C Cutting Speed Feed D.O.C (m/min) (mm) (mm/rev) (mm) Feed (mm/rev) Light Cutting 130 (90 – 160) 0.1 (0.05 – 0.15) 0.2 120 (80 – 150) 0.1 (0.05 – 0.15) – 0.2 Medium Cutting 90 (60 – 120) 0.25 (0.15 – 0.35) – 3.0 80 (50 – 110) 0.15 (0.1 – 0.2) – 1.5 Light Cutting 140 (100 – 180) 0.1 (0.05 – 0.15) 0.2 140 (100 – 180) 0.1 (0.05 – 0.15) Medium Cutting 70 (50 – 90) 0.2 (0.15 – 0.25) – 2.0 60 (40 – 80) 0.15 (0.1 – 0.2) Light Cutting 300 (200 – 400) 0.1 (0.05 – 0.15) 0.2 300 (200 – 400) 0.1 (0.05 – 0.15) 0.2 Medium Cutting 200 (150 – 250) 0.1 (0.05 – 0.15) – 2.0 200 (150 – 250) 0.1 (0.05 – 0.15) – 1.5 P Carbon Steel Alloy Steel l/d Cutting Speed (m/min) 180 – 220HB M 200HB N Aluminium Alloy – 1.0 – y P TYPE, M TYPE BORING BAR Hardness Cutting Mode Carbon Steel Alloy Steel 180 – 280HB Stainless Steel Cast Iron Work Material P < l/d=3–4 D.O.C Cutting Speed Feed (m/min) (mm) (mm/rev) Feed (mm/rev) Medium Cutting 110 (80 – 140) 0.25 (0.1 – 0.4) – 5.0 110 (80 – 140) 0.2 (0.1 – 0.3) – 4.0 < 200HB Medium Cutting 80 (60 – 100) 0.2 (0.1 – 0.3) – 4.0 70 (50 – 100) 0.15 (0.1 – 0.25) – 3.0 Tensile Strength < 350N/mm2 Medium Cutting 80 (60 – 100) 0.25 (0.1 – 0.4) – 5.0 80 (60 – 100) 0.2 (0.1 – 0.3) – 4.0 M K l/d Cutting Speed (m/min) D.O.C (mm) y BORING BAR FOR ALUMINIUM Work Material Grade Cutting Speed (m/min) N l/d=3 l/d=4 l/d=5 l/d=6 Feed (mm/rev) D.O.C (mm) Feed (mm/rev) D.O.C (mm) Feed (mm/rev) D.O.C (mm) Feed (mm/rev) D.O.C (mm) HTi10 400 (200 – 600) 0.15 (0.05 – 0.25) – 3.0 0.15 (0.05 – 0.25) – 3.0 0.1 (0.05 – 0.2) – 2.5 0.1 (0.05 – 0.2) – 1.0 MD220 800 (200 – 1500) 0.15 (0.05 – 0.25) – 3.0 0.15 (0.05 – 0.25) – 3.0 0.1 (0.0 – 0.2) – 2.5 0.1 (0.05 – 0.2) – 1.0 Aluminium Alloy RECOMMENDED CUTTING CONDITIONS FOR BORING BARS < TECHNICAL DATA Stainless Steel 0.2 G005 TECHNICAL DATA TROUBLE SHOOTING FOR TURNING y TURNING (1) Machine with Inadequate Power and Rigidity Improper combination of required quality of insert selection Tool Holder Overhang Down Machine, Installation of Tool Installation of the Tool and Workpiece Lead Angle Corner Radius Rake Up Honing strengthens the cutting edge Class of Insert (Unground Ground) Down Coolant Select chip breaker Up Style and Design of the Tool Do not use watersoluble cutting fluid Determine dry or wet cutting Depth of Cut Feed Cutting Speed Select a grade with better thermal shock resistance Select a grade with better adhesion resistance Select a tougher grade Cutting Conditions Improve tool holder rigidity Not in Tolerance Deterioration of Cutting Edge Generation Deterioration of Surface Finish of Heat a Dimensions a a a a a a a a a a a a a a a a are not constant Low rigidity of workpiece or tool Heavy flank wear a a a a a a a Frequent adjustments Improper cutting condition Heavy wear, Dull cutting edge a Important criteria for tool life a a a a a Chipping of cutting edge a Wet a a a Built-up edge Improper cutting condition a a a a a a Vibration, chattering a Workpiece { Burrs a Cast Iron { Workpiece Chipping a Mild Steel { Burrs a a a a a Wet a Heavy wear, Improper shape of cutting edge a a a a a Wet a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a a Wet a a a a a ) a Improper cutting conditions a a a Improper cutting conditions Heavy wear, Improper shape of cutting edge a a Wet a Improper cutting conditions Heavy wear, Improper shape of cutting edge a a ( Improper cutting over heating can conditions cause poor accuracy and short Improper shape of life of insert cutting edge or tool a a Improper shape of cutting edge or tool a Steel, Aluminium Burrs, Chipping etc TROUBLE SHOOTING FOR TURNING TECHNICAL DATA G006 s or ct Fa Trouble Insert Grade Selection Select a harder grade Solution a a Wet a y TURNING (2) a a Fracture Improper grade selection and cutting conditions a a Thermal Cracking Improper grade selection, cutting conditions and material hardness a Deformation of Interrupted cutting, Nose Radius High feed rate a a Long Swarf Scattering of Short Chip Improper material hardness and cutting conditions Improper cutting conditions a a a a a a a a a a a a a a a a a a a a Wet a a a a a a a a a a Wet Improper shape of cutting edge or tool a a Honing strengthens the cutting edge Class of Insert (Unground Ground) a a a a a a a a a a a Lead Angle Corner Radius a a a a a a Dry Wet a Rake a a a a a a a a Improper shape of cutting edge or tool Improper cutting conditions Select chip breaker Depth of Cut Feed Do not use watersoluble cutting fluid Determine dry or wet cutting a a a a a a a a a a a a a TROUBLE SHOOTING FOR TURNING Shock and Vibration Down TECHNICAL DATA a Up a Wet Machine with Inadequate Power and Rigidity a Chipping Edge build up Cutting Speed a Coolant Machine, Installation of Tool Tool Holder Overhang Crater Wear Down a a a Poor Chip Dispersal Flank Wear Up Style and Design of the Tool Installation of the Tool and Workpiece Damage at Cutting Edge Flank Wear and Crater Wear Cutting Conditions Improve tool holder rigidity a Heavy Select a grade with better thermal shock resistance Select a grade with better adhesion resistance s or ct Fa Trouble Select a harder grade Solution Select a tougher grade Insert Grade Selection G007 TECHNICAL DATA REDUCING COSTS WITH CUTTING TOOLS FOR TURNING MACHINING COST REDUCTION WITH CUTTING TOOLS Increased Labour Cost Shortened Working Hours Lack of Skilled Workers Increased Cost of Equipment Increased Productivity Improved Finished Surface Improved Dimensional Accuracy Economical Tool Prolong Tool Life High Efficiency Cutting Establish Tooling System High Accuracy Un-Manned Machining Indexable Insert M Class Improve Wear Resistance Improve Fracture Resistance Improve Welding Resistance Wide Application Range High Speed Cutting High Feed Cutting Large Depth of Cut Multiple Cutting Multiple Insert Quick Change Improved Index Accuracy Insert Adjusting System Clamp Rigidity Transfer Machine NC Machine Special Machine (Exclusive Use) Automatic Loading System Chip Control CHIP BREAKING CONDITIONS IN STEEL TURNING Increase machinability of workpiece Add machinable elements (Free Cutting Steel) Type A Type B Type C Type D Type E Type l < 50mm – Curl i Curl Less Than Curl Half a Curl Heat treatment Wet cutting Increase chip thickness Lower cutting speed Increase feed rate Small Depth of Cut d < 7mm Decrease lead angle Decrease rake angle Chip Breaking Varying chip thickness Vary feed feed (Step self-vibration cutting) Vary cutting speed Decrease chip breaking Pre-groove cutting Awkward chip breaking Reduce breaker width Large Depth of Cut d=7 – 15mm Curl Length l No curl l > 50mm a Irregular Nicks in cutting edge Note continu- a Regular continuous shape ous shape a Tangle around tool a Long chips and workpiece Good Good a Chip scattering a Chattering a Poor finished surface a Maximum Add breaker dots to rake face EFFECTS OF CHIP CONTROL ON PRODUCTIVITY Cutting Chip production Good chip control Workers' safety Tool NC machine Automatic machine Heavy cutting High feed Heat radiation Un-manned machining High efficiency cutting Quality,accuracy maintenance Improve productivity G008 Shorten Non-Cutting Time Shorten Actual Cutting Time Reduce Machining Cost TECHNICAL DATA REDUCING COSTS WITH CUTTING TOOLS FOR TURNING Decrease Tool Cost Poor chip control Unsafe environment Chips tangled Chip jamming Lower machine efficiency Tool breakage Decrease productivity High heat Poor quality and accuracy EFFECTS OF CUTTING CONDITIONS FOR TURNING y EFFECTS OF CUTTING CONDITIONS Ideal conditions for cutting are short cutting time, long tool life, and high cutting accuracy In order to obtain these conditions, a selection of efficient cutting conditions and tools, based on work material, hardness, shape and machine capability is necessary y CUTTING SPEED Cutting speed effects tool life greatly Increasing cutting speed increases cutting temperature and results in shortening tool life Cutting speed varies depending on the type and hardness of the work material Selecting a tool grade suitable for the cutting speed is necessary 500 UC6010 Cutting Speed (m/min) 400 300 AP25N UE6020 UE6110 Workpiece : DIN Ck45 180HB Tool Life Standard : VB = 0.3mm Depth of Cut : 1.5mm Feed : 0.3mm/rev Holder : PCLNR2525M12 Insert : CNMG120408 Dry Cutting UE6005 NX2525 UE6035 200 NX3035 150 US735 UTi20T 100 80 60 20 30 40 60 100 Tool Life (min) P Class Grade Tool Life 500 Workpiece : DIN X5CrNi189 200HB Tool Life Standard : VB = 0.3mm Depth of Cut : 1.5mm Feed : 0.3mm/rev Holder : PCLNR2525M12 Insert : CNMG120408-MA Dry Cutting Cutting Speed (m/min) 400 300 US7020 200 150 US735 100 UTi20T 80 60 10 20 30 40 60 100 Tool Life (min) M Class Grade Tool Life Workpiece : DIN GG30 180HB Tool Life Standard : VB = 0.3mm Depth of Cut : 1.5mm Feed : 0.3mm/rev Holder : PCLNR2525M12 Insert : CNMG120408 Dry Cutting UC5105 UC5115 300 200 UE6110 AP25N NX2525 HTi10 150 100 TECHNICAL DATA Cutting Speed (m/min) 400 UTi20T 80 60 10 EFFECTS OF CUTTING CONDITIONS FOR TURNING 10 20 30 40 60 100 Tool Life (min) K Class Grade Tool Life a Effects of Cutting Speed Increasing cutting speed by 20% decreases tool life by 50% Increasing cutting speed by 50% decreases tool life by 80% Cutting at low cutting speed (20 – 40m/min) tends to cause chattering Thus, tool life is shortened G009 TECHNICAL DATA EFFECTS OF CUTTING CONDITIONS FOR TURNING y FEED When cutting with a general holder, feed is the distance a holder moves per workpiece revolution In milling, feed is the distance a machine table moves per cutter revolution divided by number of inserts Thus, it is indicated as feed per tooth Feed rate relates to finished surface roughness a Effects of Feed 0.4 Flank Wear (mm) Decreasing feed rate results in flank wear and shortens tool life Increasing feed rate increases cutting temperature and flank wear However, effects on the tool life is minimal compared to cutting speed Increasing feed rate improves machining efficiency 0.3 0.2 0.1 0.03 0.06 0.08 0.1 0.2 0.3 0.6 Feed (mm/rev) Grade : STi10T Cutting Conditions Workpiece : Alloy steel Tool Shape : 0-0-5-5-35-35-0.3mm Depth of Cut ap=1.0mm Cutting Speed vc=200m/min Cutting Time Tc=10min TECHNICAL DATA y DEPTH OF CUT Depth of cut is determined according to the required stock removal, shape of workpiece, power and rigidity of the machine and tool rigidity a Effects of Depth of Cut Changing depth of cut doesn't effect tool life greatly Small depths of cut result in friction when cutting the hardened layer of a workpiece Thus tool life is shortened When cutting uncut surfaces or cast iron surfaces, the depth of cut needs to be increased as much as the machine power allows in order to avoid cutting the impure hard layer with the tip of cutting edge and therefore prevent chipping and abnormal wear Flank Wear (mm) EFFECTS OF CUTTING CONDITIONS FOR TURNING Feed and Flank Wear Relationship in Steel Turning 0.4 0.3 0.2 0.1 0.03 0.05 0.1 0.2 0.5 1.0 2.0 3.0 Depth of Cut (mm) Cutting Conditions Grade : STi10T Workpiece : Alloy steel Tool Shape : 0-0-5-5-35-35-0.3mm Feed f=0.20mm/rev Cutting Speed vc=200m/min Cutting Time Tc=10min Depth of Cut and Flank Wear Relationship in Steel Turning Depth of Cut Uncut Surface Roughing of Surface Layer that Includes Uncut Surface G010 TECHNICAL DATA INSERT CHIP BREAKER COMPARISON TABLE NEGATIVE INSERT TYPE ISO Classification Cutting Mode Mitsubishi Carbide Finish PK FH FY Light C SA SH TECHNICAL DATA INSERT CHIP BREAKER COMPARISON TABLE P G038 M K S * Sandvik Kennametal Seco Tools Sumitomo Electric QF UF, FF FF1 FA FL 01 TF ZF SU LU SX NS, 27 TS, AS HQ, CQ 17 XQ, XS Tungaloy * PF MF Light (Mild Steel) SY Light (With Wiper) SW WP, WF Medium MV MA MH Medium (With Wiper) LF, FN MF2 * Kyocera Dijet Hitachi Tool * DP GP, VF XP, XP-T FE PF UR UA, UT BE CE FW W-MF2 LUW AFW, ASW WP, WQ PM QM SM MG, MN MF3 M3 M5 GU UG UX NM, ZM TM DM, 37 CJ, GS PS, HS PT, CS PG UB AB AY AE MW WM MW W-M3 GUW Semi Heavy STD GH PR RN MR7 MU, MX TH GT, HT UD, GG AR, RE Heavy HL, HM HX HV QR, PR HR MR RM, RH R4, R6 R7 RR9 MP HG, HP 57 65, TU HX HX HE Finish Light FH, FS MF K, FP SU SS GU SE Medium MS MA, ES MM P, MP EX, UP SA, SM S SU, HU ST Heavy GH HL, HM MR MR RP Finish Light Std KF FN UZ CM Std., C Y Medium Std KM Std., UN UX 33, Std ZS, GC V Heavy Flat Top KR Finish Light FJ * Medium MJ * Heavy GJ M5, MR7 56, R6 ** *23 pNGP, SR pNGP * MF1 M1 SF SG DE MP Flat Top FS, K UC Flat Top * SU * MS Peripheral ground type insert (Note) Above charts are based on published data and not authorized by each manufacturer SA 7°POSITIVE INSERT TYPE M Mitsubishi Carbide Sandvik Kennametal Seco Tools Sumitomo Electric Tungaloy Finish Light FV SV UF, PF 11, UF LF FF1 F1 FP, LU SU, SK 01, PF PS GP XP, VF Light (With Wiper) SW WK, WF, WP FW W-F1 Medium MV Std UM, PM MF F2 23 PM, 24 HQ XQ, GK Medium (With Wiper) MW WM MW | SV MF Medium Std MM Medium Flat Top KF, KM, KR S Finish Light FJ MU SS * Flat Top * * * Dijet Hitachi Tool JQ LUW Finish Light K * * Kyocera FT JE * Flat Top * Flat Top FT Kyocera Dijet * LF HP SC * Peripheral ground type insert (Note) Above charts are based on published data and not authorized by each manufacturer 11°POSITIVE INSERT TYPE ISO Classification Cutting Mode Mitsubishi Carbide Sandvik Kennametal P Finish Light SV PF UF, LF Medium MV PM MF | SV MF Medium MV MM M Sumitomo Electric Tungaloy MU Peripheral ground type insert (Note) Above charts are based on published data and not authorized by each manufacturer Hitachi Tool * GP, XP JQ PM 23, 24 HQ, XQ JE FK, LU, SU 01, PF, PS Finish Light * Seco Tools * SS INSERT CHIP BREAKER COMPARISON TABLE P Cutting Mode TECHNICAL DATA ISO Classification G039 TECHNICAL DATA MATERIAL CROSS REFERENCE LIST y STRUCTURAL AND CONSTRUCTIONAL STEEL Country U K Germany Sweden USA SS AIS/SAE France Belgium Italy Spain Japan TECHNICAL DATA MATERIAL CROSS REFERENCE LIST Standard G040 W.-nr DIN BS 1.0401 1.0402 1.0501 1.0503 1.0535 1.0601 1.0715 1.0718 1.0722 1.0726 1.0736 1.0737 1.0904 1.0961 1.1141 1.1157 1.1158 1.1167 1.1170 1.1183 1.1191 1.1203 1.1213 1.1221 1.1274 1.3401 1.3505 1.5415 1.5423 1.5622 1.5662 1.5680 1.5710 1.5732 1.5752 C15 C22 C35 C45 C55 C60 9SMn28 9SMnPb28 10SPb20 35S20 9SMn36 9SMnPb36 55Si7 60SiCr7 Ck15 40Mn4 Ck25 36Mn5 28Mn6 Cf35 Ck45 Ck55 Cf53 Ck60 Ck101 G-X120Mn12 100Cr6 15Mo3 16Mo5 14Ni6 X8Ni9 12Ni19 36NiCr6 14NiCr10 14NiCr14 1.6511 1.6523 1.6546 1.6582 1.6587 1.6657 1.7015 1.7033 1.7035 1.7045 1.7131 1.7176 1.7218 36CrNiMo4 21NiCrMo2 40NiCrMo22 34CrNiMo6 17CrNiMo6 14NiCrMo134 15Cr3 34Cr4 41Cr4 42Cr4 16MnCr5 55Cr3 527A60 25CrMo4 1717CDS110 EN 080M15 050A20 060A35 080M46 070M55 080A62 230M07 – – – 212M36 240M07 – 8M 1B – 250A53 – 45 – 080M15 150M36 – – 32C 15 – – 150M28 060A35 080M46 070M55 060A52 080A62 060A96 Z120M12 534A99 1501-240 1503-245-420 – 14A – – – – 640A35 – 111A – 655M13; 655A12 816M40 805M20 311-Type 817M40 820A16 832M13 523M15 530A32 530M40 – (527M20) 36A 2C – – – 43D – – – 43D – – 31 – – – 1501-509;510 – – – 1350 1450 1550 1650 1655 – 1912 1914 – 1957 – 1926 2085 – 1370 – – 2120 – 1572 1672 – 1674 1678 1870 – 2258 2912 – – – – – – – 110 362 – – 24 – 2541 – – – – – 36C – 18B 18 – – 48 – 2506 – 2245 2511 – 2225 1015 1020 1035 1045 1055 1060 1213 12L13 – 1140 1215 12L14 9255 9262 1015 1039 1025 1335 1330 1035 1045 1055 1050 1060 1095 – AFNOR CC12 CC20 CC35 CC45 – CC55 S250 S250Pb 10PbF2 35MF4 S300 S300Pb 55S7 60SC7 XC12 35M5 – 40M5 20M5 XC38TS XC42 XC55 XC48TS XC60 – NBN – C25-1 C35-1 C45-1 C55-1 C60-1 – – – – – – 55Si7 60SiCr8 C16-2 – C25-2 – 28Mn6 C36 C45-2 C55-2 C53 C60-2 – Z120M12 – – 52100 100C6 16Mo3 ASTM A204Gr.A 15D3 – 16Mo5 4520 18Ni6 ASTM A350LF5 16N6 10Ni36 ASTM A353 – 12Ni20 Z18N5 2515 – 35NC6 3135 14NC11 – 3415 3415;3310 12NC15 13NiCr12 9840 8620 8740 4340 – – 40NCD3 20NCD2 – 5015 5132 5140 5140 5115 5155 4130 12C3 32C4 42C4 – 35NCD6 18NCD6 – 16MC5 55C3 25CD4 UNI C15C16 C20C21 C35 C45 C55 C60 CF9SMn28 CF9SMnPb28 CF10PB20 – UNF F.111 F.112 F.113 F.114 – – 11SMn28 11SMnPb28 10SPb20 F.210.G CF9SMn36 12SMN35 CF9SMnPb36 12SMnP35 56Si7 55Si8 60SiCr8 60SiCr8 C15K C16 – – – – – 36Mn5 – C28Mn – C36 JIS – – – – – – SUM22 SUM22L – – – – – – S15C – S25C SMn438(H) SCMn1 S35C C45K C45 S45C C55K C50 S55C – C53 S50C – C60 S58C – – SUP4 XG120Mn12 X120MN12 SCMnH/1 F.131 SUJ2 100Cr6 – 16Mo3KW 16Mo3 – 16Mo5 16Mo5 – 15Ni6 14Ni6 – XBNi09 X10Ni9 – – – – – SNC236 15NiCr11 16NiCr11 SNC415(H) – – SNC815(H) – – 38NiCrMo4(KB) 20NiCrMo2 40NiCrMo2 40NiCrMo2(KB) 35CrNiMo6 35NiCrMo6(KB) 17CrNiMo7 – 14NiCrMo13 15NiCrMo13 – 15Cr2 34Cr4 34Cr4(KB) 35NiCrMo4 20NiCrMo2 40NiCrMo2 – – SNCM220(H) SNCM240 – 14NiCrMo13 – 14NiCrMo131 – – SCr415(H) SCr430(H) 35Cr4 42Cr4 SCr440(H) 42Cr4 SCr440 – 16MnCr5 – SUP9(A) 41Cr4 – 41Cr4 – 16MnCr5 55Cr3 25CrMo4 16MnCr5 – 25CrMo4(KB) 55Cr3 SCM420;SCM430 AM26CrMo4 Country Germany U K Sweden France USA Belgium Italy Spain Japan Standard W.-nr DIN 1.7220 1.7223 1.7225 1.7262 1.7335 34CrMo4 41CrMo4 42CrMo4 15CrMo5 13CrMo4 1.7361 1.7380 32CrMo12 722M24 10CrMo9 10 1501-622 Gr31;45 14MoV6 1503-660-440 50CrV4 735A50 41CrAlMo7 905M39 39CrMoV13 897M39 1.7715 1.8159 1.8509 1.8523 BS EN 19B 19A 19A – 1501-620Gr27 – SS 2234 2244 2244 2216 – AIS/SAE AFNOR 4137;4135 4140;4142 4140 – 40B – – – 2240 2218 – 35CD4 42CD4TS 42CD4 12CD4 ASTM A182 15CD3.5 15CD4.5 F11;F12 – 30CD12 ASTM A182 12CD9,10 – F.22 – – 47 41B 40C 2230 2940 – 6150 – – 708A37 708M40 708M40 – NBN 34CrMo4 41CrMo4 42CrMo4 – UNI 35CrMo4 41CrMo4 42CrMo4 – 14CrMo45 14CrMo45 UNF JIS 34CrMo4 42CrMo4 42CrMo4 12CrMo4 14CrMo45 SCM432;SCCRM3 SCM 440 SCM440(H) SCM415(H) – 32CrMo12 32CrMo12 F.124.A – 12CrMo9,10 TU.H – – 13MoCrV6 13MoCrV6 – – – – 51CrV4 50CV4 50CrV4 SUP10 50CrV4 40CAD6,12 41CrAlMo7 41CrAlMo7 41CrAlMo7 – – – 39CrMoV13 36CrMoV12 – y TOOL STEELS Country Germany U K Sweden France USA Belgium Italy Spain UNI UNF Japan Standard BS EN SS AIS/SAE AFNOR NBN – 1880 W.110 Y1105 – – C125W 100Cr6 BL3 X210Cr12 BD3 – – – – – – W.112 L3 D3 Y2120 Y100C6 Z200C12 – – – 1.2344 X40CrMoV5 BH13 – 2242 H13 Z40CDV5 – 1.2363 1.2419 X100CrMoV5 BA2 105WCr6 – – – 2260 2140 A2 – Z100CDV5 – 105WC13 – 1.2436 1.2542 1.2581 – – – – 2312 2710 – – BS1 BH21 – – – – 2310 – – 1.2713 1.2833 X210CrW12 45WCrV7 X30WCrV9 X30WCrV9 3KU X165CrMo V12 55NiCrMoV6 100V1 – BW2 – – – – L6 W210 55NCDV7 Y1105V 1.3243 S 6-5-2-5 – – 2723 – 1.3255 S 18-1-2-5 BT4 – – T4 1.3343 S 6-5-2 BM2 – 2722 M2 1.3348 S 2-9-2 – – 2782 M7 1.3355 S 18-0-1 BT1 – – T1 Z85WDKCV 06-05-05-04-02 Z80WKCV 18-05-04-01 Z85WDCV 06-05-04-02 Z100WCWV 09-04-02-02 Z80WCV 18-04-01 1.663 1.2067 1.2080 1.2601 – S1 H21 Z30WCV9 – – – – – F.515 F.516 (C120) 100Cr6 X210Cr13KU X210Cr12 X250Cr12KU X35CrMoV05KU X40CrMoV5 X40CrMoV511KU X100CrMoV51KU X100CrMoV5 100WCr6 105WCr5 107WCr5KU X215CrW12 1KU X210CrW12 45WCrV8KU 45WCrSi8 X28W09KU X30WCrV9 X30WCrV9 3KU X165CrMoW12KU X160CrMoV12 C98KU C100KU C120KU – JIS – SK2 – SKD1 SKD61 SKD12 SKS31 SKS2;SKS3 SKD2 – SKD5 – – – SKT4 F.520.S – C98KU SKS43 – 102V2KU – HS 6-5-2-5 HS 6-5-2-5 SKH55 – X78WCo1805KU HS 18-1-1-5 SKH3 – X82WMo0605KU HS 6-5-2 – HS 2-9-2 – X75W18KU HS18-0-1 HS 2-9-2 MATERIAL CROSS REFERENCE LIST DIN C105W1 TECHNICAL DATA W.-nr 1.1545 SKH9 – SKH2 G041 TECHNICAL DATA MATERIAL CROSS REFERENCE LIST y STAINLESS AND HEAT RESISTANT MATERIALS Country U K Germany Sweden USA France Belgium AFNOR NBN Italy Spain Japan Standard W.-nr DIN BS 1.4000 1.4001 1.4006 1.4016 1.4027 1.4034 X7Cr13 X7Cr14 X10Cr13 X8Cr17 G-X20Cr14 X46Cr13 403S17 – 2301 403 Z6C13 – X6Cr13 410S21 430S15 420C29 420S45 56A 60 56B 56D 2302 2320 – 2304 410 430 – – – – – – X12Cr13 X8Cr17 – X40Cr14 1.4057 1.4104 1.4113 1.4301 X22CrNi17 X12CrMoS17 X6CrMo17 X5CrNi189 431S29 – 434S17 304S15 57 – – 58E 2321 2383 2325 2332 431 430F 434 304 Z10C14 Z8C17 Z20C13M Z40CM Z38C13M Z15CNI6.02 Z10CF17 Z8CD17.01 Z6CN18.09 – – – – X16CrNi6 X10CrS17 X8CrMo17 X5CrNi18 10 1.4305 1.4306 X12CrNiS18 X2CrNi18 58M – – – – – 301 304LN Z10CNF 18.09 Z2CN18.10 Z3CN19.10 Z6CN18.10M Z12CN17.07 Z2CN18.10 – – G-X6CrNi18 X12CrNi17 X2CrNiN 18 10 X5CrNi13 X5CrNiMo 18 10 G-X6CrNiMo 18 10 X2CrNiMoN 18 13 X2CrNiMo 18 12 X2CrNiMo 18 16 X8CrNiMo 27 X10CrNiTi 18 X10CrNiNb 18 X10CrNiMoTi 18 10 G-X5CrNi MoNb 18 10 X10CrNi MoNb 18 12 X45CrSi 93 X10CrA113 X10CrA118 X80CrNiSi20 X10CrA124 X15CrNiSi 20 12 X12CrNi25 21 X12NiCrSi 36 16 G-X40NiCrSi 38 18 X53CrMnNiN 21 X12CrNiTi 18 2346 2352 2333 – 2331 2371 303 304L 1.4308 1.4310 1.4311 303S21 304S12 304C12 304C15 – 304S62 425C11 316S16 – 58J – 2347 – 316 316C16 – – – – 316S12 1.4313 1.4401 1.4408 TECHNICAL DATA MATERIAL CROSS REFERENCE LIST 1.4429 1.4435 1.4438 1.4460 1.4541 1.4550 1.4571 1.4581 1.4583 1.4718 1.4724 1.4742 1.4747 1.4762 1.4828 1.4845 1.4864 1.4865 1.4871 1.4878 G042 EN SS AIS/SAE UNI UNF JIS F.3110 F.8401 F.3401 F.3113 – F.3405 SUS403 SUS431 SUS430F SUS434 SUS304 X10CrNiS 18 09 X2CrNi18 11 F.3427 F.3117 – F.3551 F.3541 F.3504 F.3508 F.3503 – – – – X12CrNi17 07 – – F.3517 – SUS303 SCS19 SUS304L SCS13 SUS301 SUS304LN Z4CND13.4M Z6CND17.11 – – – X5CrNiMo17 12 – F.3543 SCS5 SUS316 – – – – F.8414 SCS14 2375 316LN Z2CND17.13 – – – SUS316LN – 2353 316L – 317S12 – 2367 317L Z2CND17.13 – Z2CND19.15 – X2CrNiMo17 13 – X2CrNiMo18 16 – – – SCS16 SUS316L SUS317L – – 2324 329 2337 321S12 58B 321 – – Z6CNT18.10 – – – – – X6CrNiTi18 11 SUS329JL SCH11;SCS11 SUS321 347S17 58F 2338 347 Z6CNNb18.10 – X6CrNiNb18 11 320S17 58J 2350 316Ti Z6CNDT17.12 – 318C17 – – – – – SCS22 – – – 318 – – 401S45 403S17 430S15 443S65 – 309S24 52 – 60 59 – – – – – – 2322 – HW3 405 430 HNV6 446 309 Z4CNDNb 18 12M Z6CNDNb 17 13B Z45CS Z10C13 Z10CAS18 Z80CSN20.02 Z10CAS24 Z15CNS20.12 – – – – – – X6CrNiMoTi 17 12 XG8CrNiMo 18 11 X6CrNiMoNb 17 13 X45CrSi8 X10CrA112 X8Cr17 X80CrSiNi20 X16Cr26 – – – F.3553 F.3523 F.3552 F.3524 F.3535 F.322 F.311 F.3113 F.320B – – SUH1 SUS405 SUS430 SUH4 SUH446 SUH309 310S24 – – – 2361 – 310S 330 Z12CN25 20 Z12NCS35.16 – – X6CrNi25 20 – F.331 – SUH310 SUH330 330C11 – – – – – – SCH15 349S54 – – EV8 Z52CMN21.09 – XG50NiCr 39 19 X53CrMnNiN219 – SUH35;SUH36 321S12 321S20 58B, 58C – 321 Z6CNT18.12B – X6CrNiTi18 11 F.3523 SU321 – SUS410 SUS430 SCS2 SUS420J2 SUS347 – yGREY CAST IRON (unalloyed) W.-Nr DIN BS EN SS Country USA Standard AIS/SAE – – – – 0.6015 0.6020 0.6025 – 0.6030 0.6035 0.6040 – – – GG 10 GG 15 GG 20 GG 25 – GG 30 GG 35 GG 40 – – – – Grade 150 Grade 220 Grade 260 – Grade 300 Grade 350 Grade 400 – – – – – – – – – – – – – 01 00 01 10 01 15 01 20 01 25 – 01 30 01 35 01 40 ASTM A48-76 – No 20 B No 25 B No 30 B No 35 B No 40 B No 45 B No 50 B No 55 B Germany U K Sweden France Belgium Italy Spain Japan AFNOR NBN UNI UNF JIS – – – Ft 10 D Ft 15 D Ft 20 D Ft 25 D – Ft 30 D Ft 35 D Ft 40 D – – – – – – – – – – – – – – – G15 G20 G25 – G30 G35 – – – – – FG15 – FG25 – FG30 FG35 – – – – FC100 FC150 FC200 FC250 – FC300 FC350 – yGREY CAST IRON (alloyed) Germany W.-Nr DIN BS DIN4694 3468: 1974 – GGLNiCr 20 L-NiCr 20 – – – EN SS Country USA Standard AIS/SAE – – – MB ISO-215 05 23 ASTM A436-72 Type U K Sweden France Belgium Italy Spain Japan AFNOR NBN UNI UNF JIS – A32-301 L-NC 20 – – – – – – – – – – – – Italy Spain Japan DIN BS EN SS – 0.7040 – 0.7033 0.7050 – 0.7070 – GGG 40 GGG 40.3 GGG 35.3 GGG 50 GGG 60 GGG 70 2789; 1973 SNG 420/12 SNG 370/17 – SNG 500/7 SNG 600/3 SNG 700/2 – – – – – – – – 07 17-02 07 17-12 07 17-15 07 27-02 07 32-03 07 37-01 A536-72 60-40-18 – – 80-55-06 – 100-70-03 U K Sweden France Belgium AFNOR NBN UNI UNF JIS NF A32 -201 FCS 400-12 FGS 370-17 – FGS 500-7 FGS 600-3 FGS 700-2 – – – – – – – – GS 370-17 – – GS 500 – GS 700-2 – FGE 38-17 – – FGE 50-7 – FGS 70-2 – FCD400 – – FCD500 FCD600 FCD700 France Belgium Italy Spain Japan yALLOYED CAST IRON Germany W.-Nr DIN U K BS DIN 1694 – GGGNiMn L-NiMn 13 13 GGG NiCr 20 L-NiMn 20 2 – – – Sweden Country USA Standard AIS/SAE EN SS AFNOR NBN UNI UNF JIS – – – 07 72 – – – L-MN 13 – – – – – – – – – 07 76 Type L-NC 20 – – – – Italy Spain Japan yMALLEABLE CAST IRON W.-Nr DIN BS EN SS Country USA Standard AIS/SAE – – – – – 0.8145 0.8155 – – – – – – GTS-35 GTS-45 GTS-55 GTS-65 GTS-70 – – – 290/6 B 340/12 P 440/7 P 510/4 P 570/3 P 690/2 – – – – – – – – – – – – 08 14 08 15 08 52 08 54 08 58 08 62 ASTM A47-74 A 220-76 2) – 32510 40010 50005 70003 A 220-80002 Germany U K Sweden France Belgium AFNOR NBN UNI UNF JIS – – – MN 32-8 MN 35-10 MN 450 MP 50-5 MP 60-3 MN700-2 – – – – – – – – – – – – – – GMN45 GMN55 – – – – – – – – – – – – – – – FCMW330 FCMW370 FCMP490 FCMP540 FCMP690 TECHNICAL DATA W.-Nr Country USA Standard AIS/SAE Germany MATERIAL CROSS REFERENCE LIST yNODULAR CAST IRON (unalloyed) G043 TECHNICAL DATA SURFACE ROUGHNESS SURFACE ROUGHNESS Ten-Point Mean Roughness Maximum Height Arithmetical Mean Roughness Type Code Ra Rz RZJIS (From JIS B 0601-1994) Determination Example (Figure) Determination Ra means the value obtained by the following formula and expressed in micrometer (!m) when sampling only the reference length from the roughness curve in the direction of the mean line, taking X-axis in the direction of mean line and Y-axis in the direction of longitudinal magnification of this sampled part and the roughness curve is expressed by y=f(x): Rz shall be that only when the reference length is sampled from the roughness curve in the direction of the mean line, the distance between the top profile peak line and the bottom profile valley line on this sampled portion is measured in the longitudinal magnification direction of roughness curve and the obtained value is expressed in micrometer (!m) (Note) When finding Rz, a portion without an exceptionally high peak or low valley, which may be regarded as a flaw, is selected as the sampling length RZJIS shall be that only when the reference length is sampled from the roughness curve in the direction of its mean line, the sum of the average value of absolute values of the heights of five highest profile peaks (Yp) and the depths of five deepest profile valleys (Yv) measured in the vertical magnification direction from the mean line of this sampled portion and this sum is expressed in micrometer (!m) :altitudes of the five highest profile peaks of the sampled portion corresponding to the reference length l :altitudes of the five deepest profile valleys of the sampled portion corresponding to the reference length l TECHNICAL DATA SURFACE ROUGHNESS y RELATIONSHIP BETWEEN ARITHMETICAL MEAN (Ra) AND CONVENTIONAL DESIGNATION (REFERENCE DATA) Arithmetical Mean Roughness Max Height Ten-Point Mean Roughness Ra Rz RZJIS Standard Series Cutoff Value " c (mm) 0.012 a 0.08 0.025 a 0.05 a 0.25 Rz • RZJIS I (mm) Standard Series 0.05s 0.05z 0.1 s 0.1 z 0.2 s 0.2 z 0.4 s 0.4 z 0.8 s 0.8 z 1.6 s 1.6 z 0.1 a 0.2 a 0.4 a 0.8 a 3.2 s 3.2 z 1.6 a 6.3 s 6.3 z 3.2 a 12.5 s 12.5 z 6.3 a 12.5 0.8 2.5 25 s 25 z a 50 s 50 z 25 a 100 s 100 z 50 a 200 s 200 z 100 a 400 s 400 z – Sampling Length for 0.08 ]]]] 0.25 0.8 G044 ]]] ]] 2.5 ] – correlation among the three is shown for convenience and is not exact *The Ra: The evaluation length of Rz and Rz is the cutoff value and sampling length multiplied by 5, respectively * JIS Conventional Finish Mark – HARDNESS COMPARISON TABLE A Scale, B Scale, C Scale, D Scale, Load: 60kgf, Load: 100kgf, Load: 150kgf, Load: 100kgf, Diamond 1/16" Ball Diamond Diamond (HRB) Point (HRA) Point (HRC) Point (HRD) Tensile Strength (Approx.) MPa (2) ņ ņ ņ ņ ņ ņ ņ ņ (767) (757) 940 920 900 880 860 85.6 85.3 85.0 84.7 84.4 ņ ņ ņ ņ ņ 68.0 67.5 67.0 66.4 65.9 76.9 76.5 76.1 75.7 75.3 97 96 95 93 92 ņ ņ ņ ņ ņ 429 415 401 388 375 429 415 401 388 375 455 440 425 410 396 73.4 72.8 72.0 71.4 70.6 ņ ņ ņ ņ ņ 45.7 44.5 43.1 41.8 40.4 59.7 58.8 57.8 56.8 55.7 61 59 58 56 54 1510 1460 1390 1330 1270 ņ ņ ņ ņ ņ ņ (745) (733) (722) (712) (710) (698) 840 820 800 ņ 780 760 84.1 83.8 83.4 ņ 83.0 82.6 ņ ņ ņ ņ ņ ņ 65.3 64.7 64.0 ņ 63.3 62.5 74.8 74.3 73.8 ņ 73.3 72.6 91 90 88 ņ 87 86 ņ ņ ņ ņ ņ ņ 363 352 341 331 321 363 352 341 331 321 383 372 360 350 339 70.0 69.3 68.7 68.1 67.5 ņ (110.0) (109.0) (108.5) (108.0) 39.1 37.9 36.6 35.5 34.3 54.6 53.8 52.8 51.9 51.0 52 51 50 48 47 1220 1180 1130 1095 1060 ņ ņ ņ ņ ņ (684) (682) (670) (656) (653) 740 737 720 700 697 82.2 82.2 81.8 81.3 81.2 ņ ņ ņ ņ ņ 61.8 61.7 61.0 60.1 60.0 72.1 72.0 71.5 70.8 70.7 ņ 84 83 ņ 81 ņ ņ ņ ņ ņ 311 302 293 285 277 311 302 293 285 277 328 319 309 301 292 66.9 66.3 65.7 65.3 64.6 (107.5) (107.0) (106.0) (105.5) (104.5) 33.1 32.1 30.9 29.9 28.8 50.0 49.3 48.3 47.6 46.7 46 1025 45 1005 43 970 ņ 950 41 925 ņ ņ ņ ņ (647) (638) 630 627 690 680 670 667 81.1 80.8 80.6 80.5 ņ ņ ņ ņ 59.7 59.2 58.8 58.7 70.5 70.1 69.8 69.7 ņ 80 ņ 79 ņ ņ ņ ņ 269 262 255 248 241 269 262 255 248 241 284 276 269 261 253 64.1 63.6 63.0 62.5 61.8 (104.0) (103.0) (102.0) (101.0) 100 27.6 26.6 25.4 24.2 22.8 45.9 45.0 44.2 43.2 42.0 40 39 38 37 36 895 875 850 825 800 ņ ņ ņ 601 677 640 80.7 79.8 ņ ņ 59.1 57.3 70.0 68.7 ņ 77 ņ ņ ņ ņ ņ 578 640 615 79.8 79.1 ņ ņ 57.3 56.0 68.7 67.7 ņ 75 ņ ņ 235 229 223 217 212 235 229 223 217 212 247 241 234 228 222 61.4 60.8 ņ ņ ņ 99.0 98.2 97.3 96.4 95.5 21.7 20.5 (18.8) (17.5) (16.0) 41.4 40.5 ņ ņ ņ 35 34 ņ 33 ņ 785 765 ņ 725 705 ņ ņ ņ 555 607 591 78.8 78.4 ņ ņ 55.6 54.7 67.4 66.7 ņ ņ 73 2055 ņ ņ ņ 534 579 569 78.0 77.8 ņ ņ 54.0 53.5 66.1 65.8 ņ 2015 71 1985 207 201 197 192 187 207 201 197 192 187 218 212 207 202 196 ņ ņ ņ ņ ņ 94.6 93.8 92.8 91.9 90.7 (15.2) (13.8) (12.7) (11.5) (10.0) ņ ņ ņ ņ ņ 32 31 30 29 ņ 690 675 655 640 620 ņ ņ ņ 514 533 547 77.1 76.9 ņ ņ 52.5 52.1 65.0 64.7 ņ 1915 70 1890 (495) ņ ņ ņ 495 539 530 528 76.7 76.4 76.3 ņ ņ ņ 51.6 51.1 51.0 64.3 63.9 63.8 ņ 1855 ņ 1825 68 1820 183 179 174 170 167 183 179 174 170 167 192 188 182 178 175 ņ ņ ņ ņ ņ 90.0 89.0 87.8 86.8 86.0 (9.0) (8.0) (6.4) (5.4) (4.4) ņ ņ ņ ņ ņ 28 27 ņ 26 ņ 615 600 585 570 560 (477) ņ ņ ņ 477 516 508 508 75.9 75.6 75.6 ņ ņ ņ 50.3 49.6 49.6 63.2 62.7 62.7 ņ 1780 ņ 1740 66 1740 (461) ņ ņ ņ 461 495 491 491 75.1 74.9 74.9 ņ ņ ņ 48.8 48.5 48.5 61.9 61.7 61.7 ņ 1680 ņ 1670 65 1670 163 156 149 143 137 163 156 149 143 137 171 163 156 150 143 ņ ņ ņ ņ ņ 85.0 82.9 80.8 78.7 76.4 (3.3) (0.9) ņ ņ ņ ņ ņ ņ ņ ņ 25 ņ 23 22 21 545 525 505 490 460 ņ ņ 444 474 472 472 74.3 74.2 74.2 ņ ņ ņ 47.2 47.1 47.1 61.0 60.8 60.8 ņ 1595 ņ 1585 63 1585 131 126 121 116 111 131 126 121 116 111 137 132 127 122 117 ņ ņ ņ ņ ņ 74.0 72.0 69.8 67.6 65.7 ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ 20 19 18 15 450 435 415 400 385 444 ņ ņ (Note 1) The above list is the same as that of AMS Metals Hand book with tensile strength in approximate metric value and Brinell hardness over a recommended range (Note 2) 1MPa=1N/mm2 (Note 3) Figures in ( ) are rarely used and are included for reference This list has been taken from JIS Handbook Steel I HARDNESS COMPARISON TABLE Standard Tungsten Carbide Ball Ball Rockwell Hardness (3) TECHNICAL DATA MPa (2) Brinell Hardness (HB), 10mm Ball, Load: 3,000kgf Shore Hardness (HS) A Scale, C Scale, B Scale, D Scale, Load: 60kgf, Load: 100kgf, Load: 150kgf, Load: 100kgf, Diamond Diamond 1/16" Ball Diamond (HRB) Point (HRA) Point (HRC) Point (HRD) Tensile Strength (Approx.) Vickers Hardness (HV) Tungsten Standard Carbide Ball Ball Rockwell Hardness (3) Shore Hardness (HS) Brinell Hardness (HB), 10mm Ball, Load: 3,000kgf Vickers Hardness (HV) HARDNESS CONVERSION NUMBERS OF STEEL G045 TECHNICAL DATA FIT TOLERANCE TABLE(HOLE) Classification of Standard Dimensions (mm) > TECHNICAL DATA FIT TOLERANCE TABLE(HOLE) ņ < 3 6 10 10 14 14 18 18 24 24 30 30 40 40 50 50 65 65 80 80 100 100 120 120 140 140 160 160 180 180 200 200 225 225 250 250 280 280 315 315 355 355 400 400 450 450 500 Class of Geometrical Tolerance Zone of Holes B10 C9 C10 D8 D9 +180 +140 +188 +140 +208 +150 +85 +60 +100 +70 +116 +80 +100 +60 +118 +70 +138 +80 +34 +20 +48 +30 +62 +40 +45 +20 +60 +30 +76 +40 +220 +150 +138 +95 +165 +95 +77 +50 +244 +160 +162 +110 +194 +110 +270 +170 +280 +180 +310 +190 +320 +200 +360 +220 +380 +240 +420 +260 +440 +280 +470 +310 +525 +340 +565 +380 +605 +420 +690 +480 +750 +540 +830 +600 +910 +680 +1010 +760 +1090 +840 +182 +120 +192 +130 +214 +140 +224 +150 +257 +170 +267 +180 +300 +200 +310 +210 +330 +230 +355 +240 +375 +260 +395 +280 +430 +300 +460 +330 +500 +360 +540 +400 +595 +440 +635 +480 +220 +120 +230 +130 +260 +140 +270 +150 +310 +170 +320 +180 +360 +200 +370 +210 +390 +230 +425 +240 +445 +260 +465 +280 +510 +300 +540 +330 +590 +360 +630 +400 +690 +440 +730 +480 D10 E7 E8 E9 F6 F7 F8 G6 G7 H6 H7 +60 +20 +78 +30 +98 +40 +24 +14 +32 +20 +40 +25 +28 +14 +38 +20 +47 +25 +39 +14 +50 +20 +61 +25 +12 +6 +18 +10 +22 +13 +16 +6 +22 +10 +28 +13 +20 +6 +28 +10 +35 +13 +8 +2 +12 +4 +14 +5 +12 +2 +16 +4 +20 +5 +6 +8 +9 +10 +12 +15 +93 +50 +120 +50 +50 +32 +59 +32 +75 +32 +27 +16 +34 +16 +43 +16 +17 +6 +24 +6 +11 +18 +98 +65 +117 +65 +149 +65 +61 +40 +73 +40 +92 +40 +33 +20 +41 +20 +53 +20 +20 +7 +28 +7 +13 +21 +119 +80 +142 +80 +180 +80 +75 +50 +89 +50 +112 +50 +41 +25 +50 +25 +64 +25 +25 +9 +34 +9 +16 +25 +146 +100 +174 +100 +220 +100 +90 +60 +106 +60 +134 +60 +49 +30 +60 +30 +76 +30 +29 +10 +40 +10 +19 +30 +174 +120 +207 +120 +260 +120 +107 +72 +126 +72 +159 +72 +58 +36 +71 +36 +90 +36 +34 +12 +47 +12 +22 +35 +208 +145 +245 +145 +305 +145 +125 +85 +148 +85 +185 +85 +68 +43 +83 +43 +106 +43 +39 +14 +54 +14 +25 +40 +242 +170 +285 +170 +355 +170 +146 +100 +172 +100 +215 +100 +79 +50 +96 +50 +122 +50 +44 +15 +61 +15 +29 +46 +271 +190 +320 +190 +400 +190 +162 +110 +191 +110 +240 +110 +88 +56 +108 +56 +137 +56 +49 +17 +69 +17 +32 +52 +299 +210 +350 +210 +440 +210 +182 +125 +214 +125 +265 +125 +98 +62 +119 +62 +151 +62 +54 +18 +75 +18 +36 +57 +327 +230 +385 +230 +480 +230 +198 +135 +232 +135 +290 +135 +108 +68 +131 +68 +165 +68 +60 +20 +83 +20 +40 +63 (Note) Values shown in the upper portion of the respective boxes are the upper dimensional tolerance, while values shown in the lower portion are the lower dimensional tolerance G046 Units : ! m Class of Geometrical Tolerance Zone of Holes H10 +14 +18 +22 +25 +30 +36 +40 +48 +58 +27 +43 +70 +33 +52 +84 +39 +62 +100 +46 +74 +120 +54 +87 +63 JS6 JS7 ±3 ±5 ±4 ±6 ±4.5 ±7 ±5.5 ±9 K6 K7 M6 M7 N6 N7 P6 P7 R7 S7 ņ6 +2 ņ6 +2 ņ7 ņ 10 +3 ņ9 +5 ņ 10 ņ2 ņ8 ņ1 ņ9 ņ3 ņ 12 ņ2 ņ 12 ņ 12 ņ 15 ņ4 ņ 10 ņ5 ņ 13 ņ7 ņ 16 ņ4 ņ 14 ņ4 ņ 16 ņ4 ņ 19 ņ6 ņ 12 ņ9 ņ 17 ņ 12 ņ 21 ņ6 ņ 16 ņ8 ņ 20 ņ9 ņ 24 ņ 10 ņ 20 ņ 11 ņ 23 ņ 13 ņ 28 ņ 14 ņ 24 ņ 15 ņ 27 ņ 17 ņ 32 +2 ņ9 +6 ņ 12 ņ4 ņ 15 ņ 18 ņ9 ņ 20 ņ5 ņ 23 ņ 15 ņ 26 ņ 11 ņ 29 ņ 16 ņ 34 ņ 21 ņ 39 +6 ņ 15 ņ4 ņ 17 ņ 21 ņ 11 ņ 24 ņ7 ņ 28 ņ 18 ņ 31 ņ 14 ņ 35 ņ 20 ņ 41 ņ 27 ņ 48 ņ 25 ņ 50 ņ 34 ņ 59 ņ 30 ņ 60 ņ 32 ņ 62 ņ 38 ņ 73 ņ 41 ņ 76 ņ 48 ņ 88 ņ 50 ņ 90 ņ 53 ņ 93 ņ 60 ņ 106 ņ 63 ņ 109 ņ 67 ņ 113 ņ 74 ņ 126 ņ 78 ņ 130 ņ 87 ņ 144 ņ 93 ņ 150 ņ 103 ņ 166 ņ 109 ņ 172 ņ 42 ņ 72 ņ 48 ņ 78 ņ 58 ņ 93 ņ 66 ņ 101 ņ 77 ņ 117 ņ 85 ņ 125 ņ 93 ņ 133 ņ 105 ņ 151 ņ 113 ņ 159 ņ 123 ņ 169 ±6.5 ±10 +2 ņ 11 ±8 ±12 +3 ņ 13 +7 ņ 18 ņ4 ņ 20 ņ 25 ņ 12 ņ 28 ņ8 ņ 33 ņ 21 ņ 37 ņ 17 ņ 42 ±15 +4 ņ 15 +9 ņ 21 ņ5 ņ 24 ņ 30 ņ 14 ņ 33 ņ9 ņ 39 ņ 26 ņ 45 ņ 21 ņ 51 +140 ±11 ±17 +4 ņ 18 +10 ņ 25 ņ6 ņ 28 ņ 35 ņ 16 ņ 38 ņ 10 ņ 45 ņ 30 ņ 52 ņ 24 ņ 59 +100 +160 ±12.5 ±20 +4 ņ 21 +12 ņ 28 ņ8 ņ 33 ņ 40 ņ 20 ņ 45 ņ 12 ņ 52 ņ 36 ņ 61 ņ 28 ņ 68 +72 +115 +185 ±14.5 ±23 +5 ņ 24 +13 ņ 33 ņ8 ņ 37 ņ 46 ņ 22 ņ 51 ņ 14 ņ 60 ņ 41 ņ 70 ņ 33 ņ 79 +81 +130 +210 ±16 ±26 +5 ņ 27 +16 ņ 36 ņ9 ņ 41 ņ 52 ņ 25 ņ 57 ņ 14 ņ 66 ņ 47 ņ 79 ņ 36 ņ 88 +89 +140 +230 ±18 ±28 +7 ņ 29 +17 ņ 40 ņ 10 ņ 46 ņ 57 ņ 26 ņ 62 ņ 16 ņ 73 ņ 51 ņ 87 ņ 41 ņ 98 +97 +155 +250 ±20 ±31 +8 ņ 32 +18 ņ 45 ņ 10 ņ 50 ņ 63 ņ 27 ņ 67 ņ 17 ņ 80 ņ 55 ņ 45 ņ 95 ņ 108 ±9.5 T7 ņ ņ ņ ņ ņ ņ ņ 33 ņ 54 ņ 39 ņ 64 ņ 45 ņ 70 ņ 55 ņ 85 ņ 64 ņ 94 ņ 78 ņ 113 ņ 91 ņ 126 ņ 107 ņ 147 ņ 119 ņ 159 ņ 131 ņ 171 U7 X7 ņ 18 ņ 28 ņ 19 ņ 31 ņ 22 ņ 37 ņ 20 ņ 30 ņ 24 ņ 36 ņ 28 ņ 43 ņ 33 ņ 51 ņ 38 ņ 56 ņ 46 ņ 67 ņ 56 ņ 77 ņ 26 ņ 44 ņ 33 ņ 54 ņ 40 ņ 61 ņ 51 ņ 76 ņ 61 ņ 86 ņ 76 ņ 106 ņ 91 ņ 121 ņ 111 ņ 146 ņ 131 ņ 166 ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ FIT TOLERANCE TABLE(HOLE) H9 TECHNICAL DATA H8 G047 TECHNICAL DATA FIT TOLERANCE TABLE(SHAFT) Classification of Standard Dimensions (mm) > TECHNICAL DATA FIT TOLERANCE TABLE(SHAFT) ņ < 3 6 10 10 14 14 18 18 24 24 30 30 40 40 50 50 65 65 80 80 100 100 120 120 140 140 160 160 180 180 200 200 225 225 250 250 280 280 315 315 355 355 400 400 450 450 500 Class of Geometrical Tolerance Zone of Shafts b9 c9 d8 d9 e7 e8 e9 f6 f7 f8 g5 g6 h5 h6 h7 ņ 140 ņ 165 ņ 140 ņ 170 ņ 150 ņ 186 ņ 60 ņ 85 ņ 70 ņ 100 ņ 80 ņ 116 ņ 20 ņ 34 ņ 30 ņ 48 ņ 40 ņ 62 ņ 20 ņ 45 ņ 30 ņ 60 ņ 40 ņ 76 ņ 14 ņ 24 ņ 20 ņ 32 ņ 25 ņ 40 ņ 14 ņ 28 ņ 20 ņ 38 ņ 25 ņ 47 ņ 14 ņ 39 ņ 20 ņ 50 ņ 25 ņ 61 ņ6 ņ 12 ņ 10 ņ 18 ņ 13 ņ 22 ņ6 ņ 16 ņ 10 ņ 22 ņ 13 ņ 28 ņ6 ņ 20 ņ 10 ņ 28 ņ 13 ņ 35 ņ2 ņ6 ņ4 ņ9 ņ5 ņ 11 ņ2 ņ8 ņ4 ņ 12 ņ5 ņ 14 ņ4 ņ5 ņ6 ņ6 ņ8 ņ9 ņ 10 ņ 12 ņ 15 ņ 150 ņ 193 ņ 95 ņ 138 ņ 50 ņ 77 ņ 50 ņ 93 ņ 32 ņ 50 ņ 32 ņ 59 ņ 32 ņ 75 ņ 16 ņ 27 ņ 16 ņ 34 ņ 16 ņ 43 ņ6 ņ 14 ņ6 ņ 17 ņ8 ņ 11 ņ 18 ņ 160 ņ 212 ņ 110 ņ 162 ņ 65 ņ 98 ņ 65 ņ 117 ņ 40 ņ 61 ņ 40 ņ 73 ņ 40 ņ 92 ņ 20 ņ 33 ņ 20 ņ 41 ņ 20 ņ 53 ņ7 ņ 16 ņ7 ņ 20 ņ9 ņ 13 ņ 21 ņ 170 ņ 232 ņ 180 ņ 242 ņ 190 ņ 264 ņ 200 ņ 274 ņ 220 ņ 307 ņ 240 ņ 327 ņ 260 ņ 360 ņ 280 ņ 380 ņ 310 ņ 410 ņ 340 ņ 455 ņ 380 ņ 495 ņ 420 ņ 535 ņ 480 ņ 610 ņ 540 ņ 670 ņ 600 ņ 740 ņ 680 ņ 820 ņ 760 ņ 915 ņ 840 ņ 995 ņ 120 ņ 182 ņ 130 ņ 192 ņ 140 ņ 214 ņ 150 ņ 224 ņ 170 ņ 257 ņ 180 ņ 267 ņ 200 ņ 300 ņ 210 ņ 310 ņ 230 ņ 330 ņ 240 ņ 355 ņ 260 ņ 375 ņ 280 ņ 395 ņ 300 ņ 430 ņ 330 ņ 460 ņ 360 ņ 500 ņ 400 ņ 540 ņ 440 ņ 595 ņ 480 ņ 635 ņ 80 ņ 119 ņ 80 ņ 142 ņ 50 ņ 75 ņ 50 ņ 89 ņ 50 ņ 112 ņ 25 ņ 41 ņ 25 ņ 50 ņ 25 ņ 64 ņ9 ņ 20 ņ9 ņ 25 ņ 11 ņ 16 ņ 25 ņ 100 ņ 146 ņ 100 ņ 174 ņ 60 ņ 90 ņ 60 ņ 106 ņ 60 ņ 134 ņ 30 ņ 49 ņ 30 ņ 60 ņ 30 ņ 76 ņ 10 ņ 23 ņ 10 ņ 29 ņ 13 ņ 19 ņ 30 ņ 120 ņ 174 ņ 120 ņ 207 ņ 72 ņ 107 ņ 72 ņ 126 ņ 72 ņ 159 ņ 36 ņ 58 ņ 36 ņ 71 ņ 36 ņ 90 ņ 12 ņ 27 ņ 12 ņ 34 ņ 15 ņ 22 ņ 35 ņ 145 ņ 208 ņ 145 ņ 245 ņ 85 ņ 125 ņ 85 ņ 148 ņ 85 ņ 185 ņ 43 ņ 68 ņ 43 ņ 83 ņ 43 ņ 106 ņ 14 ņ 32 ņ 14 ņ 39 ņ 18 ņ 25 ņ 40 ņ 170 ņ 242 ņ 170 ņ 285 ņ 100 ņ 146 ņ 100 ņ 172 ņ 100 ņ 215 ņ 50 ņ 79 ņ 50 ņ 96 ņ 50 ņ 122 ņ 15 ņ 35 ņ 15 ņ 44 ņ 20 ņ 29 ņ 46 ņ 190 ņ 271 ņ 190 ņ 320 ņ 110 ņ 162 ņ 110 ņ 191 ņ 110 ņ 240 ņ 56 ņ 88 ņ 56 ņ 108 ņ 56 ņ 137 ņ 17 ņ 40 ņ 17 ņ 49 ņ 23 ņ 32 ņ 52 ņ 210 ņ 299 ņ 210 ņ 350 ņ 125 ņ 182 ņ 125 ņ 214 ņ 125 ņ 265 ņ 62 ņ 98 ņ 62 ņ 119 ņ 62 ņ 151 ņ 18 ņ 43 ņ 18 ņ 54 ņ 25 ņ 36 ņ 57 ņ 230 ņ 327 ņ 230 ņ 385 ņ 135 ņ 198 ņ 135 ņ 232 ņ 135 ņ 290 ņ 68 ņ 108 ņ 68 ņ 131 ņ 68 ņ 165 ņ 20 ņ 47 ņ 20 ņ 60 ņ 27 ņ 40 ņ 63 (Note) Values shown in the upper portion of the respective boxes are the upper dimensional tolerance, while values shown in the lower portion are the lower dimensional tolerance G048 Units : ! m Class of Geometrical Tolerance Zone of Shafts js5 js6 ņ 14 ņ 18 ņ 22 ņ 25 ņ 30 ņ 36 ņ 27 ņ 43 ņ 33 ņ 52 ±4.5 ņ 39 ņ 62 ±5.5 ņ 46 ņ 74 ±6.5 k6 m5 m6 n6 p6 r6 s6 ±2 ±3 ±5 +4 +6 +1 +7 +1 +6 +9 +1 +10 +1 +6 +2 +9 +4 +12 +6 +8 +2 +12 +4 +15 +6 +10 +4 +16 +8 +19 +10 +12 +6 +20 +12 +24 +15 +16 +10 +23 +15 +28 +19 +20 +14 +27 +19 +32 +23 ±2.5 ±4 ±6 ±3 ±4.5 ±7 ±4 ±5.5 ±9 +9 +1 +12 +1 +15 +7 +18 +7 +23 +12 +29 +18 +34 +23 +39 +28 ±6.5 ±10 +11 +2 +15 +2 +17 +8 +21 +8 +28 +15 +35 +22 +41 +28 +48 +35 ±8 ±12 +13 +2 +18 +2 +20 +9 +25 +9 +33 +17 +42 +26 +50 +34 +59 +43 ±15 +15 +2 +21 +2 +24 +11 +30 +11 +39 +20 +51 +32 ±11 ±17 +18 +3 +25 +3 +28 +13 +35 +13 +45 +23 +59 +37 ±9 ±12.5 ±20 +21 +3 +28 +3 +33 +15 +40 +15 +52 +27 +68 +43 ±10 ±14.5 ±23 +24 +4 +33 +4 +37 +17 +46 +17 +60 +31 +79 +50 +60 +41 +62 +43 +73 +51 +76 +54 +88 +63 +90 +65 +93 +68 +106 +77 +109 +80 +113 +72 +53 +78 +59 +93 +71 +101 +79 +117 +92 +125 +100 +133 +108 +151 +122 +159 +130 +169 +140 ņ 54 ņ 87 ±7.5 ņ 63 ņ 100 ņ 72 ņ 115 ±9.5 js7 k5 ņ 81 ņ 130 ±11.5 ±16 ±26 +27 +4 +36 +4 +43 +20 +52 +20 +66 +34 +88 +56 ņ 89 ņ 140 ±12.5 ±18 ±28 +29 +4 +40 +4 +46 +21 +57 +21 +73 +37 +98 +62 ņ 97 ņ 155 ±13.5 ±20 ±31 +32 +5 +45 +5 +50 +23 +63 +23 +80 +40 +108 +68 +84 +126 +94 +130 +98 +144 +108 +150 +114 +166 +126 +172 +132 t6 ņ ņ ņ ņ ņ +54 +41 +64 +48 +70 +54 +85 +66 +94 +75 +113 +91 +126 +104 +147 +122 +159 +134 +171 +146 u6 x6 +24 +18 +31 +23 +37 +28 +26 +20 +36 +28 +43 +34 +51 +40 +56 +45 +67 +54 +77 +64 +44 +33 +54 +41 +61 +48 +76 +60 +86 +70 +106 +87 +121 +102 +146 +124 +166 +144 ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ ņ FIT TOLERANCE TABLE(SHAFT) h9 TECHNICAL DATA h8 G049 TECHNICAL DATA TAPER STANDARD t5 Fig.1 l3 Fig.2 t1 L Bolt Grip Taper Taper 7/24 l2 National Taper øD2 øD1 ød3 ød1 60° øD1 øD2 ød1 ød3 60° (ød5) l4 l1 Taper 7/24 t2 t3 l5 l2 a Table Bearing Number D1 D2 t1 t2 t3 t5 d1 d3 L BT35 53 43 20 10 13.0 38.1 13 56.5 M12×1.75 21.62 BT40 63 53 25 10 16.6 44.45 17 65.4 M16×2 25.3 BT45 85 73 30 12 21.2 57.15 21 82.8 M20×25 33.1 BT50 100 85 35 15 23.2 69.85 25 101.8 M24×3 40.1 BT60 155 135 45 20 28.2 107.95 31 161.8 M30×3.5 60.7 NT Number D1 d1 l l1 Metric Screw Wit • Screw l2 l3 d3 l4 D2 30 31.75 17.4 70 50 M12 W 1/2 24 50 16.5 50 40 44.45 25.3 95 67 M16 W 5/8 30 70 24 63 10 50 69.85 39.6 130 105 M24 W 45 90 38 11 100 13 60 107.95 60.2 210 165 M30 W1 /4 56 110 58 12 170 15 g d5 a Table Fig.4 øD øD1 c ød2 MTNo d° a 60° l1 l2 l5 K Morse Taper (Shank with Screw) ød e ød1 MTNo R øD1 Morse Taper (Shank with Tongue) d° Fig.3 øD ød1 b g r t d2 l1 l2 r a 8°18ƍ a Table Shank with Tongue TECHNICAL DATA TAPER STANDARD Morse Taper Number G050 D a D1 d1 d2 l1 l2 b c e R 9.045 12.065 3.5 17.780 18.030 23.825 31.267 r 9.201 6.104 56.5 59.5 3.9 6.5 10.5 12.240 8.972 8.7 62.0 65.5 5.2 8.5 13.5 1.2 14.034 13.5 75.0 80.0 6.3 10 16 1.6 24.076 19.107 18.5 94.0 99 7.9 13 20 6.5 31.605 25.164 24.5 117.5 124 11.9 16 24 2.5 44.399 6.5 44.741 36.531 35.7 149.5 156 15.9 19 29 10 63.348 63.765 52.399 51.0 210.0 218 19 27 40 13 83.058 10 83.578 68.185 66.8 286.0 296 28.6 35 54 19 D1 d d1 l1 l2 t r a Table Shank with Screw Morse Taper Number D a d2 K 9.045 9.201 6.442 50 53 0.2 ņ ņ 12.065 3.5 12.240 9.396 53.5 57 0.2 M6 16 17.780 18.030 14.583 14 64 69 0.2 M10 24 23.825 24.076 19.759 19 81 86 0.6 M12 28 31.267 6.5 31.605 25.943 25 102.5 109 1.0 M16 32 44.399 6.5 44.741 37.584 35.7 129.5 136 2.5 M20 40 63.348 63.765 53.859 51 182 190 12 4.0 M24 50 83.058 10 83.578 70.052 65 250 260 18.5 5.0 M33 80 DRILL DIAMETERS FOR TAPPING a Metric Coarse Screw Thread Drill Diameter HSS Carbide Nominal Drill Diameter HSS Carbide Nominal Drill Diameter HSS Carbide Nominal Drill Diameter HSS Carbide M1 ×0.25 0.75 0.75 M1 ×0.2 0.80 0.80 M20 ×2.0 18.0 18.3 M42 ×3.0 39.0 ʊ M1.1×0.25 0.85 0.85 M1.1×0.2 0.90 0.90 M20 ×1.5 18.5 18.7 M42 ×2.0 40.0 ʊ M1.2×0.25 0.95 0.95 M1.2×0.2 1.00 1.00 M20 ×1.0 19.0 19.1 M42 ×1.5 40.5 ʊ 1.20 1.20 M22 ×2.0 20.0 ʊ M45 ×4.0 41.0 ʊ M1.4×0.3 1.10 1.10 M1.4×0.2 M1.6×0.35 1.25 1.30 M1.6×0.2 1.40 1.40 M22 ×1.5 20.5 ʊ M45 ×3.0 42.0 ʊ M1.7×0.35 1.35 1.40 M1.8×0.2 1.60 1.60 M22 ×1.0 21.0 ʊ M45 ×2.0 43.0 ʊ ʊ M45 ×1.5 M1.8×0.35 1.45 1.50 M2 ×0.25 1.75 1.75 M24 ×2.0 22.0 43.5 ʊ M2 ×0.4 1.60 1.65 M2.2×0.25 1.95 2.00 M24 ×1.5 22.5 ʊ M48 ×4.0 44.0 ʊ M2.2×0.45 1.75 1.80 M2.5×0.35 2.20 2.20 M24 ×1.0 23.0 ʊ M48 ×3.0 45.0 ʊ M2.3×0.4 1.90 1.95 M3 ×0.35 2.70 2.70 M25 ×2.0 23.0 ʊ M48 ×2.0 46.0 ʊ M2.5×0.45 2.10 2.15 M3.5×0.35 3.20 3.20 M25 ×1.5 23.5 ʊ M48 ×1.5 46.5 ʊ M2.6×0.45 2.15 2.20 M4 ×0.5 3.50 3.55 M25 ×1.0 24.0 ʊ M50 ×3.0 47.0 ʊ M3 ×0.5 2.50 2.55 M4.5×0.5 4.00 4.05 M26 ×1.5 24.5 ʊ M50 ×2.0 48.0 ʊ M3.5×0.6 2.90 2.95 M5 ×0.5 4.50 4.55 M27 ×2.0 25.0 ʊ M50 ×1.5 48.5 ʊ M4 ×0.7 3.3 3.4 M5.5×0.5 5.00 5.05 M27 ×1.5 25.5 ʊ M4.5×0.75 3.8 3.9 M6 ×0.75 5.30 5.35 M27 ×1.0 26.0 ʊ M5 ×0.8 4.2 4.3 M7 ×0.75 6.30 6.35 M28 ×2.0 26.0 ʊ M6 ×1.0 5.0 5.1 M8 ×1.0 7.00 7.10 M28 ×1.5 26.5 ʊ M7 ×1.0 6.0 6.1 M8 ×0.75 7.30 7.35 M28 ×1.0 27.0 ʊ M8 ×1.25 6.8 6.9 M9 ×1.0 8.00 8.10 M30 ×3.0 27.0 ʊ M9 ×1.25 7.8 7.9 M9 ×0.75 8.30 8.35 M30 ×2.0 28.0 ʊ M10 ×1.5 8.5 8.7 M10 ×1.25 8.80 8.90 M30 ×1.5 28.5 ʊ M11 ×1.5 9.5 9.7 M10 ×1.0 9.00 9.10 M30 ×1.0 29.0 ʊ M12 ×1.75 10.3 10.5 M10 ×0.75 9.30 9.35 M32 ×2.0 30.0 ʊ M14 ×2.0 12.0 12.2 M11 ×1.0 10.1 M32 ×1.5 30.5 ʊ 30.0 ʊ 10.0 M16 ×2.0 14.0 14.2 M11 ×0.75 10.3 10.3 M33 ×3.0 M18 ×2.5 15.5 15.7 M12 ×1.5 10.5 10.7 M33 ×2.0 31.0 ʊ M20 ×2.5 17.5 17.7 M12 ×1.25 10.8 10.9 M33 ×1.5 31.5 ʊ M22 ×2.5 19.5 19.7 M12 ×1.0 11.0 11.1 M35 ×1.5 33.5 ʊ M24 ×3.0 21.0 ʊ M14 ×1.5 12.5 12.7 M36 ×3.0 33.0 ʊ M27 ×3.0 24.0 ʊ M14 ×1.0 13.0 13.1 M36 ×2.0 34.0 ʊ M30 ×3.5 26.5 ʊ M15 ×1.5 13.5 13.7 M36 ×1.5 34.5 ʊ M33 ×3.5 29.5 ʊ M15 ×1.0 14.0 14.1 M38 ×1.5 36.5 ʊ M36 ×4.0 32.0 ʊ M16 ×1.5 14.5 14.7 M39 ×3.0 36.0 ʊ M39 ×4.0 35.0 ʊ M16 ×1.0 15.0 15.1 M39 ×2.0 37.0 ʊ M42 ×4.5 37.5 ʊ M17 ×1.5 15.5 15.7 M39 ×1.5 37.5 ʊ M45 ×4.5 40.5 ʊ M17 ×1.0 16.0 16.1 M40 ×3.0 37.0 ʊ M48 ×5.0 43.0 ʊ M18 ×2.0 16.0 16.3 M40 ×2.0 38.0 ʊ M18 ×1.5 16.5 16.7 M40 ×1.5 38.5 ʊ M18 ×1.0 17.0 17.1 M42 ×4.0 38.0 ʊ DRILL DIAMETERS FOR TAPPING Nominal a Metric Fine Screw TECHNICAL DATA Thread (Note) Hole sizes should be measured since the accuracy of a drilled hole may change due to the drilling conditions, and if found to be inappropriate for a tapping hole, the drill diameter must be corrected accordingly G051 TECHNICAL DATA HEXAGON SOCKET HEAD BOLT HOLE SIZE• INTERNATIONAL SYSTEM OF UNITS DIMENSIONS OF COUNTERBORING FOR HEXAGON SOCKET HEAD CAP SCREW AND BOLT HOLE M4 M5 M6 M8 M10 M12 M14 M16 M18 M20 M22 M24 M27 M30 H H" Nominal dimensions M3 of thread d øD' øD Unit : mm ød' d1 10 12 14 16 18 20 22 24 27 30 d' 3.4 4.5 5.5 6.6 11 14 16 18 20 22 24 26 30 33 D 5.5 8.5 10 13 16 18 21 24 27 30 33 36 40 45 D' 6.5 9.5 11 14 17.5 20 23 26 29 32 35 39 43 48 H 10 16 18 20 22 24 27 30 H' 2.7 3.6 4.6 5.5 7.4 9.2 11 12.8 14.5 16.5 18.5 20.5 22.5 25 28 H" 3.3 4.4 5.4 6.5 8.6 10.8 13 15.2 17.5 19.5 21.5 23.5 25.5 29 32 TECHNICAL DATA øD' øD ød' ød1 d INTERNATIONAL SYSTEM OF UNITS y UNIT CONVERSION TABLE for EASIER CHANGE into SI UNITS (Bold type Indicates SI unit) a Pressure Pa kPa MPa bar kgf/cm2 atm mmH2O mmHg or Torr 1×10-3 1×10-6 1×10-5 1.01972×10-5 9.86923×10-6 1.01972×10-1 7.50062×10-3 1×103 1×10-3 1×10-2 1.01972×10-2 9.86923×10-3 1.01972×102 7.50062 1×106 1×103 1×10 1.01972×10 9.86923 1.01972×105 7.50062×103 1×105 1×102 1×10-1 1.01972 9.86923×10-1 1.01972×104 7.50062×102 9.67841×10-1 1×104 7.35559×102 1.03323×104 7.60000×102 1 9.80665×104 9.80665×10 9.80665×10-2 1.01325×105 1.01325×102 1.01325×10-1 1.01325 9.80665 9.80665×10-3 9.80665×10-6 9.80665×10-5 1×10-4 9.67841×10-5 1.33322×102 1.33322×10-1 1.33322×10-4 1.33322×10-3 1.35951×10-3 1.31579×10-3 9.80665×10-1 1.03323 1 1.35951×10 7.35559×10-2 (Note) 1Pa=1N/m2 a Force a Stress N dyn kgf Pa MPa or N/mm2 kgf/mm2 kgf/cm2 1×105 1.01972×10-1 1×10-6 1.01972×10-7 1.01972×10-5 1×10-5 1.01972×10-6 1×106 1.01972×10-1 1.01972×10 9.80665×106 9.80665 1×102 9.80665×10-2 1×10-2 9.80665×105 9.80665 9.80665×104 (Note) 1Pa=1N/m J kW ã h 2.77778ì10 ì106 kgf • m -7 1.01972×10 kcal -1 3.67098×105 -6 9.80665 2.72407×10 4.18605×103 1.16279×10-3 a Power (Rate of Production / Motive Power) / Heat Flow Rate a Work / Energy / Quantity of Heat 3.600 4.26858ì102 (Note) 1J=1Wãs, 1J=1N • m 1cal=4.18605J (By the law of weights and measures) G052 12 14 d H' H HEXAGON SOCKET HEAD BOLT HOLE SIZE•INTERNATIONAL SYSTEM OF UNITS ød1 W kgf • m/s PS kcal/h -4 1.01972×10-1 1.35962×10-3 8.6000 ×10-1 8.6000 ×102 9.80665 1.33333×10-2 8.43371 2.38889×10 2.34270×10 -3 7.355 1.16279 ×102 7.5 ×10 1.18572×10-1 1.58095×10-3 (Note) 1W=1J/s, PS:French horse power 1PS=0.7355kW 1cal=4.18605J (By the law of weights and measures) 6.32529×102 ... +34 +12 +47 +12 +22 +35 +208 +145 +245 +145 +305 +145 +125 +85 +148 +85 +185 +85 +68 +43 +83 +43 +106 +43 +39 +14 +54 +14 +25 +40 +242 +170 +285 +170 +355 +170 +146 +100 +172 +100 +215 +100 +79... Classification TECHNICAL DATA Turning PCD G037 TECHNICAL DATA INSERT CHIP BREAKER COMPARISON TABLE NEGATIVE INSERT TYPE ISO Classification Cutting Mode Mitsubishi Carbide Finish PK FH FY Light C SA SH TECHNICAL. .. CONVERSION NUMBERS OF STEEL G045 TECHNICAL DATA FIT TOLERANCE TABLE(HOLE) Classification of Standard Dimensions (mm) > TECHNICAL DATA FIT TOLERANCE TABLE(HOLE) ņ < 3 6 10 10 14 14 18 18 24 24 30 30 40

Ngày đăng: 21/03/2020, 08:21

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN