1. Trang chủ
  2. » Kỹ Thuật - Công Nghệ

Lecture Electromechanical energy conversion: Electromechanical – energy – conversion principles - Nguyễn Công Phương

49 35 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 49
Dung lượng 616,71 KB

Nội dung

This chapter presents the following content: Forces and torques in magnetic field systems, energy balance, energy in singly – excited magnetic field systems, determination of magnetic force and torque from energy and coenergy, multiply – excited magnetic field systems, forces and torques in systems with permanent magnets, dynamic equations, analytical techniques.

Nguyễn Công Phương ELECTROMECHANICAL ENERGY CONVERSION Electromechanical – Energy – Conversion Principles Contents I Magnetic Circuits and Magnetic Materials II Electromechanical Energy Conversion Principles III Introduction to Rotating Machines IV Synchronous Machines V Polyphase Induction Machines VI DC Machines VII.Variable – Reluctance Machines and Stepping Motors VIII.Single and Two – Phase Motors IX Speed and Torque Control sites.google.com/site/ncpdhbkhn Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems Determination of Magnetic Force and Torque from Energy and Coenergy Multiply – Excited Magnetic Field Systems Forces and Torques in Systems with Permanent Magnets Dynamic Equations Analytical Techniques sites.google.com/site/ncpdhbkhn Forces and Torques in Magnetic Field Systems (1) F  q( E  v  B ) v F  qE B F  q( v  B ) Fv   ( v  B) F J  v Fv  J  B sites.google.com/site/ncpdhbkhn Ex Forces and Torques in Magnetic Field Systems (2) B yˆ ˆ A nonmagnetic rotor contains a single – turn coil, it is in a uniform magnetic field The rotor is of radius R and of length l Find the θ – directed torque as a function of α? Fv  J  B  F  S  1( J  B)  I xˆ I  IB Fin  IB0l sin  Fout  IB0l sin  T  (2 R )  F  RIB0l sin  (Nm) sites.google.com/site/ncpdhbkhn Forces and Torques in Magnetic Field Systems (3)   f fld i Lossless magnetic energy storage system , e Electrical terminal i1  v  Winding resistance x   Mechanical terminal Magnetic core  x e f fld Movable magnetic plunger  Lossless winding sites.google.com/site/ncpdhbkhn Forces and Torques in Magnetic Field Systems (4)   f fld i , e Lossless magnetic energy storage system Electrical terminal x   Mechanical terminal ei  dW fld dt d e dt  f fld dx dt  dW fld  id   f fld dx sites.google.com/site/ncpdhbkhn Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems Determination of Magnetic Force and Torque from Energy and Coenergy Multiply – Excited Magnetic Field Systems Forces and Torques in Systems with Permanent Magnets Dynamic Equations Analytical Techniques sites.google.com/site/ncpdhbkhn Energy Balance Energy is neither created or destroyed, it is merely changed in form dWelectrical  eidt  dWmechanical  dW field sites.google.com/site/ncpdhbkhn Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems Determination of Magnetic Force and Torque from Energy and Coenergy Multiply – Excited Magnetic Field Systems Forces and Torques in Systems with Permanent Magnets Dynamic Equations Analytical Techniques sites.google.com/site/ncpdhbkhn 10 Forces and Torques in Systems with Permanent Magnets (4) S 1 Hm H m d  Fe   d Fe  External 1  Bm S   R S ( H m  H c ) magnetic circuit F       R S   H c  e  d   Bm  R ( H m  H c ) S 2 ( Ni ) equiv Ni  Fe  H  d Fe  Bm  R H m External magnetic circuit   BS   R HS  ( Ni ) equiv Fe     R S    d   d  1   If ( Ni ) equiv   H cd sites.google.com/site/ncpdhbkhn 35 a) Find the x – directed force on the plunger when the current in the excitation winding is zero and x = mm? b) Find the current in the excitation winding required to reduce the plunger force to zero? ( Ni ) equiv   H cd x g0 W   ( Ni ) equiv sites.google.com/site/ncpdhbkhn – ( Ni ) equiv    W fld Rm  Rx  R0 + N12 L Rtotal d + Li1 i1 N1 d d x g0 Rm   ; Rx  ; R0   R S  RWD 0Wg D 0WD   W fld Depth D  Wg W Rm – Ex Forces and Torques in Systems with Permanent Magnets (5) N1i1 Rx Rg 36 a) Find the x – directed force on the plunger when the current in the excitation winding is zero? b) Find the current in the excitation winding required to reduce the plunger force to zero? ( Ni ) equiv   W fld Rm  Rx  R0 x  iequiv const ( Ni ) x ( Ni ) equiv sites.google.com/site/ncpdhbkhn + N1 + ( Ni ) equiv   equiv 0Wg D ( Rm  Rx  R0 ) g0 W equiv ( Ni ) ( Ni ) equiv  N1i1   i1  d N1 dRx ( Rm  Rx  R0 ) dx   i1 – f fld   W fld Depth D  Wg W Rm – Ex Forces and Torques in Systems with Permanent Magnets (6) N1i1 Rx Rg 37 Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems Determination of Magnetic Force and Torque from Energy and Coenergy Multiply – Excited Magnetic Field Systems Forces and Torques in Systems with Permanent Magnets Dynamic Equations Analytical Techniques sites.google.com/site/ncpdhbkhn 38 Dynamic Equationsx (1) K i v0 + R  , e  Electromechanical – energy – conversion system B f fld M f0 d v0  Ri  dt   L( x )i di dL( x ) dx  v0  Ri  L( x )  i dt dx dt sites.google.com/site/ncpdhbkhn 39 – Dynamic Equationsx (2) K i v0  + R , e  Electromechanical – energy – conversion system M – f K   K ( x  x0 ) fD  B B f fld f0 dx dt  f fld d 2x fM  M dt dx d 2x  K ( x  x0 )  B  M  f  dt dt f fld  f K  f D  f M  f  sites.google.com/site/ncpdhbkhn 40 Dynamic Equationsx (3) K i v0 + R  , e  Electromechanical – energy – conversion system B f fld M f0 di dL( x ) dx   v0 (t )  Ri  L( x ) dt  i dx dt  dx d  f (t )   K ( x  x )  B  M x  f ( x, i ) fld  dt dt sites.google.com/site/ncpdhbkhn 41 – Dynamic Equations (4) l0 Ex Spring, K Extract the dynamic equations of motion of the electromechanical system? R l1 Coil Length of flux path in the direction of field  (area of flux path perpendicular to field) Rg  g 0 dx Rg  g 0 da R  Rg  Rg  a x g 0 d g ax 1 1      x a  0 da x N 0 daN x x L( x )    L , R g ax ax 0 daN L  g sites.google.com/site/ncpdhbkhn                  h a g d Applied force, ft Cylindrical steel plunger, M 42 Dynamic Equations (5) l0 Ex Spring, K Extract the dynamic equations of motion of the electromechanical system? x L ( x )  L , ax f fld  e  (i , x ) W fld x i  const l1 0 daN L  g i dL i aL   dx ( a  x ) d ( Li ) di dL di dL dx  L i  L i dt dt dt dt dx dt x di dx  L  L a  x dt ( a  x ) dt sites.google.com/site/ncpdhbkhn Coil a x                  h a g d Applied force, ft Cylindrical steel plunger, M 43 Dynamic Equations (6) l0 Ex Spring, K Extract the dynamic equations of motion of the electromechanical system? i dL i aL f fld   dx ( a  x ) x di dx e  L  L a  x dt ( a  x ) dt di dL( x ) dx  v ( t )  Ri  L ( x )  i  dt dx dt  dx d  f (t )   K ( x  x )  B  M x  f ( x, i ) fld  dt dt x di a dx    v ( t )  Ri  L  L i  a  x dt (a  x ) dt   2 aL  f (t )   K ( x  l )  B dx  M d x  i  dt dt 2 ( a  x ) sites.google.com/site/ncpdhbkhn l1 Coil a x                  h a g d Applied force, ft Cylindrical steel plunger, M 44 Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems Determination of Magnetic Force and Torque from Energy and Coenergy Multiply – Excited Magnetic Field Systems Forces and Torques in Systems with Permanent Magnets Dynamic Equations Analytical Techniques sites.google.com/site/ncpdhbkhn 45 Analytical Techniques (1)  v (0)  V  If  x di a dx   Ri  L , L i  a  x dt ( a  x ) dt  i  x di a dx    v ( t )  Ri  L  L i  a  x dt ( a  x ) dt   2 dx d x i aL  f (t )   K ( x  l )  B  M   dt dt 2 ( a  x ) V R f 0 If  M  dx a V   B  L   K ( x  l0 )  f ( x )  dt ( a  x )  R  t X B dx f ( x) sites.google.com/site/ncpdhbkhn 46 Analytical Techniques (2)  v (0)  V  If  x di a dx   Ri  L , L i  a  x dt ( a  x ) dt  i  x di a dx    v ( t )  Ri  L  L i  a  x dt ( a  x ) dt   2 dx d x i aL  f (t )   K ( x  l )  B  M   dt dt 2 ( a  x ) V R f 0 If  B  d 2x a V   M  L   K ( x  l0 )  f ( x )  dt (a  x )  R  dx  v( x)   dt M  x sites.google.com/site/ncpdhbkhn B dx f ( x) 47 Analytical Techniques (3) If di dx  0, 0 dt dt x di a dx    v ( t )  Ri  L  L i  a  x dt ( a  x ) dt   2 dx d x i aL  f (t )   K ( x  l )  B  M   dt dt 2 ( a  x )  V0  RI    LaI 02  ( a  l )  K ( X  l0 )  f t  If i  I  i, f t  f t  f , vt  V0  v, x  X  x L( X  x) di La ( I  i ) dx    V0  v  R ( I  i )      a  X  x dt ( a  X  x ) dt  0  2    L a ( I  i ) dx d x    K ( X  x  l )  B  M  ft0  f  0 2  ( a  X  x) dt dt sites.google.com/site/ncpdhbkhn 48 Analytical Techniques (4) L( X  x) di La ( I  i ) dx    V0  v  R ( I  i )      a  X  x dt ( a  X  x ) dt  0  2    L a ( I  i ) dx d x    K ( X  x  l )  B  M  ft0  f  0 2  ( a  X  x) dt dt LX di LaI dx    v  Ri    a  X dt ( a  X ) dt 0   2       L aI dx d x L aI 0  i  B  M  K  x  f  3  ( a  X ) dt dt (a  X )   sites.google.com/site/ncpdhbkhn 49 ... Two – Phase Motors IX Speed and Torque Control sites.google.com/site/ncpdhbkhn Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy. .. sites.google.com/site/ncpdhbkhn Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems... sites.google.com/site/ncpdhbkhn 12 Electromechanical – Energy – Conversion Principles Forces and Torques in Magnetic Field Systems Energy Balance Energy in Singly – Excited Magnetic Field Systems

Ngày đăng: 12/02/2020, 15:16

TỪ KHÓA LIÊN QUAN