1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Nghiên cứu xây dựng hệ thống kích thích tế bào thần kinh và ứng dụng trong đánh giá đáp ứng không gian của tế bào vị trí hồi hải mã

134 47 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 134
Dung lượng 4,56 MB

Nội dung

MINISTRY OF EDUCATION AND TRAINING MINISTRY OF NATIONAL DEFENCE ACADEMY OF MILITARY SCIENCE AND TECHNOLOGY TA QUOC GIAP RESEARCH ON ESTABLISHING THE NEURAL STIMULATION SYSTEM AND APPLY FOR EVALUATING THE SPATIAL RESPONSE OF HIPPOCAMPAL PLACE CELLS DOCTOR OF ENGINEERING DISSERTATION HANOI - 2020 MINISTRY OF EDUCATION AND TRAINING MINISTRY OF NATIONAL DEFENCE ACADEMY OF MILITARY SCIENCE AND TECHNOLOGY TA QUOC GIAP RESEARCH ON ESTABLISHING THE NEURAL STIMULATION SYSTEM AND APPLY FOR EVALUATING THE SPATIAL RESPONSE OF HIPPOCAMPAL PLACE CELLS Specialization: Electronic engineering Code: 52 02 03 DOCTOR OF ENGINEERING DISSERTATION SUPERVISORS: Dr NGUYEN LE CHIEN Dr LE KY BIEN HA NOI - 2020 i DECLARATION I hereby declare that this dissertation is my original work The data and results presented in the dissertation are honest and have not been published in any other work References are fully cited 10th January, 2020 giả luận án TA Quoc Giap ii ACKNOWLEDGMENTS First and foremost, I would like to express my deep appreciation to my direct supervisors, Dr NGUYEN Le Chien, Dr LE Ky Bien and Association Professor TRAN Hai Anh, who enthusiastically guided me during my whole PhD time Thank you very much for many meaningful advices and discussion for my work I learnt from the mentors not only techniques for fulfilling my PhD work, but also methods for solving problems in a lab as well as in the life Thank you very much for revising my thesis, giving me helpful comments and advices My sincere appreciations must go to other teachers in the Departments for their encouragement, knowledge sharing, supports and helps in our course and conduct the thesis I would like to express my sincere thanks to the Institute of Electronics – Academy of Military Science and Technology; Department of Physiology, Department of Material Equipment – VietNam Military Medical University, where I study, live and work for creating favorable conditions for me to participate in studying and researching during my time as a PhD student I want to express my special thank to the leader of Academy of Military science and technology and other collaborator centers for their support and help for this work Finally, I would like to thank my family members for their love, encouragement And especially, I would thank my wife who have sacrificed a lot of things for supporting me to fulfill my PhD work iii TABLE OF CONTENTS Page LIST OF SYMBOL AND ABBREVIATION……………………………… v LIST OF FIGURES AND TABLES…………………………………………ix INTRODUCTION CHAPTER OVERVIEW ABOUT ELECTRICAL ACTIVITY OF NEURONS 1.1 Membrane potential of neurons 1.1.1 Structure of nerve cells membrane 1.1.2 Resting and action potential 1.2 Electrical nerve stimulation and medical significance 12 1.3 The response of cell membranes to electrical stimulation 16 1.4 The recording methods of the neuronal action potential 18 1.5 Hippocampus and hippocampal place cells 21 1.5.1 Structural characteristics 21 1.5.2 Function of the Hippocampus 21 1.6 Fundamentals of electronic circuit model of neuron 23 1.7 Related research to this dissertation .26 1.8 Chapter conclusion 29 CHAPTER EQUIVALENT ELECTRICAL CIRCUIT MODEL AND NEURONAL ELECTRICAL STIMULATION ALGORITHMS .31 2.1 Electronic model of neuron membrane and assessment of electric stimulation parameters 32 2.1.1 Electronic circuit model of neurons 32 2.1.2 Simulation of stimulating parameters on Maeda and Makino models .34 2.1.3 Simulation results and discussion 36 2.2 The system for stimulation and recording the electrical activity of neurons 39 2.3 Building electrical stimulation algorithm model for neurons 41 iv 2.3.1 Model and algorithm of electrical stimulation of neurons with NPT test .41 2.3.2 Model and algorithm of electrical stimulation of neurons with spatial response tests .47 2.4 Chapter conclusion 63 CHAPTER EVALUATING THE STIMULATION ALGORITHMS AND THE SYSTEM BY BEHAVIOURAL RESPONSES AND PRACTICAL EXERCISES ON MICE 64 3.1 Materials and methods 64 3.2 Simulation results 67 3.2.1 Simulation of the NPT task .68 3.2.2 Response simulation in spatial exercises 69 3.3 Analyze and evaluate experimental results on mice 74 3.3.1 Experimental results performed on NPT test 74 3.3.2 Experimental results performed on the spatial response tests 79 3.4 The results of stimulating and recording experiments of the neuronal electronic activity in the hippocampus on mice………………………………80 3.4.1 Unit isolation and recording……………………………………… 80 3.4.2 Common characteristics of hippocampal place cells……………… 82 3.5 The evaluation of the algorithms, stimulation and recording systems for the electrical activity of neurons…………………………………………………83 3.5.1 The evaluation of algorithms……………………………………… 83 3.5.2 The evaluation of stimulating and recording system for the electrical activity of neurons .86 3.6 Chapter conclusion 94 REFERENCES 100 APPENDICES ………………………………………………………………… v LIST OF SYMBOLS AND ABBREVIATIONS Ions concentration Capacitance of the membrane per unit plane cr The adjusted response number countInterVal Number of stops to adjust the parameter delayTime The minimum time from when the mouse receives the reward until the new reward area appears deltaTime The time it takes to count from the time the mouse receives the prize until the new reward area appears delta Limits the distance the mouse moves to get the reward The distance the mouse moves over a certain period of time in the DMT test The distance the mouse moves over a certain period of time in the RRPST test The distance the mouse moves over a certain period of time in the PLT test Diameter on the horizontal axis of the virtual environment Diameter on the vertical axis of the virtual environment Action potential of cell Resting potential of cell ̅̅ Electric field strength Faraday constant Conductivity of Na+ ion channels + Conductivity of K ion channels Conductivity of secondary ion channels Interval Interval to stop for parameter adjustment Intra-axonal current vi Cell membrane stimulated current Extra-axonal current Stimulation current per unit of time K IN K OUT Intracellular K+ concentration Extracellular K+ concentration maxT The maximum time of task maxPt The maximum number of maxwidth rewards Radius of mice area M50 moving 50 percent of the optimal M70 70 percent of the optimal M80 80 percent of the optimal n Valence of ions N a N a OUT Extracellular Na+ concentration IN Intracellular Na+ concentration Constant Membrane resistance per unit area Absolute temperature Time to stimulate Rewarding eligible time Reward receiving time Pt – Total amount of exercise time for the mouse Training time (also the total time of sessions) Rest time to adjust the value of the stimulating parameter Membrane potential Number of rewards Transmembrane potential of Na+ channel – vii – ′ ̅̅̅ Transmembrane potential of K+ channel Transmembrane potential of secondary channels Electric membrane charge The mean of movement speed of the mouse in the open x0, y0 environment xs, ys Maximum diameter in the horizontal axis of the virtual environment xt ,yt Minimum diameter in the horizontal axis of the virtual xz1, yz1 environment xz2, yz2 Reward coordinates of mouse before t The coordinates of the mice at the time t is assigned with xzt, yzt wz x0, y0 which is the original position of the mice Reward coordinates of mouse at The x and y coordinates of the center of the reward area The x and y coordinates of the center of the reward area x, y coordinates of the center of the current reward area Maximum diameter in the vertical axis of the virtual environment Minimum diameter in the vertical axis of the virtual environment Reward region Reward region Radius of the reward area System latency System latency in DMT test System latency in NPT test System latency in RRPST test viii 0 cr AD BSR CCD DAC DC DMT EBS EF FPS HNM ICSS MCI MFB MTLE NPT OF PLT RND, RRPST SPF SNR System latency in PLT test Inner membrane potential Outer membrane potential Membrane time constant Response threshold Correction threshold Alzheimer’s disease Brain stimulation reward Charge coupled device Digital analog converter Direct current Distance movement task Electrical brain stimulation Extracellular field Frames per second Hippocampal network model Intracranial self – stimulation Mild cognitive impairment Medial forebrain bundle Mesial temporal lobe epilepsy Nose – poking task Open – field Place learning task Random task, random reward place search task Spike potential field Signal to noise ratio 105 45 Jung MV, Wierner SI, McNaughton BL (1994), “Comparison of spatial firing characteristics of units in dorsal and ventral hippocampus of the rat”, J Neurosci., 14(12):7347-7356 46 Kandel ER, Squire LR (2000), “Neuroscience: breaking down scientific barriers to the study of brain and mind”, Science, 290(5494):1113–1120 47 Kentros C, Hargreaves E, Hawkins RD, Kandel ER, Shapiro M, et al (1998), “Abolition of long-term stability of new hippocampal place cell maps by NMDA receptor blockade”, Science, 280(5372):2121-2126 48 Knierim JJ, Kudrimoti HS, McNaughton BL (1998), “Interactions between idiothetic cues and external landmarks in the control of place cells and head direction cells”, J Neurophysiol., 80(1):425-446 49 Kobayashi T, Nishijo H, Fukuda M, Bures J, Ono T (1997), “Task- dependent representations in rat hippocampal place neurons” J Neurophysiol., 78(2):597–613 50 Kobayashi T, Tran AH, Nishijo H, Ono T, Matsumoto G (2003), “Contribution of Hippocampal place cell activity to learning and formation of goal - directed navigation in Rat”, Neuroscience, 117 (4):1025–1035 51 Kotkowski E, Price LR, Fox PM, Vanasse TJ, Fox PT (2018), “The hippocampal network model: A transdiagnostic metaconnectomic approach”, Neuroimage Clin, 18:115–129 52 Larry Squire Darwin Berg Floyd E Bloom Sascha du Lac Anirvan Ghosh Nicholas C Spitzer Larry R Squire Darwin Berg Floyd Bloom Sascha du Lac Anirvan Ghosh Nicholas Spitzer (2008), Fundamental Neuroscience, 3rd Edition, ISBN: 978-0-12-374019-9; Academic Press 106 53 Lazenka MF, Blough BE, Negus SS (2016), “Preclinical Abuse Potential Assessment of Flibanserin: Effects on Intracranial Self-Stimulation in Female and Male Rats”, J Sex Med., 13(3):338-349 54 Leutgeb S, Leutgeb JK, Barnes CA, Morse EI, McNaughton BL, et al (2005a), “Independent codes for spatial and episodic memory in hippocampal neuronal ensembles”, Science, 309 (5734):619-623 55 Leutgeb S, Leutgeb JK, Moser MB, Mouser EI (2005b), “Place cells, spatial maps and the population code for memory”, Curr Opin Neurobiol., 15(6):738-746 56 Lever C, Wills T, Cacucci F, Burgess N, O’Keefe J (2002), “Long-term plasticity in hippocampal place-cell representation of environmental geometry”, Nature, 416 (6876):90-94 57 Lewis ER (1968), “An Electronic Model of Neuroelectric Point Processes”, Kybernetik, 5(1): 30-46 58 Maeda Y, Makino H (2000), “A pulse-type hardware neuron model with beating, bursting excitation and plateau potential”, BioSystems, 58(1-3): 93-100 59 Maguire EA, Burgess N, Donnett JG, Frackowiak RS, Frith CD, et al (1998), “Knowing where and getting there: a human navigation network”, Science, 280(5365):921-924 60 Maguire EA, Woollett K, Spiers HJ (2006), “London taxi drivers and bus drivers: a structural MRI and neuropsychological analysis” Hippocampus, 6(12):1091-1101 61 Malmivuo J, Plonsey R (1995), Bioelectromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields, Oxford University Press, Oxford, NY 107 62 Markus EJ, Barnes CA, McNaughtonBL, Gladden VL, Skagg WE (1994), “Spatial information content and reliability of hippocampal CA1 neurons: Effects of visual input”, Hippocampus, 4(4):410-421 63 McHugh TJ, Blum KI, Tsien JZ, Tonegawa S, Wilson MA (1996), “Impaired hippocampal representation of space in CA1-specific NMDAR1 knockout mice”, Cell, 87(7):1339-1349 64 McHugh TJ, Jones MW, Quinn JJ, Balthasar N, Coppari R, et al (2007), “Dentate gyrus NMDA receptors mediate rapid pattern separation in the hippocampal network”, Science, 317(5834):94-99 65 Merrill DR, Bikson M, Jefferys JG (2005), “Electrical stimulation of excitable tissue: design of efficacious and safe protocols”, J Neurosci Methods, 141(2):171-198 66 Mountcastle VB, Lynch JC, Georgopoulus A, Sakata IL, Acuna C (1975), “Posterior parietal association cortex of the monkey: Command functions for operations within extrapersonal space”, J Neurophysiol., 38(4):871-908 67 Muller RU, Kubbie JL (1987), “The effects of changes in the environment on the spatial firing of hippocampal complex-spike cells”, J Neurosci., 7(7):1951-1968 68 Mumoli L, Labate A, Vasta R, Cherubini A, Ferlazzo E, et al (2013) “Detection of hippocampal atrophy in patients with temporal lobe epilepsy: a 3-Tesla MRI shape” Epilepsy Behav., 28(3):489–493 69 Negus SS, Miller LL (2014), “Intracranial Self-Stimulation to Evaluate Abuse Potential of Drugs”, Pharmacol Rev., 66(3):869–917 70 Negus SS, Moerke MJ (2018), “Determinants of opioid abuse potential: Insights using intracranial self-stimulation”, Peptides, 112:23-31 71 Nelson PG, Frank K (1964), “Extracellular potential fields of single spinal motoneurons”, J Neurophysiol 27: 913-927 108 72 Nguyen CL, Tran AH, Matsumoto J, Hori E, Uwano T, et al (2014), “Hippocampal place cell responses to distal and proximal cue manipulations in dopamine D2 receptor-knockout mice”, Brain Res., 1567:13-27 73 O'Keefe J, Dostrovsky J (1971), “The hippocampus as a spatial map: Preliminary evidence from unit activity in the freely-moving rat”, Brain Res., 34(1):171-175 74 O'Keefe J & Nadel L (1978), The Hippocampus as a Cognitive Map, Oxford University Press, Oxford 75 O’Keefe J, Burgress N (1996), “Geometric determinants of the place fields of hippocampal neurons”, Nature, 381 (6581):425-428 76 Place R, Farovik A, Brockmann M, Eichenbaum H (2016) “Bidirectional prefrontal-hippocampal interactions support context-guided memory”, Nat neurosci., 19(8):992-994 77 Qiu C (2012), “Preventing Alzheimer's disease by targeting vascular risk factors: hope and gap” J Alzheimers Dis., 32(3):721-731 78 Radulescu E, Ganeshan B, Shergill SS, Medford N, Chatwin C, et al (2014), “Grey-matter texture abnormalities and reduced hippocampal volume are distinguishing features of schizophrenia” Psychiatry Res., 223(3):179–186 79 Ranck Jb Jr (1973), “Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats Part I: Behavioral correlates and firing repertoires”, Exp Neurol., 41(2):461-531 80 Renshaw B, Forbes A, Morison BR (1940), “Activity of isocortex and hippocampus: electrical studies with micro-electrodes”, J Neurophysiol.,3(1):74-105 109 81 Rotenberg A, Abel T, Hawkins RD, Kandel ER, Muller RU (2000) “Parallel instabilities of long-term potentiation, placecells, and learning caused by decreased protein kinase A activity”, J Neurosci., 20(21):8096–8102 82 Schröder J, Pantel J (2016), “Neuroimaging of hippocampal atrophy in early recognition of Alzheimer's disease – a critical appraisal after two decades of research” Psychiatry Res Neuroimaging, 247:71–78 83 Sidman M, Brady JV, Boren JJ, Conrad DG, Schulman A (2016), “Reward Schedules and Behavior Maintained by Intracranial Self-Stimulation”, Science, 122(3174):830-831 84 Speakman A, O'Keefe J (1990), “Hippocampal Complex Spike Cells not Change Their Place Fields if the Goal is Moved Within a Cue Controlled Environment” Eur J Neurosci., 2(6):544-555 85 Stalnaker TA, Liu TL, Takahashi YK, Schoenbaum G (2018), “Orbitofrontal neurons signal reward predictions, not reward prediction errors”, Neurobiol Learn Mem., 153(Pt B):137-143 86 Stringer KG, Martin GM, Skinner DM (2005), “The effects of hippocampal lesions on response, direction, and place learning in rats”, Behav Neurosci., 119(4):946-952 87 Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, et al (2002), “Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice”, Proc Natl Acad Sci U S A, 99(13):8986-8991 88 Tran AH, Tamua R, Uwano T, Kobayashi T, Katsuki M, Ono T (2005), “Dopamin D1 receptor involved in locomotor activity and accumbens neural responses to prediction of reward associated with place”, Proc Natl Acad Sci U S A, 102(6):2117-2122 110 89 Tran AH, Uwano T, Kimura T, Hori E, Katsuki M, et al (2008), “Dopamine D1 receptor modulates hippocampal representation plasticity to spatial novelty”, J Neurosci., 28(50):13390-13400 90 Whishaw IQ, McKenna JE, Maaswinkel H (1997), “Hippocampal lesions and path integration”, Curr Opin Neurobiol., 7(2):228-234 91 Wierner SI, Paul CA, Eichenbaum H (1989), “Spatial and behavioral correlates of hippocampal neuronal activity”, J Neurosci., 9(8): 2737-2763 92 Wilkerson A, Levin ED (1999), “Ventral hippocampal dopamine D1 and D2 systems and spatial working memory in rats”, Neuroscience, 89(3):743-749 93 Wilson MA, McNaughton BL (1993), “Dynamics of the hippocampal ensemble code for space”, Science, 261(5124):1055-1058 94 Wise RA (1996), “Addictive drugs and brain stimulation reward”, Annu Rev Neurosci., 19: 319-340 95 Wolbarsht ML, Macnichol EF Jr, Wagner HG (1960), “Glass Insulated Platinum Microelectrode”, Science, 132(3436):1309-1310 96 Yang X, Yao C, Tian T, Li X, Yan H, et al (2018), “A novel mechanism of memory loss in Alzheimer’s disease mice via the degeneration of entorhinal–CA1 synapses”, Mol Psychiatry, 23(2):199-210 97 Zinyuk L, Kubik S, Kaminsky Y, Fenton AA, Bures J (2000), “Understanding hippocampal activity by using purposeful behavior: place navigation induces place cell discharge in both task-relevant and taskirrelevant spatial reference frames”, Proc Natl Acad Sci U S A, 97(7):3771-3776 98 Zlebnik NE, Gildish I, Sesia T, Fitoussi A, Cole EA, et al (2019), “Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington’s Disease”, Cereb Cortex, doi: 10.1093/cercor/bhz009 [Epub ahead of print] 111 APPENDICES Table The results of nose – poking response depend on intensity Intensity (µA) 20 30 40 50 60 70 80 90 100 110 120 130 140 Mice’name Day Ctr07 14 49 95 95 127 120 159 160 136 151 150 Ctr14 14 84 94 144 120 107 158 125 113 77 113 34 Ctr16 12 11 87 135 107 93 181 200 202 204 154 194 Ctr21 10 48 66 66 107 135 115 127 162 174 39 Ctr22 11 21 167 70 165 197 177 194 225 Ctr25 23 52 72 100 70 119 161 61 58 19 24 75 Day Ctr07 20 11 22 95 129 89 143 128 118 128 173 Ctr14 42 114 138 111 121 116 111 146 121 123 127 166 Ctr16 11 105 143 162 201 177 196 204 173 178 164 Ctr21 16 17 76 65 120 165 158 189 160 186 147 135 166 Ctr22 2 87 110 118 195 185 215 186 176 190 164 Ctr25 15 83 41 148 109 134 87 124 60 68 34 74 10 12 38 66 100 104 138 139 151 145 132 134 135 11 11 13 11 10 12 12 14 15 15 17 X ±SE 112 Table The results of nose – poking response depend on frequency Frequency (Hz) 16 20 25 32 40 50 63 80 100 126 158 Mice’name Day Ctr027 12 31 18 29 58 48 123 144 145 110 146 Ctr029 15 5 25 10 29 233 165 184 191 253 Ctr030 19 12 24 27 82 92 158 211 191 169 192 Ctr032 19 12 16 74 168 161 145 155 143 Ctr033 18 17 27 62 93 128 112 151 74 Ctr034 12 32 20 19 23 117 147 204 195 214 179 Ctr006 24 62 103 101 191 250 190 222 240 250 181 Day Ctr027 16 17 10 34 52 53 99 132 144 133 95 Ctr029 10 32 59 219 228 259 258 271 Ctr030 24 20 62 77 159 152 189 154 130 Ctr032 13 15 30 11 41 115 202 190 183 176 179 Ctr033 13 73 115 108 146 138 135 81 Ctr034 24 13 29 167 178 187 188 202 157 Ctr006 22 31 106 111 215 262 245 212 226 235 185 X ±SE 13 13 28 29 72 121 173 178 185 185 16 19 13 11 12 127 15 113 Table The results of system latency time in NPT test (unit: s) Turn Turn Turn Turn Turn Turn Turn Turn Turn Turn 10 0.03 0.10 0.07 0.05 0.09 0.04 0.09 0.10 0.04 0.02 0.07 0.05 0.05 0.04 0.02 0.11 0.09 0.03 0.04 0.01 0.02 0.09 0.07 0.07 0.02 0.01 0.09 0.10 0.08 0.05 0.05 0.09 0.02 0.05 0.08 0.01 0.02 0.07 0.03 0.15 0.06 0.06 0.09 0.09 0.07 0.04 0.08 0.05 0.06 0.06 0.08 0.07 0.05 0.10 0.08 0.09 0.04 0.09 0.05 0.02 0.08 0.03 0.04 0.10 0.01 0.04 0.00 0.04 0.11 0.08 0.10 0.02 0.04 0.04 0.09 0.04 0.01 0.10 0.07 0.09 0.10 0.04 0.10 0.10 0.04 0.07 0.07 0.06 0.05 0.09 0.01 0.02 0.11 0.10 0.01 0.05 0.08 0.10 0.06 0.04 tNPT.Max = 0,15 XNPT = 0,06 SD = 0,03 tNPT.Min = 0,01 114 Table The results of system latency time in DMT test (unit: ms) Turn Turn Turn Turn Turn Turn Turn Turn Turn Turn 10 3.72 3.91 4.23 7.55 1.63 7.67 5.86 7.69 6.80 5.87 3.16 4.22 3.41 3.14 3.10 4.18 10.09 6.11 6.02 3.13 6.06 5.22 6.15 5.16 2.08 5.18 5.21 8.07 6.13 4.71 3.13 4.22 6.17 4.97 2.05 3.11 5.18 8.81 2.08 5.21 2.09 3.09 4.17 4.23 5.12 6.12 4.16 6.14 5.21 5.11 8.94 6.13 4.21 4.10 2.23 4.24 3.14 3.19 5.98 6.14 5.18 3.09 3.06 3.13 4.23 3.15 5.10 5.22 7.52 3.01 6.14 3.16 6.12 2.06 4.16 7.64 4.24 9.77 3.12 8.49 5.81 3.14 10.47 4.30 2.84 5.52 3.20 5.16 0.71 5.18 2.10 6.42 3.12 5.08 4.15 5.98 5.23 2.10 3.25 10.34 6.12 2.06 5.63 3.16 3.17 7.78 6.12 3.18 7.21 2.72 6.12 4.21 7.19 10.63 5.16 3.16 3.02 5.25 3.15 5.21 3.13 4.82 6.71 2.06 4.23 5.86 3.19 6.06 6.05 4.18 4.79 3.12 3.19 4.17 4.14 5.13 8.83 5.19 1.54 7.20 3.18 3.17 6.20 3.13 3.18 4.79 3.09 5.16 5.23 4.22 3.10 4.23 5.15 6.14 4.37 4.17 6.13 3.17 3.11 4.15 4.23 5.15 4.93 3.12 10.07 10.10 5.65 3.17 5.97 3.20 10.15 3.10 8.17 5.10 3.16 6.21 3.12 4.16 4.35 5.21 5.13 6.14 5.14 5.18 1.94 3.12 3.16 3.11 3.19 4.16 5.26 6.05 5.22 5.26 3.15 4.13 6.17 5.20 5.10 6.57 6.15 5.19 6.01 5.41 5.22 2.05 5.13 4.22 4.17 4.17 3.15 5.59 1.43 5.10 4.20 5.23 4.19 7.11 4.20 3.18 6.10 2.06 2.97 4.15 2.09 5.16 4.12 2.81 2.07 5.31 5.13 3.11 6.08 5.19 4.45 7.88 7.53 7.04 3.16 5.07 4.20 2.40 3.11 3.08 4.18 3.16 7.21 3.17 4.14 4.20 4.13 5.14 3.15 3.12 5.13 6.03 5.22 3.08 3.12 5.14 5.13 5.22 6.21 3.15 3.16 3.15 8.67 3.09 5.22 5.18 8.26 8.57 5.23 9.09 3.07 8.72 4.03 1.96 6.12 2.05 5.23 6.10 4.17 6.25 3.01 6.14 3.23 6.12 4.12 3.09 3.12 6.86 2.05 6.18 5.17 4.18 6.85 2.09 5.17 6.13 4.19 3.09 4.10 3.09 4.18 6.14 3.07 4.23 1.89 3.11 6.15 3.17 8.71 5.11 5.40 3.05 3.15 6.11 5.22 4.17 5.21 9.74 3.10 5.25 5.16 8.95 4.16 4.18 6.13 2.07 115 3.11 5.19 6.13 3.00 5.16 10.80 8.80 10.62 10.84 5.13 9.56 4.25 6.07 3.11 8.16 2.06 4.11 3.10 5.17 5.19 4.16 6.13 5.18 4.20 6.12 5.21 6.14 5.20 3.00 3.16 7.90 6.14 4.68 5.16 5.22 6.20 4.25 8.31 5.17 3.15 4.17 2.89 5.38 2.08 6.14 2.98 4.26 4.18 4.16 5.19 5.23 5.12 6.35 3.16 6.18 4.26 3.09 8.31 4.22 4.55 3.09 10.81 4.10 4.14 8.13 6.13 8.84 10.61 4.17 7.19 2.05 10.58 3.29 3.03 2.51 5.16 6.10 3.08 3.10 4.09 3.12 9.87 3.15 4.05 5.85 4.18 2.06 3.12 2.00 3.05 5.25 3.09 5.16 5.20 6.16 5.09 6.06 8.77 5.06 6.10 8.82 6.12 2.03 4.23 11.64 7.84 5.27 6.16 4.24 3.08 4.18 6.14 5.06 4.14 6.17 6.20 6.20 3.11 3.10 8.77 5.12 10.88 5.11 3.07 2.95 8.46 3.09 4.23 11.12 5.91 2.04 4.14 3.07 5.25 4.14 7.06 6.20 6.16 3.13 2.01 3.08 4.10 4.03 3.04 5.14 1.46 6.15 2.04 3.09 4.16 2.93 6.12 5.10 3.07 5.21 3.03 11.27 6.15 2.08 1.19 3.29 6.21 4.97 4.83 6.21 4.05 6.16 4.06 6.10 3.08 tDMT.Max = 11,64 XDMT = 4,88 SD = 2,01 tDMT.Min = 0,71 116 Table The results of system latency time in RRPST test (unit: ms) Turn Turn Turn Turn Turn Turn Turn Turn Turn Turn 10 4.00 6.45 5.36 3.32 2.81 5.24 5.83 2.96 4.03 6.79 3.12 5.45 2.09 3.21 1.13 6.12 5.17 9.72 4.09 4.20 2.12 3.11 1.96 5.35 5.14 6.06 5.02 5.09 5.22 4.38 2.11 2.52 3.14 3.18 3.09 2.05 5.17 3.04 4.09 3.23 4.16 5.68 4.18 2.03 5.16 5.06 6.03 5.14 3.16 3.05 4.13 3.04 5.01 6.13 8.52 5.17 6.18 4.24 9.37 3.18 5.02 5.07 3.10 4.15 2.00 2.10 4.14 4.17 4.26 4.15 3.15 4.22 5.13 4.13 5.13 5.07 6.11 6.14 7.63 0.77 6.05 4.06 9.68 6.18 3.13 3.08 2.13 4.13 5.16 3.07 5.18 6.13 5.05 3.08 6.15 3.06 4.17 4.13 2.01 4.23 6.08 5.04 6.27 2.56 4.13 6.51 3.13 7.81 4.20 6.07 6.25 5.07 9.27 4.08 5.21 6.06 5.07 4.17 6.12 6.11 8.02 5.87 3.17 5.23 4.13 5.20 5.17 5.08 1.97 8.02 2.00 4.24 3.04 3.09 4.22 4.06 5.04 6.19 6.15 2.12 6.13 3.02 6.17 6.81 6.12 5.37 5.24 2.05 5.16 3.09 5.83 6.16 4.14 5.14 2.08 4.10 3.11 4.18 4.22 4.18 6.12 8.85 3.80 5.49 8.42 2.06 3.72 1.98 5.16 3.12 6.05 4.18 4.19 5.34 4.17 4.13 4.26 0.00 6.14 3.04 0.54 3.05 6.98 2.09 6.16 1.96 8.33 4.18 4.24 4.23 3.19 6.79 0.00 3.32 6.09 3.90 5.30 0.00 4.12 5.06 5.12 5.11 3.10 4.35 6.00 1.97 5.14 6.13 3.15 6.13 6.11 4.15 5.12 3.13 4.13 2.10 3.15 3.13 6.29 4.03 3.20 3.02 1.62 4.09 4.07 5.12 2.02 5.13 6.17 2.05 5.16 3.13 5.23 4.17 7.00 2.06 2.10 6.15 4.09 6.04 4.19 4.16 4.07 4.11 3.14 6.13 4.13 3.12 5.16 4.16 8.44 3.19 4.16 6.13 5.14 3.20 3.20 4.13 4.26 4.16 3.20 5.15 3.09 5.03 3.18 5.05 8.75 3.12 3.05 6.07 2.07 2.11 4.11 6.17 4.13 3.12 2.11 0.00 3.16 3.18 2.09 5.79 1.58 6.10 3.05 6.03 4.07 6.11 2.02 6.08 4.13 3.17 4.16 3.22 3.14 6.18 4.15 3.12 4.17 4.35 11.23 6.05 5.12 7.83 5.12 5.03 5.12 0.00 2.09 4.15 2.07 4.23 4.24 4.19 3.19 2.06 5.58 4.25 4.14 3.02 5.18 9.48 8.20 2.00 3.10 5.05 3.13 6.13 5.38 5.79 117 5.15 3.03 7.40 7.15 6.17 6.14 4.09 4.14 4.25 3.07 8.86 4.26 6.03 3.54 6.11 6.09 3.14 6.18 3.14 3.11 3.10 1.94 5.21 2.11 3.13 5.17 5.06 4.15 8.36 3.07 5.13 6.17 6.02 1.97 4.09 3.13 5.20 3.37 2.05 4.10 3.15 4.07 5.13 4.21 5.14 5.14 6.04 3.19 9.95 5.14 4.18 6.13 3.02 5.08 5.39 2.98 2.28 2.28 7.19 3.44 3.18 4.08 4.21 6.44 2.10 4.17 11.16 0.00 4.08 8.79 4.16 5.17 5.12 5.11 5.20 5.13 5.21 5.27 6.25 3.11 5.13 4.14 5.20 2.10 7.09 6.47 6.86 0.00 6.62 4.06 6.17 5.20 3.07 5.16 3.09 4.18 3.43 2.05 8.87 5.11 5.19 3.10 3.34 7.70 3.12 0.50 3.13 0.00 5.20 6.33 2.07 5.21 6.14 5.12 5.08 4.23 5.06 0.00 5.07 4.16 6.20 5.10 4.44 4.11 5.08 4.14 4.14 0.00 6.08 6.04 4.18 3.10 3.18 3.05 5.87 6.12 2.11 0.00 5.34 3.16 4.08 3.04 4.03 3.11 3.08 5.13 4.40 0.00 5.98 5.06 5.22 3.09 3.17 3.04 4.06 7.21 5.20 5.16 5.17 5.34 6.25 5.04 4.01 6.79 4.06 5.09 5.09 3.09 4.01 2.03 tRRPST.Max = 11,23 XRRPST = 4,44 SD = 1,81 tRRPST.Min = 0,00 118 Table The results of system latency time in PLT test (unit: ms) Turn Turn Turn Turn Turn Turn Turn Turn Turn Turn 10 5.16 3.19 7.61 11.69 3.14 7.03 8.74 5.15 6.37 4.01 8.24 10.35 6.36 9.83 4.13 6.87 3.09 5.13 9.63 4.41 3.07 3.16 2.08 6.23 4.05 2.08 2.05 5.05 5.03 5.23 5.15 3.13 4.15 6.17 4.13 1.99 7.97 5.22 2.08 1.99 3.18 3.11 3.07 2.01 3.12 5.19 5.06 5.19 5.41 4.17 5.04 5.05 4.15 7.19 5.07 3.11 3.13 6.76 7.03 3.08 7.74 4.13 3.16 5.10 6.10 3.04 6.15 5.58 5.36 6.10 3.23 6.07 3.05 3.15 5.10 6.15 5.09 5.22 6.23 2.08 6.20 10.41 6.16 5.02 5.12 4.41 4.18 4.12 2.01 4.12 4.12 3.11 5.16 7.77 6.17 5.14 2.10 3.16 4.47 2.09 6.15 6.14 4.13 4.22 3.07 3.17 3.02 2.09 5.16 5.15 5.08 5.22 4.23 3.11 3.13 4.12 4.64 3.05 4.13 6.11 5.20 3.03 11.13 4.13 3.11 3.12 9.36 6.12 5.15 6.45 10.22 5.22 5.06 6.18 3.11 4.16 4.10 5.13 5.19 4.23 8.58 3.45 5.19 3.07 3.11 3.12 4.22 3.20 5.12 6.46 4.17 4.13 5.54 4.24 4.05 9.27 4.15 4.17 3.50 4.17 5.11 4.14 3.11 6.34 2.07 3.55 5.38 9.65 4.28 3.04 3.15 3.12 4.23 3.15 6.14 1.97 2.11 5.08 3.19 5.15 7.44 5.17 4.14 6.07 5.19 3.10 3.21 6.70 4.07 3.24 6.04 6.13 6.07 5.15 8.75 6.12 6.03 4.17 2.12 5.10 4.18 5.09 4.17 8.40 4.03 6.16 10.11 6.27 3.21 5.51 7.75 6.15 6.12 7.12 9.65 3.11 4.12 4.22 5.13 5.09 6.06 6.00 4.16 3.19 5.06 3.12 4.08 6.13 5.24 3.14 3.15 6.29 6.16 3.96 5.17 3.12 5.13 3.06 2.18 3.14 3.18 5.22 1.77 4.16 2.00 3.12 6.16 3.22 4.18 3.22 4.05 4.14 4.14 3.05 2.17 3.12 3.18 4.10 3.03 3.21 5.92 3.24 3.16 5.17 5.16 6.15 7.52 4.17 3.40 2.25 6.05 6.12 7.00 3.05 5.07 4.15 4.67 1.99 4.93 5.21 6.12 4.08 4.16 3.10 5.21 3.25 3.12 2.08 4.02 5.13 3.19 5.20 2.10 5.06 9.73 5.21 5.07 2.02 3.15 3.07 4.22 1.86 3.82 3.11 1.20 5.13 7.90 6.31 6.86 7.72 1.98 3.04 5.20 6.10 4.15 3.13 10.35 5.19 4.21 3.61 5.20 2.08 4.18 4.13 10.15 4.49 5.06 3.11 4.03 3.22 119 5.09 5.18 6.06 3.05 5.12 5.19 6.17 7.51 4.84 8.64 2.49 6.10 5.15 3.12 6.04 4.24 5.21 6.06 2.29 6.15 5.07 5.18 3.10 6.04 4.24 4.13 8.77 6.13 4.21 5.15 2.08 4.19 5.24 3.12 6.06 4.15 5.08 7.59 4.08 24.28 6.11 5.07 3.13 5.12 5.16 2.31 6.84 3.14 2.07 4.25 5.08 6.17 10.62 3.19 8.70 5.96 10.81 3.05 2.11 3.09 6.17 9.86 6.05 6.02 4.17 6.11 4.24 4.15 4.07 5.20 5.22 6.92 3.22 5.20 5.07 3.00 5.22 2.09 4.16 5.20 3.15 7.49 8.33 6.07 2.11 2.13 2.01 3.11 5.21 5.10 11.07 8.63 6.53 5.17 6.04 6.60 4.15 2.05 6.08 4.14 9.94 5.02 4.87 4.06 10.77 3.01 6.62 3.04 8.51 8.55 4.09 5.17 5.22 4.16 2.02 3.38 5.09 4.16 8.20 1.99 3.15 10.04 5.14 10.34 5.12 8.03 3.21 7.07 3.09 6.17 6.12 5.12 6.12 6.15 6.05 4.07 2.08 5.15 6.37 5.21 4.06 5.24 5.18 4.12 6.09 7.23 3.04 5.08 6.85 5.14 5.21 5.17 3.14 7.60 4.03 4.14 2.11 6.24 5.12 3.04 3.05 6.81 1.99 5.13 5.16 3.07 4.13 5.05 6.90 3.08 tPLT.Max = 24,28 XPLT = 4,91 SD = 2,12 tPLT.Min = 1,20 ... does not exceed the threshold, the response is not propagated (electric tone) If the response is strong enough, a nerve impulse (action potential impulse) will be produced according to the "all... electrical impulse and duration of stimulation? Can the membrane voltage be reached by a short, strong stimulus or a long, weak stimulus? The curve illustrates the relationship between intensity... allergy stage Near the end of the stimulating pulse, the cell can be activated, but with only a stronger stimulus than usual, this stage is called the relative inert phase The activation process

Ngày đăng: 07/02/2020, 07:55

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. Bộ môn Sinh lý học, Học viện Quân y (2007), Những khái niệm cơ bản trong Sinh lý học, Giáo trình Sinh lý học, tập I (Tái bản lần thứ nhất).NXB QĐND, Hà Nội, tr. 31-34 Sách, tạp chí
Tiêu đề: Những khái niệm cơ bảntrong Sinh lý học
Tác giả: Bộ môn Sinh lý học, Học viện Quân y
Nhà XB: NXB QĐND
Năm: 2007
2. Nguyễn Lê Chiến, Trần Hải Anh (2012), “Mô hình Gompertz’s và hành vi tự kích thích nội sọ”, Tạp chí Sinh lý học, 16(2):41-47 Sách, tạp chí
Tiêu đề: Mô hình Gompertz’s và hành vitự kích thích nội sọ”, "Tạp chí Sinh lý học
Tác giả: Nguyễn Lê Chiến, Trần Hải Anh
Năm: 2012
3. Nguyễn Lê Chiến, Teruko Uwano, Taketoshi Ono, Hisao Nishijo, Trần Hải Anh (2012), “Đáp ứng của tế bào vị trí vùng hải mã ở chuột dòng C57BL/6 với những thay đổi của môi trường”, Tạp chí Sinh lý học, 16(1): 51-58 Sách, tạp chí
Tiêu đề: Đáp ứng của tế bào vị trí vùng hải mã ở chuột dòng C57BL/6với những thay đổi của môi trường”, "Tạp chí Sinh lý học
Tác giả: Nguyễn Lê Chiến, Teruko Uwano, Taketoshi Ono, Hisao Nishijo, Trần Hải Anh
Năm: 2012
4. Lưu Thị Thu Phương, Nguyễn Lê Chiến, Cấn Văn Mão, Trần Hải Anh (2018), “Hoạt động vận động tự phát và khám phá của chuột nhắt trắng theo thời gian tiếp xúc với môi trường mở”, Tạp chí Sinh lý học, 22(4): 11-16.English Sách, tạp chí
Tiêu đề: Hoạt động vận động tự phát và khám phá của chuột nhắt trắng theo thời gian tiếp xúc với môi trường mở”, "Tạp chí Sinh lý học
Tác giả: Lưu Thị Thu Phương, Nguyễn Lê Chiến, Cấn Văn Mão, Trần Hải Anh
Năm: 2018
5. Allen TA, Morris AM, Mattfeld AT, Stark CE, Fortin NJ (2014), “ASequence of events model of episodic memory shows parallels in rats and humans”, Hippocampus, 24(10):1178-1188 Sách, tạp chí
Tiêu đề: ASequence of events model of episodic memory shows parallels in rats and humans”, "Hippocampus
Tác giả: Allen TA, Morris AM, Mattfeld AT, Stark CE, Fortin NJ
Năm: 2014
6. Anand KS, Dhikav V (2012), “Hippocampus in health and disease: An overview”, Ann. Indian Acad. Neurol., 15(4): 239–246 Sách, tạp chí
Tiêu đề: Hippocampus in health and disease: Anoverview”, "Ann. Indian Acad. Neurol
Tác giả: Anand KS, Dhikav V
Năm: 2012
7. Banerjee A, Kikuchi Y, Mishkin M, Rauschecker JP, Horwitz B (2018),“Chronometry on Spike-LFP Responses Reveals the Functional Neural Circuitry of Early Auditory Cortex Underlying Sound Processing and Discrimination”, eNeuro , 5(3) Sách, tạp chí
Tiêu đề: Chronometry on Spike-LFP Responses Reveals the Functional NeuralCircuitry of Early Auditory Cortex Underlying Sound Processing andDiscrimination”, "eNeuro
Tác giả: Banerjee A, Kikuchi Y, Mishkin M, Rauschecker JP, Horwitz B
Năm: 2018
8. Bauer CT, Banks ML, Blough BE, and Negus SS (2013), “Use of intracranial self-stimulation to evaluate abuse-related and abuse-limiting effects of monoamine releasers in rats”, Br. J. Pharmacol., 168(4): 850 –862 Sách, tạp chí
Tiêu đề: Use of intracranialself-stimulation to evaluate abuse-related and abuse-limiting effects ofmonoamine releasers in rats”, "Br. J. Pharmacol
Tác giả: Bauer CT, Banks ML, Blough BE, and Negus SS
Năm: 2013
9. Berridge KC and Robinson TE (2003), “Parsing reward”, Trends in Neurosci., 26(9): 507-513 Sách, tạp chí
Tiêu đề: Parsing reward”, "Trends in Neurosci
Tác giả: Berridge KC and Robinson TE
Năm: 2003
11. Brocker DT, Grill WM (2013), “Principles of electrical stimulation of neural tissue”, Handb. Clin. Neurol., 116:3-18 Sách, tạp chí
Tiêu đề: Principles of electrical stimulation of neural tissue”, "Handb. Clin. Neurol
Tác giả: Brocker DT, Grill WM
Năm: 2013
12. Bryden DW, Brockett AT, Blume E, Heatley K, Zhao A, et al. (2019),“Single Neurons in Anterior Cingulate Cortex Signal the Need to Change Action During Performance of a Stop-change Task that Induces Response Competition”. Cereb. Cortex, 29(3):1020-1031 Sách, tạp chí
Tiêu đề: Single Neurons in Anterior Cingulate Cortex Signal the Need to ChangeAction During Performance of a Stop-change Task that Induces Response Competition”. "Cereb. Cortex
Tác giả: Bryden DW, Brockett AT, Blume E, Heatley K, Zhao A, et al
Năm: 2019
13. Boinagrov D, Loudin J, Palanker D (2010), “Strength-duration relationship for extracellular neural stimulation: numerical and analytical models”, J. Neurophysiol. 104(4): 2236-2248 Sách, tạp chí
Tiêu đề: Strength-durationrelationship for extracellular neural stimulation: numerical and analyticalmodels”, "J. Neurophysiol
Tác giả: Boinagrov D, Loudin J, Palanker D
Năm: 2010
14. Bostock. H (1983), “The strength-duration relationship for excitation of myelinated nerve: computed dependence on membrane parameters”, J.Physiol., 341: 59–74 Sách, tạp chí
Tiêu đề: The strength-duration relationship for excitation ofmyelinated nerve: computed dependence on membrane parameters”, "J."Physiol
Tác giả: Bostock. H
Năm: 1983
15. Bullock TH (1959), “Initiation of Nerve Impulses in Receptor and Central Neurons”, Rev. Mod. Phys., 31: 504 Sách, tạp chí
Tiêu đề: Initiation of Nerve Impulses in Receptor and CentralNeurons”, "Rev. Mod. Phys
Tác giả: Bullock TH
Năm: 1959
16. CC McIntyre, WM Grill (1999), “Excitation of central nervous system neurons by nonuniform electric fields”, Biophys J., 76(2): 878–888 Sách, tạp chí
Tiêu đề: Excitation of central nervous system neurons by nonuniform electric fields”, "Biophys J
Tác giả: CC McIntyre, WM Grill
Năm: 1999
17. Carlezon WA Jr & Chartoff EH (2007), “Intracranial self-stimulation (ICSS) in rodents to study the neurobiology of motivation”. Nat. protoc., 2 (11):2987-2995 Sách, tạp chí
Tiêu đề: Intracranial self-stimulation(ICSS) in rodents to study the neurobiology of motivation”. "Nat. protoc
Tác giả: Carlezon WA Jr & Chartoff EH
Năm: 2007
18. Caruso VC, Mohl JT, Glynn C, Lee J, Willett SM, et al. (2018) “Single neurons may encode simultaneous stimuli by switching between activity patterns”, Nat. Commun., 9(1): 2715 Sách, tạp chí
Tiêu đề: Singleneurons may encode simultaneous stimuli by switching between activitypatterns”, "Nat. Commun
19. Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H (1998), “Abnormal hippocampal spatial representations in alphaCaMKIIT286A and CREBalphaDelta- mice”, Science, 279(5352):867-869 Sách, tạp chí
Tiêu đề: Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H (1998), “Abnormalhippocampal spatial representations in alphaCaMKIIT286A andCREBalphaDelta- mice”, "Science
Tác giả: Cho YH, Giese KP, Tanila H, Silva AJ, Eichenbaum H
Năm: 1998
20. Coleman WL and Burger RM (2015), “Extracellular Single-Unit Recording and Neuropharmacological Methods”, In: Covey E and Carter M (eds) Basic Electrophysiological Methods (pp. 53-75), Oxford University Press. New York Sách, tạp chí
Tiêu đề: Coleman WL and Burger RM (2015), “Extracellular Single-UnitRecording and Neuropharmacological Methods”, "In: Covey E and CarterM" (eds) "Basic Electrophysiological Methods
Tác giả: Coleman WL and Burger RM
Năm: 2015
21. Coulombe D & Miliaressis E (1987), “Fitting Intracranial self-stimulation data with growth models”, Behav. Neurosci., 101(2): 209-214 Sách, tạp chí
Tiêu đề: Coulombe D & Miliaressis E (1987), “Fitting Intracranial self-stimulation data with growth models”, "Behav. Neurosci
Tác giả: Coulombe D & Miliaressis E
Năm: 1987

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w