(BQ) Part 1 book Mechanical ventilation in critically ill cancer patients has contents: Background and therapeutic procedures in critically ill cancer patients, invasive and non invasive mechanical ventilation.
Antonio M Esquinas · S Egbert Pravinkumar Ayman O Soubani Editors Mechanical Ventilation in Critically Ill Cancer Patients Rationale and Practical Approach 123 Mechanical Ventilation in Critically Ill Cancer Patients Antonio M Esquinas S Egbert Pravinkumar • Ayman O Soubani Editors Mechanical Ventilation in Critically Ill Cancer Patients Rationale and Practical Approach Editors Antonio M Esquinas Intensive Care and Non Invasive Ventilatory Unit Hospital Morales Meseguer Murcia, Spain Ayman O Soubani Wayne State University School of Medicine Detroit, Michigan, USA S Egbert Pravinkumar Division of Anesthesiology and Critical Care The University of Texas M.D. Anderson Cancer Center Houston, Texas, USA ISBN 978-3-319-49255-1 ISBN 978-3-319-49256-8 (eBook) https://doi.org/10.1007/978-3-319-49256-8 Library of Congress Control Number: 2017963389 © Springer International Publishing AG 2018 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations Printed on acid-free paper This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To all our patients, to whom we will always owe at least a little hope Preface Survival of critically ill cancer patients admitted to intensive care unit (ICU) for management of acute deteriorations related to underlying malignancy, infections, and treatment-related organ dysfunctions is improving worldwide In particular outcomes of cancer patients receiving mechanical ventilator support have improved given the timely optimal diagnostic and therapeutic management of critically ill cancer patients with respiratory failure Advances in the care of deteriorating organ functions in cancer patients, early recognition of acute clinical decline and admission to ICU, use of rapid response teams, and clinical practice algorithms play an important role in the positive outcome of these patients Furthermore, advances in ventilator support devices, aggressive structured and standardized weaning from mechanical ventilation and intravenous sedatives, use of noninvasive mechanical ventilatory support, and education of health care providers have significantly contributed to the improved survival of cancer patients in the ICU This book is focused on the care of cancer patients in the ICU given the increased incidence of cancer and related critical illness Experts from various countries have contributed to the development of this book by sharing their expertise in their specific area of practice The book provides an in-depth understanding of the rationale and practice of mechanical ventilatory support in critically ill cancer patients The book is unique in that it has an international panel of experts focused in the clinical care of cancer patients with critical illness The lack of a wider international perspective on ventilatory support in cancer patients triggered the need for this textbook The chapters are structured in such a way that the reader would appreciate the different aspects of ventilator support such as pre-ICU support, types of ventilatory support, and postoperative ventilatory support Chapters on ICU end-of-life care, withdrawal of mechanical ventilator support, and health care cost/resource utilization have been included to provide the reader a realistic and wider perspective of ventilatory support for cancer patients The book will aid in acquiring knowledge and understanding of ventilatory support for critically ill patients with both solid and hematological malignancies Coordinating the creation of a book with international authors, like this book, is of no easy task; nevertheless, it has resulted in compilation of knowledge from international authors for a broader view in the management of critically ill cancer patients We hope that the reader would find this book not only interesting but as a resource of practical knowledge vii viii Preface The editors would like to acknowledge the willingness of these experts in sharing their experience and knowledge in this area We would also like to thank Ms Madonna Samuel and Andrea Ridolfi with Springer Publishing Group for their support throughout the process Murcia, Spain Houston, TX, USA Detroit, MI, USA Antonio M. Esquinas S. Egbert Pravinkumar Ayman O. Soubani Contents Part I Background and Therapeutic Procedures in Critically Ill Cancer Patients 1 Epidemiology of Mechanical Ventilation and Acute Respiratory Failure in Cancer Patients���������������������������������������������������������������������� 3 Dulce Apolinário 2 Breathlessness in Advanced Cancer Patients: Protocols and Recommendations���������������������������������������������������������������������������� 9 Manuel Sánchez Cánovas, Juan Gutiérrez Mejía, Alberto Carmona Bayonas, and Paula Jiménez-Fonseca 3 Acute Respiratory Failure in Patients with Hematologic and Solid Malignancies: Global Approach�������������������������������������������� 21 Sakshi Sethi and Stephen M Pastores 4 Radiation Therapy: Impact on Lung Function and Acute Respiratory Failure �������������������������������������������������������������������������������� 33 Athanasia Proklou, Eleni Diamantaki, Emmanouil Pediaditis, and Eumorfia Kondili 5 Radiation Pneumonitis and Noninvasive Ventilation���������������������������� 41 Erica Altschul, Shalin Patel, and Bushra Mina 6 Blood Marrow Transplantation�������������������������������������������������������������� 47 Riccardo Boncompagni and Adriano Peris 7 Ventilatory Approach in Upper Airway/Neck Cancer Patients with Respiratory Failure ������������������������������������������������������������������������ 59 Bushra Mina, Khalid Gafoor, and Oki Ishikawa 8 Psychological Aspects of Critically Ill Cancer�������������������������������������� 75 Zehra Hatipoğlu, Ayten Bolukbası, and Dilek Ozcengiz 9 Upper Acute Respiratory Failure in Neck Cancer�������������������������������� 83 Nilgün Alpay, Mediha Turktan, and Dilek Ozcengiz ix x Contents 10 Acute Respiratory Failure Before ICU Admission: A Practical Approach������������������������������������������������������������������������������ 91 Eleni Diamantaki, Athanasia Proklou, Emmanouil Pediaditis, Vasilis Amargianitakis, and Eumorfia Kondili 11 Acute Myeloid Leukemia and Acute Respiratory Failure: Early Diagnosis and a Practical Approach�������������������������������������������� 103 Gulsah Karaoren and Sibel Serin 12 Cardiac Disease in Hematologic Cancer and Acute Respiratory Failure-General Considerations �������������������� 113 Mina Bushra, Belete Habtamu, and Sharma Sanjeev 13 Cardiac Diseases in Hematology Cancer and Acute Respiratory Failure: Ventilatory Approach�������������������������������� 123 Giuseppe Fiorentino, Antonio M Esquinas, and Anna Annunziata 14 Oxygen Therapy and Ventilatory Approach in Elderly Cancer Patients: Key Practice Recommendations�������������������������������� 131 Carmen M Hernandez-Cardenas Part II Invasive and Non-Invasive Mechanical Ventilation 15 Rationale and Overview�������������������������������������������������������������������������� 137 Ravinder Bhanot, Abdulrazak Alchakaki, Jasleen Kaur, and Ayman O Soubani 16 Invasive and Interventional Procedures������������������������������������������������ 157 Fayez Kheir and Adnan Majid 17 Modes of Mechanical Ventilation������������������������������������������������������������ 177 Eduardo Mireles-Cabodevila, Abhijit Duggal, and Robert L Chatburn 18 Continuous Positive Airway Pressure (CPAP) for Critically Ill Cancer Patients������������������������������������������������������������������ 189 Mohammed Alahmari 19 Airway Pressure Release Ventilation������������������������������������������������������ 197 Jennifer C Cabot and Stephen M Pastores 20 Non-Invasive Ventilation: Determinants of Success or Failure������������ 205 Mario Albani Pérez, Patricia Iranzo Gómez, and Antonio Esquinas Part III Postoperative Mechanical Ventilation 21 General Postoperative Complications���������������������������������������������������� 213 Gulsah Karaoren 22 Mechanical Ventilation After Neurosurgery������������������������������������������ 227 Debra Roberts and James E Szalados Contents xi 23 Mechanical Ventilation After Lung Cancer Resection ������������������������ 237 Christophe Perrin, Fabien Rolland, Yannick Duval, and Valérie Jullien 24 Postoperative Pulmonary Management After Esophagectomy for Cancer ������������������������������������������������������������������������������������������������ 245 Zehra Hatipoğlu and Dilek Ozcengiz Part IV Withdrawal from Mechanical Ventilation Support 25 Tracheostomy: Indications���������������������������������������������������������������������� 255 George Eapen and Macarena R Vial 26 Nutrition in Critically Ill Cancer Patients �������������������������������������������� 265 Laura D Ciobanu 27 Prolonged Mechanical Ventilation in the Cancer Patient�������������������� 275 Jennifer Kaya and Ayman O Soubani Part V Palliative Ventilatory Support in Cancer Critical Care 28 Avoidance of Endotracheal Intubation�������������������������������������������������� 289 Pieter Depuydt 29 Ventilator Withdrawal at the End of Life���������������������������������������������� 299 Margaret L Campbell 30 Outcome: Prognosis Determinants�������������������������������������������������������� 307 Thierry Hernández-Gilsoul Part VI Outcome, Healthcare Resource Utilization and Organizational Support in Cancer Critical Care 31 Outcome of Critically Ill Allogeneic Hematopoietic Stem-Cell Transplantation Recipients �������������������������������������������������������������������� 317 Darius Seidler and Alex H Gifford 32 Clinical Utility of Prognostic Scoring Systems in Patients with Hematological Malignancies Who Require Mechanical Ventilation������������������������������������������������������������������������������������������������ 325 Elliot D Backer and Alex H Gifford 33 Organization of Ventilatory Support ���������������������������������������������������� 335 Heleni Stefanatou, Nikolaos Markou, and Ioannis Koutsodimitropoulos 34 Acute Respiratory Failure After Hematopoietic Stem Cell Transplantation���������������������������������������������������������������������������������������� 347 Meaghen Finan and Stephen M Pastores Index������������������������������������������������������������������������������������������������������������������ 355 18 Continuous Positive Airway Pressure (CPAP) for Critically Ill Cancer Patients 195 13 Saillard C, Mokart D, Lemiale V, Azoulay E. Mechanical ventilation in cancer patients Minerva Anestesiol 2014;80(6):712–25 14 Darmon M, Thiery G, Ciroldi M, Porcher R, Schlemmer B, Azoulay E. Should dialysis be offered to cancer patients with acute kidney injury? Intensive Care Med 2007;33(5):765–72 15 Thiéry G, Azoulay E, Darmon M, Ciroldi M, De Miranda S, Lévy V, et al Outcome of cancer patients considered for intensive care unit admission: a hospital-wide prospective study J Clin Oncol 2005;23(19):4406–13 16 Maccariello E, Valente C, Nogueira L, Bonomo H, Ismael M, Machado JE, et al Outcomes of cancer and non-cancer patients with acute kidney injury and need of renal replacement therapy admitted to general intensive care units Nephrol Dial Transplant 2011;26(2):537–43 17 Taccone FS, Artigas AA, Sprung CL, Moreno R, Sakr Y, Vincent J-L. Characteristics and outcomes of cancer patients in European ICUs Crit Care Lond Engl 2009;13(1):R15 18 Rosolem MM, Rabello LSCF, Lisboa T, Caruso P, Costa RT, Leal JVR, et al Critically ill patients with cancer and sepsis: clinical course and prognostic factors J Crit Care 2012;27(3):301–7 19 Groeger JS, White P, Nierman DM, Glassman J, Shi W, Horak D, et al Outcome for cancer patients requiring mechanical ventilation J Clin Oncol 1999;17(3):991–7 20 Keilty S, Bott J. Continuous positive airways pressure Physiotherapy 1992;78(2):90–2 21 Simmonds S. Non-invasive respiratory support Br J Intensive Care 1994;4(7):235–41 22 Banner MJ, Lampotang S, Boysen PG, Hurd TE, Desautels DA. Flow resistance of expiratory positive-pressure valve systems Chest 1986;90(2):212–7 23 Hilbert G, Gruson D, Vargas F, Valentino R, Gbikpi-Benissan G, Dupon M, et al Noninvasive ventilation in immunosuppressed patients with pulmonary infiltrates, fever, and acute respiratory failure N Engl J Med 2001;344(7):481–7 24 Mehta S, Hill NS. Noninvasive ventilation Am J Respir Crit Care Med 2001;163(2):540–77 25 Masur H, Shelhamer J, Parrillo JE. The management of pneumonias in immunocompromised patients JAMA 1985;253(12):1769–73 26 Blot F, Guiguet M, Nitenberg G, Leclercq B, Gachot B, Escudier B. Prognostic factors for neutropenic patients in an intensive care unit: respective roles of underlying malignancies and acute organ failures Eur J Cancer 1997;33(7):1031–7 27 Ewig S, Torres A, Riquelme R, El-Ebiary M, Rovira M, Carreras E, et al Pulmonary complications in patients with haematological malignancies treated at a respiratory ICU. Eur Respir J 1998;12(1):116–22 28 Antonelli M, Conti G, Bufi M, Costa MG, Lappa A, Rocco M, et al Noninvasive ventilation for treatment of acute respiratory failure in patients undergoing solid organ transplantation: a randomized trial JAMA 2000;283(2):235–41 29 Principi T, Pantanetti S, Catani F, Elisei D, Gabbanelli V, Pelaia P, et al Noninvasive continuous positive airway pressure delivered by helmet in hematological malignancy patients with hypoxemic acute respiratory failure Intensive Care Med 2004;30(1):147–50 30 Hauser MJ, Tabak J, Baier H. Survival of patients with cancer in a medical critical care unit Arch Intern Med 1982;142(3):527–9 31 Azoulay É, Schlemmer B. Diagnostic strategy in cancer patients with acute respiratory failure Intensive Care Med 2006;32(6):808–22 32 Rocco M, Dell’Utri D, Morelli A, Spadetta G, Conti G, Antonelli M, et al Noninvasive ventilation by helmet or face mask in immunocompromised patients: a case-control study Chest 2004;126(5):1508–15 33 Jolliet P, Abajo B, Pasquina P, Chevrolet JC. Non-invasive pressure support ventilation in severe community-acquired pneumonia Intensive Care Med 2001;27(5):812–21 34 Azevedo LCP, Caruso P, Silva UVA, Torelly AP, Silva E, Rezende E, et al Outcomes for patients with cancer admitted to the ICU requiring ventilatory support: results from a prospective multicenter study Chest 2014;146(2):257–66 35 Ferreira JC, Medeiros P, Rego FM, Caruso P. Risk factors for noninvasive ventilation failure in cancer patients in the intensive care unit: a retrospective cohort study J Crit Care 2015;30(5):1003–7 196 M Alahmari 36 Müller AM, Gazzana MB, Silva DR. Outcomes for patients with lung cancer admitted to intensive care units Rev Bras Ter Intensiva 2013;25(1):12–6 37 Bird GT, Farquhar-Smith P, Wigmore T, Potter M, Gruber PC. Outcomes and prognostic factors in patients with haematological malignancy admitted to a specialist cancer intensive care unit: a yr study Br J Anaesth 2012;108(3):452–9 38 Lichtman MA. Battling the hematological malignancies: the 200 years’ war Oncologist 2008;13(2):126–38 39 Azoulay E, Recher C, Alberti C, Soufir L, Leleu G, Le Gall JR, et al Changing use of intensive care for hematological patients: the example of multiple myeloma Intensive Care Med 1999;25(12):1395–401 40 Gristina GR, Antonelli M, Conti G, Ciarlone A, Rogante S, Rossi C, et al Noninvasive versus invasive ventilation for acute respiratory failure in patients with hematologic malignancies: a 5-year multicenter observational survey Crit Care Med 2011;39(10):2232–9 41 Rabbat A, Chaoui D, Montani D, Legrand O, Lefebvre A, Rio B, et al Prognosis of patients with acute myeloid leukaemia admitted to intensive care Br J Haematol 2005;129(3):350–7 42 Adda M, Coquet I, Darmon M, Thiery G, Schlemmer B, Azoulay E. Predictors of noninvasive ventilation failure in patients with hematologic malignancy and acute respiratory failure Crit Care Med 2008;36(10):2766–72 43 Hilbert G, Gruson D, Vargas F, Valentino R, Chene G, Boiron JM, et al Noninvasive continuous positive airway pressure in neutropenic patients with acute respiratory failure requiring intensive care unit admission Crit Care Med 2000;28(9):3185–90 Airway Pressure Release Ventilation 19 Jennifer C. Cabot and Stephen M. Pastores 19.1 Introduction Airway pressure release ventilation (APRV) was first described in 1987 by Stock and Downs [1] It became available on commercial ventilators in the 1990s, and depending upon the brand, it may have any of the following names: APRV (Drager), BiLevel (Covidien), Bi-Vent (Maquet), Biphasic (CareFusion), and DuoPAP (Hamilton) APRV is based on the “open lung concept” and is a form of pressure- controlled intermittent mandatory ventilation using extreme inverse inspiratory– expiratory (I:E) ratios [1] It can be most easily understood as a type of continuous positive airway pressure (CPAP) mode modified to apply two alternating levels of pressure The majority of the respiratory cycle (Thigh) is spent at a high pressure (Phigh) to maximize alveolar recruitment, while a short period (Tlow) is spent at a low pressure (Plow) to allow CO2 clearance Mandatory breaths are time-triggered, pressure-targeted, and time-cycled The patient may breathe at any time during the respiratory cycle, though due to the extreme I:E time ratio, most spontaneous breathing takes place during Thigh (Fig. 19.1) The purported benefits of APRV are twofold: (1) minimization of peak airway pressures (Paw), and (2) maintenance of spontaneous breathing By minimizing peak Paw, ventilator-induced lung injury (VILI) theoretically may be avoided and hemodynamics improved Spontaneous breathing by the patient leads to several advantages, including increased patient comfort, decreased patient-ventilator asynchrony, reduced need for sedation, and improved aeration of basilar lung segments [2] J.C Cabot, M.D Department of Anesthesiology and Critical Care Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue C-1179, New York, NY 10065, USA S.M Pastores, MD, FACP, FCCP, FCCM (*) Professor of Medicine and Anesthesiology, Weill Cornell Medical College, New York, NY, USA e-mail: pastores@mskcc.org © Springer International Publishing AG 2018 A.M Esquinas et al (eds.), Mechanical Ventilation in Critically Ill Cancer Patients, https://doi.org/10.1007/978-3-319-49256-8_19 197 198 J.C Cabot and S.M Pastores Airway Pressure Release Ventilation with Spontaneous Breathing Phigh 35 Mean airway pressure Airway Pressure (cm H2O) 30 25 20 Spontaneous breaths 15 10 Plow Tlow 10 11 Thigh Time (seconds) Fig 19.1 Two ventilator cycles with Phigh and Plow labeled, as well as a mandatory breath and a spontaneous breath Reprinted with permission from the publisher Unfortunately, there are few human studies comparing APRV to conventional modes of ventilation, and those that exist not show a mortality benefit [2] Thus, despite the intuitive advantages of APRV, it is infrequently used in the United States other than as a rescue strategy 19.2 Indications for APRV APRV has been used in multiple clinical settings over the past three decades, including trauma-associated respiratory failure, cardiac surgery, and pediatrics [4–9] The most common indication for APRV to date, however, is acute respiratory distress syndrome (ARDS) [2] In ARDS, multiple areas of the lung undergo collapse, particularly in the dependent portions This leads to significant pulmonary shunt and hypoxemia Conventional ventilator strategies can compound this problem by causing VILI through volutrauma (overdistension of normal alveoli), barotrauma (damage from excessive peak inspiratory pressures), and atelectrauma (shear stress from repeated opening and closing of under-recruited alveoli) [3] APRV purports to minimize VILI in patients with ARDS by recruiting both healthy and diseased alveoli at lower peak pressures and preventing cyclic alveolar collapse and reopening with intrinsic PEEP [1, 2] 19.3 Pathophysiology of Mechanical Ventilation with APRV The goal of APRV is to ventilate the patient on the steep portion of the pressure–volume curve, where lung compliance, venous admixture, and arterial oxygenation are optimized, and risk from lung stretch and alveolar collapse is minimized [2] The difference between APRV and most other modes of ventilation, however, is that 19 Airway Pressure Release Ventilation 199 APRV accomplishes this task while maintaining long inflation times, low peak airway pressures, and spontaneous breathing throughout the ventilatory cycle APRV divides the respiratory cycle into two time periods, a long Thigh at a high pressure (Phigh) and a very short Tlow at a low pressure (Plow) Eighty to ninety-five percent of the respiratory cycle is typically spent at Phigh, which allows a higher mean airway pressure to be generated at a substantially lower peak airway pressure than with conventional ventilation modes [10–12] Additionally, the long Thigh allows progressive recruitment of both healthy and diseased alveoli during inflation Diseased lung units have decreased compliance and tend to inflate and deflate rapidly, as opposed to healthy lung units with normal compliance Therefore, a long inflation time is required to achieve inflation of the maximum number of alveolar units and to minimize shunt [2] The release times (Tlow) in APRV are typically only 0.4–0.8 s, which is long enough to allow ventilation but short enough to create significant intrinsic PEEP. Intrinsic PEEP prevents alveolar collapse and minimizes shear stress to alveolar units Spontaneous breathing is another crucial aspect of APRV. An active exhalation valve allows spontaneous breathing with CO2 elimination during both Thigh and Tlow Studies have shown that spontaneous breathing accounts for up to 30% of the minute ventilation in APRV [2] Perhaps even more importantly, spontaneous breathing decreases shunt by increasing recruitment of basilar lung segments [13, 14] These actions decrease ventilation-perfusion mismatch and improve oxygenation Spontaneous breathing also increases lung compliance, cardiac index, and oxygen delivery, compared to ventilator strategies that require deep sedation or paralysis [4] Finally, spontaneous breathing increases patient comfort, as shown by the significantly reduced requirements for sedation and analgesia in APRV as compared to conventional modes of ventilation [15] 19.4 Nuts and Bolts: How to Choose the Settings APRV improves oxygenation through progressive recruitment of lung segments during long inflation times and prevention of collapse through intrinsic PEEP, while ventilation occurs via release times with a large pressure differential It can be difficult to strike a balance between these two needs, and various methods exist for setting APRV parameters [2] A bedside guide to choosing APRV settings is shown in Table 19.1 19.5 Setting the Pressures: Phigh/Plow Pressure–Volume Curve (PVC) Method One method to set Phigh and Plow involves the creation of a patient’s pressure– volume curve during a short period of paralysis Phigh is then set to just below the upper inflection point (UIP) on the curve and Plow to just above the lower inflection point (LIP) [2] 200 J.C Cabot and S.M Pastores Table 19.1 Bedside guide to choosing APRV settings—adapted from Modrykamien et al [11] Bedside guide to APRV settings Initial settings • Phigh • Set as plateau pressure on volume-control mode OR the peak Paw of pressure-control ventilation • Maximum Phigh of 30 cm H2O • Plow • 0 cm H2O • Thigh • (60/desired RR)—Tlow • Tlow • 50% of peak expiratory flow • Should be in the range of 0.2–0.8 s Adjustments Hypoxemia • Increase Thigh by up to 1 s • Increase Phigh by 5 cm H2O Hypercarbia with pH