THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 553 |
Dung lượng | 5,79 MB |
Nội dung
Ngày đăng: 17/01/2020, 15:37
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
1. The conditional distribution 𝑓 𝑋| Θ ( 𝑥|𝜃 ) is a member of the linear exponential family | Sách, tạp chí |
|
||
2. The prior distribution 𝜋 ( 𝜃 ) is a conjugate prior for 𝑓 𝑋| Θ ( 𝑥|𝜃 ).3. E( 𝑋 ) = 1 | Sách, tạp chí |
|
||
4. E( 𝑋|𝑋 1 = 4) = 2, where 𝑋 1 is the value of a single observation | Sách, tạp chí |
|
||
5. The expected value of the process variance E[Var( 𝑋| Θ)] = 3.Determine the variance of the hypothetical means Var[E( 𝑋| Θ)] | Sách, tạp chí |
|
||
17.38 The distribution of the number of claims is binomial with 𝑛 = 1 and 𝜃 unknown.The parameter 𝜃 is distributed with mean 0.25 and variance 0.07. Determine the value of 𝑍 for a single observation using B¨uhlmann’s credibility formula | Sách, tạp chí |
|
||
17.34 (*) A portfolio of risks is such that all risks are normally distributed. Those of type A have a mean of 0.1 and a standard deviation of 0.03. Those of type B have a mean of 0.5 and a standard deviation of 0.05. Those of type C have a mean of 0.9 and a standard deviation of 0.01. There are an equal number of each type of risk. The observed value for a single risk is 0.12. Determine the Bayesian estimate of the same risk’s expected value | Khác | |||
6. The number of claims and the claim amounts are independent.(a) Determine the expected value of the pure premium’s process variance for a single risk | Khác |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN