Six sigma and beyond foundations of excellent performance, volume i

417 44 0
Six sigma and beyond foundations of excellent performance, volume i

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

Thông tin tài liệu

SIX SIGMA AND BEYOND Foundations of Excellent Performance SIX SIGMA AND BEYOND A series by D.H Stamatis Volume I Foundations of Excellent Performance Volume II Problem Solving and Basic Mathematics Volume III Statistics and Probability Volume IV Statistical Process Control Volume V Design of Experiments Volume VI Design for Six Sigma Volume VII The Implementing Process D H Stamatis SIX SIGMA AND BEYOND Foundations of Excellent Performance ST LUCIE PRES S A CRC Press Company Boca Raton London New York Washington, D.C SL3119_fm_frame Page Thursday, August 16, 2001 1:45 PM Library of Congress Cataloging-in-Publication Data Stamatis, D.H., 1947Six sigma and beyond: foundations of excellent performance / Dean H Stamatis p cm.—(Six Sigma and beyond series) Includes bibliographical references ISBN 1-57444-311-9 (v : alk paper) Quality control—Statistical methods Production management—Statistical methods Industrial management I Title II Series TS156 S73 2001 658.5′62—dc21 2001041635 This book contains information obtained from authentic and highly regarded sources Reprinted material is quoted with permission, and sources are indicated A wide variety of references are listed Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale Specific permission must be obtained in writing from CRC Press LLC for such copying Direct all inquiries to CRC Press LLC, 2000 N.W Corporate Blvd., Boca Raton, Florida 33431 Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are used only for identification and explanation, without intent to infringe Visit the CRC Press Web site at www.crcpress.com © 2002 by CRC Press LLC St Lucie Press is an imprint of CRC Press LLC No claim to original U.S Government works International Standard Book Number 1-57444-311-9 Library of Congress Card Number 2001041635 Printed in the United States of America Printed on acid-free paper SL3119_fm_frame Page Thursday, August 16, 2001 1:45 PM Dedication This volume is dedicated to the new engineer in the family, Cary SL3119_fm_frame Page Thursday, August 16, 2001 1:45 PM SL3119_fm_frame Page Thursday, August 16, 2001 1:45 PM Preface Whether one agrees or not with the methodology of six sigma, at this juncture, it is an academic argument The fact of the matter is that major corporations all over the world are following this particular methodology with the hopes that customer satisfaction will increase and the financial position of the organization will strengthen So, what is this six sigma phenomenon? Basically, it is a statistical measure that defines variation Specifically, if a company is operating under the six sigma philosophy, then it would produce 3.4 nonconformances per million opportunities (We prefer the term nonconformance for legal reasons The traditional verbiage has been defective.) A nonconformance is a deviation from the requirement Whereas the six sigma methodology is nothing new, it does provide a structured approach to improving the process and that in itself may prove to be worthwhile On the other hand, we believe that the return of an organization’s effort will be much more favorable to the “bottom line” if the six sigma methodology was focused on the design and not the product More about this will be found in Volume VI of this series This work will attempt to focus on six sigma and beyond for both manufacturing and transactional organizations Specifically, we will discuss the foundations of quality, and progressively, we will move into what is called the six sigma methodology from a design perspective We will discuss some of the tools used in the methodology and close this series with an implementation scheme that, if followed, will help any organization improve both their processes and financial status Moreover, in this work, we are going to address the issue of quality from a fundamental point of view and continue in an advanced path to demonstrate the results of planning for quality rather than appraising quality Our focus is to show the tools one needs for improvement, but also to demonstrate how these tools can be used to optimize the process for six sigma (99.99966%) and beyond To this we have separated the work into seven volumes Each one is independent of one another and may be read or followed in any order that the reader needs the appropriate and applicable information Each volume’s content is summarized below SIX SIGMA AND BEYOND: FOUNDATIONS OF EXCELLENT PERFORMANCE, VOLUME I In this volume, we focus on the very fundamental issues of all quality systems and we give an overview of the six sigma concept This is the volume in which we define quality and recognize some of the elements that both management and nonmanagement personnel must understand for success SL3119_fm_frame Page Thursday, August 16, 2001 1:45 PM In addition, this volume addresses the issues of team and the mechanics of teams as they relate to quality Quality is the result of everyone, which is the premise of this work, and as such the topic of teams is a fundamental one, especially when one tries to go beyond six sigma constraints We believe that quality depends on the team effort of everyone and it is through synergy that process optimization occurs However, since the topic of teams has been written about extensively, in this volume we focus on teams, their behaviors, their assumptions, and their benefits as they relate to quality, and we that by question and answer rather than full text discussion An extensive bibliography is given for the reader to pursue each topic on his own In this volume we also include what we think is the body of knowledge for an effective six sigma program As of now, the body of knowledge has not been officially designated SIX SIGMA AND BEYOND: PROBLEM SOLVING AND BASIC MATHEMATICS, VOLUME II In this volume, we focus on the problem solving methodology which is very fundamental to any quality initiative We begin by addressing what is a problem and then systematically we define the process of resolving the problem The second part of this volume addresses basic mathematics that are used in all phases of quality The approach we have taken is to introduce the mathematical concept, give an example, and then proceed with several exercises for the reader SIX SIGMA AND BEYOND: STATISTICS AND PROBABILITY, VOLUME III In this volume, we address the essential topics of statistics and probability as they are used in the field of quality We address topics for both measurable and attribute characteristics In addition we make the connection between statistics, probability, and reliability SIX SIGMA AND BEYOND: STATISTICAL PROCESS CONTROL, VOLUME IV Statistical Process Control (SPC) has been covered in the literature quite extensively However, in this volume we take a simplistic approach to the topic by emphasizing the “why we do” and “how to do” SPC in all kinds of environments In addition, we address issues that concern measurement, service SPC, as well as issues that concern short runs and capability SL3119_fm_frame Page Thursday, August 16, 2001 1:45 PM SIX SIGMA AND BEYOND: DESIGN OF EXPERIMENTS, VOLUME V In this volume, we attempt to demystify the topic of Design of Experiments (DOE) We begin by explaining the concept of variation and the need for experimentation and we follow through with applications The strength of this volume is in the fact that it also addresses “robust designs” by including the Taguchi methodology of experimentation SIX SIGMA AND BEYOND: DESIGN FOR SIX SIGMA, VOLUME VI This volume addresses improvement from a preventive perspective by introducing the reader into a sequence of disciplines, so that a six sigma design may be reached The minimum required disciplines are identified as: • • • • • • • • • • • Customer satisfaction Quality function deployment Benchmarking Systems engineering Value engineering Reliability and maintainability Design for manufacturability Mistake proofing Failure mode and effect analysis Project management Financial concepts SIX SIGMA AND BEYOND: THE IMPLEMENTING PROCESS, VOLUME VII This final volume of the series is a summary of the curriculum that a typical six sigma program should follow It also provides what we believe are the objectives for a successful and rewarding implementation of each phase in training for the six sigma methodology It begins by summarizing some key objectives for a six sigma professional and then it addresses the specific requirements and training schedule for each of the categories The categories are: Champions Green belts Black belts Shogun six sigma master SL3119_C index_frame Page 373 Thursday, August 16, 2001 3:06 PM Index Delegation, 337–338 Delighting the customer, 91 Deployment time-line, 74, 95 Design, as customer loyalty factor, 69 Design for six sigma (DFSS), definition, 348 Design issues, addressed by six sigma, 102 Design of experiments, 304 Designs, robust, 11, 12 Design tools, 330 DFSS (Design for six sigma), definition, 348 DFSS principles, fundamentals checklist, 331 Dialogue conditions for effective, 25 conducting, 26 definition, 23–24 environment for, 24 importance of, 25 process, 26–27 purpose of, 25 rules for, 26 use of facilitator, 26 Dialogue session, conducting, 26 Differences, valuing, 24 Digital Equipment, 200 Digressions, 289–290 Dimensions and terms, 333–334 Diogenes, 140 Discipline effective application to individuals, 88 signs of lack of in organization, 56 Disciplined methodology, 55–56 Discounts in communication, 289 Discrete data, definition, 348 Discrete decision tools, 327–328 Distribution diagram, 303 Diversity, 194–195 and communication issues, 187 DMAIC (Define-measure-analyze-improvecontrol), 97–98, see also Specific phases definition, 348 model, 71–73, 120–121 factors in, 72–73 outline, 313–315 variation of PDSA model, 72 Documentation, 128–129 of process improvements, 49 DOE/ANOVA method, 332 Dominating team members, 291–292 Do phase of TQM, 37–43 Downstream, definition, 348 DPMO (Defects per million opportunities), 96 definition, 348 DPMO report, 114 DPO (Defects per opportunity), definition, 348 373 DPU (Defects per unit) goal, 324 Driver, definition, Dynamic statistics, 323 E Effectiveness definition, 348 measures, 121 Efficiency definition, 349 measures, 121 Eight sigma, 102 Empirical modeling tools, fundamentals checklist, 330 Employee development, 146–147, 149 Employee involvement, in teams, 255 Empowerment, 17–18, 54–55, 266 ingredients, 266 skills for, 246 of team members, 246 Engineering quality, 32 reliability, 32 Enthusiasm, 89–90 Environmental effects in communication, 190–194 Error propagation, 331 ESC (Executive steering committee), 47 Evolution of teams, 251–252 EWMA (Exponentially weighted moving average) chart, 332 Executive overview training, 107 Executive piracy, 136 Executive steering committee (ESC), 47 Expectations, 78–79 Experimental design, 328 parameter design, 66 tolerance design, 66 Experimentation, in teams, 165–166 Exponentially weighted moving average (EWMA) chart, 332 External failure, definition, 349 Eye contact, 189 F Facilitator for dialogue, 26 duties, 242–243 in meetings, 260–261 process facilitation skill, 238–239 SL3119_C index_frame Page 374 Thursday, August 16, 2001 3:06 PM 374 Six Sigma and Beyond: Foundations of Excellent Performance on quality team, 263 questioning skills, 270–271, 272 role, 28 skills, 239, 240 in team development, 240 team, effective, 270 in teams, 293 use of, 24–25 Factorial experiment, 328, 329 Fads, see Short-term solutions Failure mode and effect analysis (FMEA), 304 Failure, when taking risk, 84 Fake data, 14, 16–17, 42 “Fallen stars”, 86 F distribution, 322 Feedback, 299 definition, 279 managing, 279–280 TIPS test, 87 Feuding between team members, 290 First-time yield (Y.ft), 323–324 Five sigma wall, 319 Flattening the organization, 233 Flexibility, 83–84 Floundering, 287–288 Flowchart, 303 definition, 352 Flow-chart method, 35 “as is”, 37, 38 Flow diagram, 61, 62 FMEA (Failure mode and effect analysis), 304 Focus, 10, 78 on action and results, 78 on bottom line results, 100 Force field analysis, definition, 349 Forces in the manager, 153–154 in the situation, 153, 155 in the subordinate, 153, 154 Ford Motor Company, 167, 200 “Forming” stage of team building, 209 Fractional-factorial experiment, 328, 329 Frame error, 14 Frequency plot, definition, 349 Friendship between genders, 193 Front-line workers, and customer satisfaction, 22 Full-factorial experiment, 328, 329 F value, 327 G Gainsharing, 66 Gaps, 120 Gauge R and R (Gauge reproducibility and repeatability), 304 Gender factors accountability, 193–194 in communication, 190–194 intimacy and sexuality, 192–193 power, 190–191 support, 191–192 friendship between genders, 193 reactions to power, 191 General Electric, 200 General Mills, 200 General Motors, 200 Goals, 10 (addressed by) TQM, 33–35 communicating, 20 driven by customer requirements, 60 for improvement, 59–60 measurable, 34 of project effort, 115 realistic, 59–60 relevant, 34 Goal statement, definition, 349 Gordian knot approach, 136, 141–142 Graphical presentations, 124–125 Green belt, as coach, 85–86 Green belt, definition, 349 “Griping and grasping” stage of team development, 207–208 “Grouping” stage of team development, 208 Groups, see also Teams development into teams, 158, 163, 170–171, 206–208 transition to teams, 174 Group-think, avoiding, 295–296 GROW, 85 GRPI model, 236–237 Guidance team improving process, 216 obligations of, 216 responsibilities during process improvement, 257–258 Gurus, 99 H Haig, Douglas, 137 Handoff, definition, 349 Herschel, Abraham, Heteroscedasticity, 330 Heteroscedasticity, definition, 349 Hewlett Packard, 167 Hidden factory, 96 Hindsight analysis, 181 SL3119_C index_frame Page 375 Thursday, August 16, 2001 3:06 PM Index 375 Histogram, 303 definition, 349 in process analysis, 44 Human resources, Hypothesis statement, definition, 349 I Identification, 182 Identification with influencer, 143, 144 Image, professional, 256 Imagineering, 35 Implementation planning, 127–128 Improve (DMAIC phase), 314, 328–329 definition, 349 Improvement continual, 9, 20 evaluating, 64–66 goals, 59–60 level of change, 126 measurement in evaluating, 64 opportunities, 63 ranking, 63 plan, 203 problem indicators, 203 projects, 60–61 Improvement cycle, continuous, 49 Improvement methodologies, projects using, 61–64 Individual, relationship to organization, 218 Inference, Ladder of, 28 Influence, acceptance of, 144–145 Influencer, sources of power, 183 Information analysis, baseline, 37 outcome, 36 output, 36 Initiative, in problem-solving, 340 Innovation encouraging, 17 importance of, 10 in leadership, 149 in problem-solving, 340 Input, definition, 349 Input measures, definition, 349 Inspections overuse, 35 by quality control, 29–30 Institutionalization, 128–129 definition, 349 “In-Sync-Erator”, 82 Integrity, 89–90 of leaders, 149 Interdependencies of teams, 158 Interfaces, managing, 29 Internal auditing, 31 Internalization, 144, 146, 182 Interpersonal communication in teams, 165 Interpersonal skills, 184 Intimacy and sexuality and communication issues, 192–193 Involvement levels, 279 Involvement of people, 54–55 ISO-9000, definition, 349–350 J Joint leadership, 167, 168 Joint performance, 56–57 Judgment behaviors, 335–336 Judgment sampling, definition, 350 K Kaizen approach, 255–256 Kaizen blitz, definition, 359 Kano model, 11, 116 L Ladder of Inference, 28 “Large rocks first” anecdote, 107–108 Leader/servant, 150, 153–154 Leadership, see also Forces, Management attributes, 149–151 “boss” approach, 294 business acumen, 151 characteristics, 20–21 communication by, 20, 150 continuum, 293–294 core values, 18–19 effectiveness, 148 elements, 148 employee development, 150 executive, forces in the manager, 153 innovation, 151 joint, 167, 168 leader/servant, 150, 153–154 maintenance aspect, 151 mid-level, 22 outputs, 155–157 persistence, 150 personality traits, 148 principles, 19 in problem-solving, 338–339 SL3119_C index_frame Page 376 Thursday, August 16, 2001 3:06 PM 376 Six Sigma and Beyond: Foundations of Excellent Performance as process, 148 quality methods understanding, 151 responsibilities, 154 senior, 21 service orientation, 150 situational leadership, 173–174 styles, 20, 145–146, 148, 151 effectiveness of, 157 continuum, 151–153 subordinates role in, 151 system thinking, 150 task aspect overemphasis, 151 teamwork, 150 values, 18–19 Learning continuous, 10, 77 organizational, 23–24 Levels of involvement, 279 Likert scale, 321 Lincoln, Abraham, 77 Listening active, 276 definition, 275–-276 skills, 179 improving, 277–278 Loss function, 65–66, 100 Loss to society, 65–66 “Low fruit”, 78–79 savings, 74 LTV Steel, 200 Luck, bad, 46 M Machiavellian power, 136 Main-effect plot, 329 Malcolm Baldridge, 50–51 Management, 43–46, 50, 227 acceptance of cost and prolonged process, 50–51 in Act phase of TQM, 46–50 attitude, 29, 136, 141 as impediment to process improvement, 49 bean counters, 138 of change, 235 in Check phase of TQM, 43–46 commitment to team success, 228–229 creativity needed in upper levels, 138 duties for teams, 245 effectiveness, and communication, 177 by fact, 20 layers, 140 morale, 140 objectives shifting, 311 patience to see process through, 92 in Plan phase of TQM, 43–46 quality system responsibilities, 50–51 responsibilities, 140 role in team success, 226–228 service to subordinates, 137 short-term profits attitude, 136 style, 20 styles in teams, 293–294 as team champion, 227 team facilitation tools, 303 tools for facilitating teams, 303 Management-by-fact, definition, 350 Management, systems approach to, definition, 355 Market share, increasing, 102–103 Maslow's hierarchy of needs, 171, 172 Master black belt as coach, 85 definition, 350 training, 106 Matrix chart, 303 Matrix data analysis, 303 Matrix management, 253 Maturity stages, 146 Maximization model, 139–140 Mean time between failures (MTBF), 318 Measure (DMAIC phase), 313 definition, 350 fundamentals checklist, 321–323 Measurement, 13–14 consistency, 123 of process, 120–121 of progress, 20 for project implementation, 61, 62 scales, 321 Measurement error, 317, 322 Meeting process check, 278–279 Mental models, 28 Mentoring, see Coaching Methodology, structured, 29 Metrology, 31 “Middle stars”, 86 Mission of organization components, 58–59 Mission statement for teams, 284 unique to each team, 265 Modeling tools, fundamentals checklist, 330 Models, mental, 28 Moment of truth analysis, 125 definition, 350 Monitor, watchful, 18 Monte Carlo methodology, 330 Morale and communication, 177 SL3119_C index_frame Page 377 Thursday, August 16, 2001 3:06 PM Index 377 Motorola, 95–96, 98–99, 104 Moving range chart, 303 MTBF (Mean time between failures), 318 Multiculturalism, 194–195 Multivoting, definition, 350 Myers-Briggs categories, 280, 282–283 N NGT (Nominal group technique), see Nominal group technique (NGT) Nominal group technique (NGT), 62, 63 Nonconformity, 138–139 Nonresponse error, 14 Nonvalue-adding activities, definition, 350 Nonverbal language, 187–190 messages, 186 Normalized yield, 96 Norming, 171 Null distribution, 326 Null hypothesis, 326 O Open door policy, 82 Operational definition, definition, 350 Opinions as facts, 288 Opportunities criteria for selecting, 224–225 quantifying, 125 Opportunities for defects, 320 Opportunity statement, 225 definition, 351 Optimization model, 139–140 Organization component's missions, 58–59 decentralized, 19 flattening, 233 relationship to individual, 218 Organizational cultures, 100 Organizational learning, 23–24 Organizational sensitivity, 336–337 Organizational values, 90 Organizations, traditional, definition, 357 Outcomes, evaluating effects of changes on, 48 Output definition, 350 measures, 121 Output measures, definition, 350 Overbearing team members, 290–291 P Paradigm change, Paradigms, 233 Paralanguage, 189 Paraphrasing and active listening, 276 definition, 278 Pareto analysis, 124 of baseline data, 42–43 Pareto chart, 43, 303 definition, 350 Pareto principle, definition, 351 Participation, 24, 55 levels of, 293 in teams, 203–204 Participation philosophy, 199 Participative management, 135–136, 295 Parts-per-million tolerances, 12 Patience importance, 17 vs rush to “do something”, 288–289 by senior management, 92 PAT (Process action team), 216 in act phase of TQM, 46–50 in check phase of TQM, 43–46 data collection function, 38–43 definition, 37, 217 role in improvement projects and plans, 61 Pay considerations, for SDWTs, 268 p chart, 332 p-Chart, 303 PDPC( Process decision program chart), 303 PDSA, 66 PDSA (Plan-Do-Study-Act) model, see Plan-DoStudy-Act PDSA (Plan-Do-Study (Check)-Act), definition, 351 People involvement, 54–55 People problems, 298–299 Percent defective, 12 Perfomance improvement cycle, chart, 61 Performance evaluations, 140 expectations, 87 Performance improvement, of teams, 256 Persistence, 10, 149 Personal change, 235–236 Personal needs and work needs, 89 Personal space factors in communication, 188 PERT (Program evaluation and review technique), 303 Pilot, definition, 351 Pilot program steps, 127 SL3119_C index_frame Page 378 Thursday, August 16, 2001 3:06 PM 378 Six Sigma and Beyond: Foundations of Excellent Performance PIM (Project improvement methods), see Project improvement methods (PIM) Plan-Do-Study (Check)-Act (PDSA), definition, 351 Plan-Do-Study-(Check) and Act methodology, TQM-based, 33 Plan phase of TQM, issues addressed, 33–36 Plan-train-apply-review (PTAR), 321 Plops, 289 PM (Project management), see Project management (PM) PMS (Process management structure), 253 in work environment, 252 Pogo, 69, 141 Poisson distribution, 322, 332 Power base principle, 264 Power, displaying, 190 Pp, 324–325 Ppk, 95, 98, 324 Precision, definition, 351 Precontrol tools, 331 fundamentals checklist, 331 Preliminary plan, definition, 351 Presentation skills, 256 Prevention vs correction, 11 Preventive maintenance, 137 Principle of complementarity (duality), 141 Prioritizing, 10 Problem defining, 300 forces in, 155 identification, 297–298 types, 297–298 Problem definition, 302–303 Problem identification, 302–303 Problem indicators, 202–203 Problems people-caused, 298–299 team approach to easy and major, 254–255 Problem solving, definition, 297 Problem-solving methodology, 29 analysis behaviors, 335 communications, 339–340 control, 337–338 decisiveness, 336 delegation, 337–338 effectiveness, 82–83 initiative, 340 innovativeness, 340 judgment behaviors, 335–336 leadership in, 338–339 and organizational sensitivity, 336–337 organizing, 340–341 planning, 340–341 planning by teams, 299 principles, 299–300 steps in, 301–302 team member development, 338 tools, 303 work standards for, 337 Problem-solving process, use of, 301–302 Problem statement, 115, 301 definition, 351 Process, 36, see also Causes analysis, 125 baseline information collecting, 41–42 capability, 123–124 consultants, 46 defining, 61, 62 departmentalizing, 35 facilitation, 238–239 flow-chart method, 35 focus, narrow, 35 improvement, 29 improvement sequence, 64 mapping, 35 measurement, 65 measures, identifying, 40–41 monitoring, 49, 129 not centered, 123 output baseline development, 37–38 stabilizing, 47 streamlining, 35 variables, 36, 39 categories of, 38–39 variation, 121 voice of, 123–124 Process action team (PAT), see PAT (Process action team) Process awareness by teams, 205 Process baselines, 320 Process capability, definition, 351 Process characterization, definition, 351 Process decision program chart (PDPC), 303 Process definition, 119 Process design, definition, 351 Process drift, 331 Process facilitation, definition, 240 Process flow, 34–35 Process flowchart, definition, 351 Process improvement definition, 351 documenting, 49 Process improvements, standardizing, 49 Process management definition, 351 evolutionary process, 251 Process management structure (PMS), in work environment, see PMS (Process management structure) SL3119_C index_frame Page 379 Thursday, August 16, 2001 3:06 PM Index 379 Process map, definition, 351 Process mapping, 118, 119–120, 320 Process measures, definition, 351 Process metrics, fundamentals checklist, 324–325 Process optimization, definition, 351 Process quality, improving, 64 Process redesign, definition, 351 Process shift, 331 Process team management, definition, 251 Procter & Gamble, 200 Procter and Gamble, 200 Producer's risk, definition, 352 Program evaluation and review technique (PERT), 303 Progress measures, Project failure warning signs, 88–89 implementation plan example, 73–74 leader's duties, 241–242 lead person's responsibilities, 90 measurement, 65 scope, 115 Project champion, training, 73 Project improvement methods (PIM), 36 Project leader duties, 241–242 on quality team, 263–264 Project management (PM), areas of concern, 127 Project rationale, definition, 352 Projects, 320 control, 128–129 facilitator duties, 241–242 factors in, 109 failure to adhere to process, 312 generating solutions, 126 implementing, 61–64 management duties, 245 problem signs, 140 recorder's duties, 243–244 selecting solutions, 127 selection, 107–109 selection criteria, 110 signs of problems, 140 steps in, 110–111 timekeeper's duties, 244 Project selection, business case, 115 Proportion defective, definition, 352 PTAR (Plan-train-apply-review), 321 Q QA (Quality assurance), definition, 352 QC (Quality circle), definition, 217 QFD (Quality function deployment), 116 in analysis of problem, 304–305 applying to problem solving, 306–307 scoping of project using, 304–305 Quality as added task, 141 causes of, 37 components, 10–11 customer defined, 11, 116 definition, 9, 352 function of parameters, 69 measures, 12 misconceptions, 32–33 supplier, 32 Quality assurance, 31–32 Quality assurance (QA), definition, 352 Quality board, role in improvement projects and plans, 60 Quality boards, 56–57 Quality circle (QC), definition, 217 Quality circles, 66 Quality control, functions, 29–31 Quality council, 262 definition, 352 Quality department, functions, 32–33 Quality engineering, 32 Quality function deployment, 304 Quality function deployment (QFD), see QFD (Quality function deployment) in analysis of problem, 305–306 applying to problem solving, 306–307 scoping of project using, 304–305 Quality improvement cycle, 257 Quality improvement process, definition, 256–257 Quality initiatives, bogus, Quality loss function, 65–66 Quality methods and leadership, 151 Quality officer, 262–263 Quality of work life (QWL), see QWL (Quality of work life) Quality personnel communication with operators, 184–186 submissive behavior undermining message, 185–187 Quality planning, strategic, Quality professional opposition to use of, 23 role, 23, 24, 26 Quality system establishing, 50–58 steps in starting, 57 Quality team environment, focal participants, 262–263 Questioning skills, 270–271, 272 SL3119_C index_frame Page 380 Thursday, August 16, 2001 3:06 PM 380 Six Sigma and Beyond: Foundations of Excellent Performance Quick fixes, see Short-term solutions QWL (Quality of work life), 136 QWL (quality of work life), 138 R Random sampling, definition, 352 R chart, 303, 332 Rebels, 139 Recognition, 84 phase of six sigma implementation, 113–114 Recognition generating repetition, 81 Recorder's duties, 243–244 Reengineering, 35, 304 definition, 352 Reliability engineering, 32 Reluctant team members, 292 Repeatability, definition, 352 Reproducibility, definition, 352 Resource allocation for teams, 286 Responsibilities, 90 Revision plan, definition, 352 Rework loop, definition, 352 Right the first time, definition, 352 Risk, alpha, 325–326 Risk analysis tools, fundamentals checklist, 331 Risk assessment, definition, 353 Risk, beta, 325–326 Risk equation, 264 Risk management, definition, 353 Risk, producer's, definition, 352 Risk taking, 84 encouraging, 17 Roadblocks, 254 Robust designs, 11, 12 Robust design tools, fundamentals checklist, 330 Robustness, definition, 353 Role definition in teams, 203–204 Role-playing, definition, 353 Rolled throughput-yield (Y.rt), 96, 323–324 definition, 353 Root cause, 297, 299 analysis, 125 Root cause analysis, definition, 353 Root sums of squares (RSS), 331 RSS (Root sums of squares), 331 Run chart, 48, 124–125, 303 definition, 353 in process analysis, 44, 45 Run, definition, 353 S Sampling, 13, 123 definition, 353 error, 14 formula, 14 guidelines, 124 sample size testing, 16–17 Sampling bias, definition, 353 Sampling, random, definition, 352 Sampling, stratified, definition, 354 Scales of measure, 321 Scatter diagrams, 125 in process analysis, 44, 45 Scatter plot, 303 definition, 353 Scientific approach used by teams, 206 Scope, definition, 353 SDWT (Self-directed work team), 217–218, see also Team building, Teams environment for, 229 implementation model, 232 pay considerations, 268 payoffs, 267–268 preparations for, 230–232 requirements for success, 229–230 SDWT (Self-directed work team), stages of, 232, 233 Self-development, 77 Self-directed work team (SDWT), see SDWT (Self-directed work team) Self-fulfilling prophecy, 78 Self-managed teams, see SDWT (Self-directed work team) Service industry as-is flowchart, 37, 38 baseline information, 38 contingency guidance, 119 Service quality, keys to, 103 Serving as a leader, 149 Seven sigma, 102 Seven-step sequence model, 50 Sexual harassment, 193 Sexuality and intimacy, in communication issues, 192–193 Shenandoah Life, 200 Shogun six sigma master, 106 Short-term profits attitude, 136, 137 Short-term solutions, 46, 56 Should-be process mapping, definition, 353 Sigma, and standard deviation, 95 Sigma scale of measure, Sigma (σ), definition, 353–354 Significance testing, 16 SL3119_C index_frame Page 381 Thursday, August 16, 2001 3:06 PM Index Simulation tools, 325 Simultaneous engineering, 29 SIPOC definition, 354 model, 97, 118, 119–120 Situational leadership, 173–174 Six sigma definition, 354 goal, 3, Six sigma methodology, see also Black belt, Green belt, Master black belt, Shogun six sigma master areas of application, 94 business metrics, 317 case proof of value, 200 and consumer six sigma, 95 core competencies outline, 317–323 cost/benefit perspective, 114 costs, 114 customer focus, 317 definition, deployment, 321 deployment time-line, 74 elements, 75, 76–90 executive overview training, 107 as fad, 91 failures of application, 100 focus, 71 fundamentals checklist, 317–319 implementation plan example, 104 innovative implementation, loyalty as focus, 71 measurement error, 322 model, 75, 76 for nonproduction functions, 94 and older methodologies, 99–100, 101–102 origin, 98–99 and other programs, 94 paradigm change, as paradigm shift, 187 (possible) resource addition for, 93 speed of results, 92 static statistics, 322–323 statistical distributions, 322 team orientation, 83 timing of implementation, 113–114 and TQM, 94 Social influence, 143 Socialization, 191, 192 Solution-Plus-One Rule, 82 Solution statement, definition, 354 SPC (Statistical process control), 13, 66 definition, 354 in project control, 129 SPC chart, 332 381 SPC tools, fundamentals checklist, 332 Special causes, see Causes, special definition, 354 Specifications, accuracy, 11 Sponsor, definition, 354 Sponsor of quality team, 263 SSBB (Six sigma black belt), 321 SSC (Six sigma champion), 321 SSMBB (Six sigma master black belt), 321 Stacking of tolerances, 12 Stages of SDWT (Self-directed work team), 232, 233 Stagnation, 88–89 Standard deviation, and sigma, 95 Standardization, 182 Star catcher, 84 Static statistics, 322–323 Statistical distributions, 322 Statistical hypotheses, 325–326 Statistical process control (SPC), see SPC (Statistical process control) Statistician consultants, 46 consulting, 16 Statistics tools, 12 Steering group, role in improvement projects and plans, 60 Stereotypical characteristics, 280, 283 Storming, 174 “Storming” stage of team building, 209 Storyboard, definition, 354 Storyboarding, 308–309 definition, 354 Strategic architecture of teams, 201 Strategic fit review, definition, 354 Strategic planning, definition, 354 Strategic quality planning, Stratification, definition, 354 Stratified sampling, definition, 354 Streamlining, 35 Structured methodology, 29 Style, 20 Submissive behavior by quality personnel, 185–187 Suboptimization, 35 “Super stars”, 86 Supervisors, role in teams, 246–247 Supplier, definition, 355 Supplier-organization-customer feedback loops, 59 Supplier quality, 32 Support, 191, 192 behaviors, 191 systems, 56–57 SL3119_C index_frame Page 382 Thursday, August 16, 2001 3:06 PM 382 Six Sigma and Beyond: Foundations of Excellent Performance Survey instruments, construction and application, 307–308 Symptom, definition, 355 Systematic sampling, definition, 355 System, definition, 6, 355 Systemic thinking, 149 Systems approach to management, definition, 355 Systems, organizational, Systems thinking, 79–80 T T-account approach, 28 Tacit knowledge, definition, 355 Tactical plans, definition, 355 Tactics, definition, 355 Taguchi loss function, definition, 355 Taguchi orthogonal arrays, 329 Takt time, definition, 355 Tally sheet, definition, 355 Tampering, definition, 355 Tangents, 289–290 Task leader, on quality team, 264 t distribution, 322 TDPU (Total defects per unit), 324 Teaching, see Coaching Team definition, 355 effectiveness, 155 orientation, 83 recognition, 84 Team-based structure, definition, 355 Team building, 158–161, 172–173, see also Teams concerns during different phases of, 210–212 conditions for, 209 definition, 355 development sequence, 209–210 facilitator use, 240 goals, 158 goals defined after team formation, 236–237 group development, 206–208 grouping stage, 208 GRPI model, 236–237 initial, 286–287 and leadership style, 172–173 norming stage, 171 obstructions, 159 phases of, 210–212 steps in, 160 storming stage, 209 Team concept, proof of value, 200 Team development, see Team building definition, 355 Team dynamics, definition, 355 Team environment 5s approach, 266–267 people handling, 280, 281 Team facilitation, definition, 356 Team implementation, 221–222, see also Teams criteria for opportunity selection, 224–225 eight-step model, 222–223 schedule, typical, 247–249 Team improvement, definition, 251 Team leader addressing floundering, 287–288 discounts, handling, 289 handling of unfocussed communication, 289–290 handling problem individuals, 291, 292 plops, handling, 289 styles, 292–293, 294–295 Team meetings facilitator role, 260 operating procedures, 284 planning, 259–260 rules for, 260 Team members attribution by, 291–292 characteristics, 261 development of, 338 dominating, 291–292 duties, 244–245 effective, 269 effectiveness factors, 265 feuding, 290 overbearing, 290–291 problem individuals, 290–292 reluctant, 292 role in team leadership, 264–265 selection of, 286 Team operating procedures, mechanics, 280–281, 283–284 Team performance evaluation, definition, 356 Team players, 168 Team recognition, definition, 356 Team rewards, definition, 356 Teams, 163, 173, see also Groups, Other team topics alignment of purpose and goals, 287 authority within, 246, 247 behavior problems, 204–205, 226 behaviors in successful, 215–216 behavior styles in, 269 beneficial behaviors, 204–205 benefits of, 267 building trust in, building, 166–168 bullseye model, 236 championed by management, 227 SL3119_C index_frame Page 383 Thursday, August 16, 2001 3:06 PM Index characteristics of best and worst, 212, 214–215 chartering process, 284–287 commitment to, 265 communication issues, 165, 204 conflict management, 170–171 conflict resolution, 164, 170–171, 262 consensus failure and floundering, 287–288 creativity in, 165–166 criteria for creating, 268 critique of, 166 cultural changes in support of, 234 decision making in, 165, 205, 271, 274-275 definition, 158, 199 development process stages, 170 distrust of, 139 dynamics, 226 dysfunctional activity, 287 effectiveness, 164, 166, 253 reduction of, 254 critique, 163–166, 169 measurement, 258 questionnaire, 169–170 eight-step model, 222–223 emotional reactions, employee involvement, 255 empowerment of team, 266 of members, 246 evaluation of, 166 evolution of teams, 251–252 expectations of, 212, 213 experimentation in, 165–166 failure of, fear of, 135 feuding in, 290 floundering, 287–288 forming stage, 209 functioning of, 162–163 goal-setting process model, 237–238 ground rules, 205–206 group-think, avoiding, 295–296 guidance team responsibilities, 257–258 implementation facilitation, 237–238 implementation schedule, typical, 247–249 influence in, 207–208 as innovative approach, interdependencies of, 158 interpersonal communication in, 165 kaizen approach, 255–256 leader's duties, 241–242 maintenance functions in, 164 management commitment, 227–228, 228–229 management role in success, 226–228 management's duties, 245 383 for managing interfaces, 29 and Maslow's hierarchy of needs, 172 member's duties, 244–245 member selection, 286 mission statement, 265, 284 morale, 173 Myers-Briggs categories of members, 282–283 need for, 199–200 opinions as facts, 288 organizational expectations, 135 orientation, 207 ownership of process, 265 participation, 203–204 participation levels, 293 patience vs rush to “do something”, 288–289 performance improvement, 253-254, 256 phases of, 210–212 post-objective motivation, 269 power in, 207–208 problems, 245, 261 addressing “easy”, 254 indicators of, 202–203 major, 254–255 problem-solving in, 165 process awareness, 206 productive, 161 reasons for, 201–202, 221-222 recognition, 209 recorder's duties, 243–244 resource allocation, 286 rewards, 209 role definition, 203 problem indicators, 203–204 roles in, 115, 242 shared goals, 163–164 single purpose, 168–169 size of, 209 strategic architecture, 200–201 successful, 202–203 and supervisors, 246–247 termination, 174 tools, 304 transition from groups, 174 trust within, 164 unproductive, 161–162 unsuccessful, causes of, 311 Team success, built on individual achievement, 311 Teamwork and leaders, 149 Technical knowledge, 77 Technical training plans and six sigma, 92 Tektronix, 200 Terms and dimensions, 333–334 Texas Instruments, 104 SL3119_C index_frame Page 384 Thursday, August 16, 2001 3:06 PM 384 Six Sigma and Beyond: Foundations of Excellent Performance TGR (Things gone right) evaluation, 83 TGW (Things gone wrong) evaluation, 83 Theory of constraints (TOC), definition, 356 Theory of knowledge, definition, 356 Theory X, definition, 356 Theory-X manager, 145–146 Theory Y, definition, 356 Theory-Y manager, 145–146 Theory Z, definition, 356 Thing gone right (TGR) evaluation, 83 Things gone wrong (TGW) evaluation, 83 Throughput time, definition, 356 Throughput yield (Y.tp), 323–324 Timekeeper's duties, 244 Time line, deployment, 74 Time plot, definition, 353 Time pressure, 155 Time schedules, unrealistic, 311 TIPS test, 87 TOC (Theory of constraints), definition, 356 Tolerance design (Taguchi), definition, 356 Tolerances definition, 356 stacking, 12 Tolerance tools, fundamentals checklist, 330 Tolerancing, 330 Tools for teams, 304 Tools, statistical, 330 Top-management commitment, definition, 356 Total defects per unit (TDPU), 324 Total productive maintenance (TPM), definition, 357 Total quality management), see TQM (Total quality management) Total quality management (TQM), definition, 357 TPM (Total productive maintenance), definition, 357 TQM (Total quality management), 33 definition, 357 Traceability, definition, 357 Trade-off experiments, 71 Traditional organizations, definition, 357 Training, 57–58, see also Employee development but not allowing application, 141 cultural variations, 183, 187 definition, 357 importance of proper, 137–138 inadequate, 312 in interpersonal skills, 182–184 role of trainer, 172–173 Training evaluation, definition, 357 Training needs assessment, definition, 357 Transactional leadership, definition, 358 Transformational leadership, definition, 358 Transition tree, definition, 358 Tree diagram, definition, 358 Trend analysis, definition, 358 Trend, definition, 358 Trial periods, determination of, 47 Trust, importance, 17 t test, 327 t test, definition, 355 Type I error, definition, 358 Type II error, definition, 358 Type two errors, 16 U UAW, 167 Unit sizes, 139–140 Upstream, definition, 358 V Value-added analysis, 125 Value, as loyalty driver, 70–71 Value-enabling activities, definition, 358 Value to customer, 102–103 Variability reduction programs, 66 Variables, 319 Variation definition, 358 eliminating, identifying sources of, 45–46 measurement, 121 reduction, 12 reduction methods, 12–13 sources, 12 types, 121–122 Vertical functionality, 253 Vocal dimension effects in communication, 189 Voice of the customer (VOC), 117 analysis, 117–118 definition, 358 and QFD, 306 Voice of the process (VOP), 123–124 W Waber, Max, 140 “Walk the talk”, 3, 18, 79 Waste items categorized, 12 reduction, 11 Watchful monitor, 18 WIP (Work in progress), 318 Worker obsolescence, 202 Work in progress (WIP), 318 SL3119_C index_frame Page 385 Thursday, August 16, 2001 3:06 PM Index 385 Work process, see Process Work safari, 78 Work standards in problem-solving, 337 X X-bar chart, 303, 332 Xerox, 200 X (variable), definition, 358 Y Y.ft (First-time yield), 323–324 Yield, definition, 359 Y.rt (Rolled-throughput yield), 323–324 definition, 353 Y.tp (Throughput yield), 323–324 Y (variable), definition, 358–359 Z Zero defects, definition, 359 Zero investment improvement, definition, 359 Z.gap, 331 Z.lt, 95, 324 Z.shift (dynamic and static), 324 Z.st, 95, 324 Z transform, 322 Z value, 322, 323, 326 SL3119_C index_frame Page 386 Thursday, August 16, 2001 3:06 PM ... Mathematics Volume III Statistics and Probability Volume IV Statistical Process Control Volume V Design of Experiments Volume VI Design for Six Sigma Volume VII The Implementing Process D H Stamatis.. .SIX SIGMA AND BEYOND Foundations of Excellent Performance SIX SIGMA AND BEYOND A series by D.H Stamatis Volume I Foundations of Excellent Performance Volume II Problem Solving and Basic Mathematics... 101 Typical Implementation of the Six Sigma Strategy 104 Candidate Qualifications and Training 105 Six Sigma Champion Training 107 Six Sigma Executive Overview

Ngày đăng: 17/01/2020, 15:05

Mục lục

  • Front cover

  • Preface

  • Acknowledgments

  • About the Author

  • Figures

  • Tables

  • Table of Contents

  • Part I: Quality

  • Introduction

  • Chapter 1. The Foundations of Any Quality System

  • Chapter 2. Six Sigma Overview

  • Chapter 3. Gearing Up and Adapting Six Sigma in Your Organization

  • Part II: Teams

  • Chapter 4. A General Overview

  • Chapter 5. The Changing Workplace

  • Chapter 6. Communicating Communication

  • Chapter 7. Team Development

  • Chapter 8. Implementation

  • Chapter 9. Team Improvement

  • Chapter 10. General Issues

Tài liệu cùng người dùng

  • Đang cập nhật ...

Tài liệu liên quan