1. Trang chủ
  2. » Tài Chính - Ngân Hàng

Lecture Fundamentals of corporate finance: Lecture 11 - Ross, Westerfield, Jordan

34 109 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 34
Dung lượng 1,14 MB

Nội dung

Lecture 11 - Return, risk, and the security market line. The following will be discussed in this chapter: Expected returns and variances; portfolios; announcements, surprises, and expected returns; risk: systematic and unsystematic; diversification and portfolio risk; systematic risk and beta; the security market line; the SML and the cost of capital: A preview.

Lecture 11 Return, Risk, and the Security Market Line © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.2 Outline • • • • • • • • Expected Returns and Variances Portfolios Announcements, Surprises, and Expected Returns Risk: Systematic and Unsystematic Diversification and Portfolio Risk Systematic Risk and Beta The Security Market Line The SML and the Cost of Capital: A Preview McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.3 Expected Returns • Expected returns are based on the probabilities  of possible outcomes • In this context, “expected” means average if  the process is repeated many times • The “expected” return does not even have to  be a possible return E ( R) n pi Ri i McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.4 Example: Expected Returns ã Supposeyouhavepredictedthefollowing returns for stocks C and T in three possible  states of nature. What are the expected  returns? – – – – State Boom Normal Recession Probability 0.3 0.5 ??? C 0.15 0.10 0.02 T 0.25 0.20 0.01 ã RC=.3(.15)+.5(.10)+.2(.02)=.099=9.99% ã RT=.3(.25)+.5(.20)+.2(.01)=.177=17.7% McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.5 Variance and Standard Deviation • Variance and standard deviation still measure  the volatility of returns • Using unequal probabilities for the entire  range of possibilities • Weighted average of squared deviations σ2 n pi ( Ri E ( R)) i McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.6 Example: Variance and Standard Deviation • Consider the previous example. What are the  variance and standard deviation for each  stock? • Stock C  = .3(.15­.099)2 + .5(.1­.099)2 + .2(.02­.099)2  = .002029  = .045 • Stock T  = .3(.25­.177)2 + .5(.2­.177)2 + .2(.01­.177)2  = .007441  = .0863 McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.7 Another Example • Consider the following information: – – – – – State Boom Normal Slowdown Recession Probability 25 50 15 10 ABC, Inc .15 08 04 ­.03 • What is the expected return? • Whatisthevariance? ã Whatisthestandarddeviation? McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.8 Portfolios ã Aportfolioisacollectionofassets • An asset’s risk and return is important in how  it affects the risk and return of the portfolio • The risk­return trade­off for a portfolio is  measured by the portfolio expected return and  standard deviation, just as with individual  assets McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.9 Example: Portfolio Weights • Suppose you have $15,000 to invest and you  have purchased securities in the following  amounts. What are your portfolio weights in  each security? – – – – $2000 of DCLK $3000 of KO $4000 of INTC $6000 of KEI McGraw­Hill/Irwin •DCLK: 2/15 = .133 •KO: 3/15 = .2 •INTC: 4/15 = .267 •KEI: 6/15 = .4 © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.10 Portfolio Expected Returns • The expected return of a portfolio is the weighted  average of the expected returns for each asset in the  portfolio E ( RP ) m w j E(R j ) j • You can also find the expected return by finding the  portfolio return in each possible state and computing  the expected value as we did with individual  securities McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.20 Diversification ã Portfoliodiversificationistheinvestmentin severaldifferentassetclassesorsectors ã Diversificationisnotjustholdingalotof assets • Diversification can reduce the variability of  returns without a reduction in expected returns – This reduction in risk arises if worse than expected  returns from one asset are offset by better than  expected returns from another • The risk that cannot be diversified away is  calledsystematicrisk McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.21 Diversifiable Risk ã Theriskthatcanbeeliminatedbycombining assetsintoaportfolio • Often considered the same as unsystematic,  unique or asset­specific risk • If we hold only one asset, or assets in the same  industry, then we are exposing ourselves to  risk that we could diversify away McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.22 Systematic Risk Principle • There is a reward for bearing risk • There is not a reward for bearing risk  unnecessarily • The expected return on a risky asset depends  only on that asset’s systematic risk since  unsystematic risk can be diversified away McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.23 Measuring Systematic Risk • We use the beta coefficient to measure  systematic risk • What does beta tell us? – A beta of 1 implies the asset has the same  systematic risk as the overall market – A beta  1 implies the asset has more systematic  risk than the overall market McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.24 Total versus Systematic Risk • Consider the following information:     Standard Deviation – Security C 20% – Security K 30% Beta 1.25 0.95 • Which security has more total risk? • Which security has more systematic risk? • Whichsecurityshouldhavethehigher expectedreturn? McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.25 Example: Portfolio Betas ã Consider the following example – Security – DCLK – KO – INTC – KEI Weight 133 167 Beta 3.69 0.64 1.64 1.79 ã Whatistheportfoliobeta? ã 133(3.69)+.2(.64)+.167(1.64)+.4(1.79)= 1.61 McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.26 Beta and the Risk Premium • Remember that the risk premium = expected  return – risk­free rate • The higher the beta, the greater the risk  premiumshouldbe ã Canwedefinetherelationshipbetweenthe riskpremiumandbetasothatwecanestimate theexpectedreturn? YES! McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.27 Example: Portfolio Expected Returns and Betas 30% Expected Return 25% E(RA) 20% 15% 10% Rf 5% 0% 0.5 1.5 A 2.5 Beta McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.28 Reward-to-Risk Ratio: Definition and Example • The reward­to­risk ratio is the slope of the line  illustrated in the previous example – Slope = (E(RA) – Rf) / ( A – 0) – Reward­to­risk ratio for previous example =  (20 – 8) / (1.6 – 0) = 7.5 • What if an asset has a reward­to­risk ratio of 8  (implying that the asset plots above the line)? • What if an asset has a reward­to­risk ratio of 7  (implying that the asset plots below the line)? McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.29 Market Equilibrium ã Inequilibrium,allassetsandportfoliosmust havethesamerewardưtoưriskratioandtheyall mustequaltherewardưtoưriskratioforthe market E ( RA ) R f A McGraw­Hill/Irwin E ( RM R f ) M © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.30 Security Market Line • The security market line (SML) is the  representation of market equilibrium • The slope of the SML is the reward­to­risk  ratio: (E(RM) – Rf) /  M • ButsincethebetaforthemarketisALWAYS equaltoone,theslopecanberewritten ã Slope=E(RM)Rf=marketriskpremium McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.31 The Capital Asset Pricing Model (CAPM) • The capital asset pricing model defines the  relationship between risk and return • E(RA) = Rf +  A(E(RM) – Rf) • If we know an asset’s systematic risk, we can  use the CAPM to determine its expected  return • This is true whether we are talking about  financial assets or physical assets McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.32 Factors Affecting Expected Return • Pure time value of money – measured by the  risk­free rate • Reward for bearing systematic risk –  measuredbythemarketriskpremium ã Amountofsystematicriskmeasuredbybeta McGrawưHill/Irwin â2003TheMcGrawưHillCompanies,Inc.Allrightsreserved 13.33 Example - CAPM • Consider the betas for each of the assets given earlier.  If the risk­free rate is 4.5% and the market risk  premium is 8.5%, what is the expected return for  each? Security DCLK Beta Expected Return 3.69 4.5 + 3.69(8.5) = 35.865% 64 4.5 + .64(8.5) = 9.940% INTC 1.64 4.5 + 1.64(8.5) = 18.440% KEI 1.79 4.5 + 1.79(8.5) = 19.715% KO McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved 13.34 Figure 13.4 McGraw­Hill/Irwin © 2003 The McGraw­Hill Companies, Inc. All rights reserved ... have purchased securities in the following  amounts. What are your portfolio weights in  each security? – – – – $2000? ?of? ?DCLK $3000? ?of? ?KO $4000? ?of? ?INTC $6000ofKEI McGrawưHill/Irwin ãDCLK:2/15=.133 ãKO:3/15=.2 ãINTC:4/15=.267 ãKEI:6/15=.4... • A portfolio is a collection? ?of? ?assets • An asset’s risk and return is important in how  it affects the risk and return? ?of? ?the portfolio • The risk­return trade­off for a portfolio is  measured by the portfolio expected return and ... Variance and standard deviation still measure  the volatility? ?of? ?returns • Using unequal probabilities for the entire  range? ?of? ?possibilities • Weighted average? ?of? ?squared deviations σ2 n pi ( Ri E ( R)) i McGrawưHill/Irwin

Ngày đăng: 16/01/2020, 19:19

TỪ KHÓA LIÊN QUAN