1. Trang chủ
  2. » Khoa Học Tự Nhiên

Mineral and whole rock geochemistry of the Kestanbol granitoid (Ezine-Çanakkale) and its mafic microgranular enclaves in Northwestern Anatolia: Evidence of felsic and mafic magma

22 25 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 22
Dung lượng 10,94 MB

Nội dung

The Miocene Kestanbol granitoid, in Ezine-Çanakkale, Turkey, is one of post-collision granitoids of western Anatolia, which have been related to the the late Cretaceous collision between the Anatolide-Tauride platform and the Pontides. Magmatism began during the early Miocene, with coeval alkaline to calc-alkaline plutonism and volcanism, controlled by the regional tectonic evolution.

Turkish Journal of Earth Sciences (Turkish J Earth Sci.), Vol 19, 2010, pp 101–122 Copyright ©TÜBİTAK doi:10.3906/yer-0809-3 First published online 30 April 2009 Mineral and Whole-rock Geochemistry of the Kestanbol Granitoid (Ezine-Çanakkale) and its Mafic Microgranular Enclaves in Northwestern Anatolia: Evidence of Felsic and Mafic Magma Interaction SABAH YILMAZ ŞAHİN1, YÜKSEL ÖRGÜN2, YILDIRIM GÜNGÖR3, A FETİ GÖKER3, ALİ HAYDAR GÜLTEKİN2 & ZEKİYE KARACIK2 İstanbul University, Engineering Faculty, Department of Geophysical Engineering, Avcılar, TR−34320 İstanbul, Turkey (E-mail: sabahys@istanbul.edu.tr) İstanbul Technical University (İTÜ), Faculty of Mines, Department of Geological Engineering, Maslak, TR−34469 İstanbul, Turkey İstanbul University, Engineering Faculty, Department of Geological Engineering, Avcılar, TR−34320 İstanbul, Turkey Received 04 September 2008; revised typescript receipt 21 April 2009; accepted 24 April 2009 Abstract: The Miocene Kestanbol granitoid, in Ezine-Çanakkale, Turkey, is one of post-collision granitoids of western Anatolia, which have been related to the the late Cretaceous collision between the Anatolide-Tauride platform and the Pontides Magmatism began during the early Miocene, with coeval alkaline to calc-alkaline plutonism and volcanism, controlled by the regional tectonic evolution The Kestanbol pluton intruded regionally metamorphosed basement rocks Volcanic and volcano-clastic sedimentary rocks overlie the pluton, which is bounded in the west and east by major faults The pluton is frequently cut by felsic and mafic dykes and includes mafic microgranular enclaves (MMEs) that are mixing products of coeval felsic and mafic magmas The Kestanbol granitoid is quartz monzonitic but the MMEs include monzonite, monzodiorite, and quartz monzodiorite There are some special mixing textures such as antirapakivi, blade-shaped biotite, acicular apatite, spongy-cellular plagioclase and spike-zoned plagioclase in MME-host rock pairs MME and host rock pairs display mineralogical similarities and they indicate some interactions and parallel evolution with each other However, they have distinct major and trace element behaviour The mineralogical and petrographical properties of the felsic and mafic dykes resemble the felsic host rocks and MMEs respectively The results of the mineral chemistry showed that plagioclases are albite-labradorite (An8–50), amphiboles are magnesiohornblende and biotites are Mg-biotites in MME-host rock pairs The amphibole compositions of the Kestanbol granitoid and its MMEs are somewhat similar (Mg/Mg+Fe+2 = 0.55–0.87 and 0.55–0.74) The FeOt/MgO ratio of biotites in these rocks is between 1.01 and 1.55 These rocks are post-collisional, subalkaline, metaluminous and high-K calc-alkaline, I-type in character, and derived from hybrid magma that originated from the mixing of coeval mafic and felsic magmas in different ratios and at different depths Key Words: Kestanbol granitoid, magma mingling/mixing, mafic microgranular enclave (MME), hybrid magma, postcollision 101 KESTANBOL GRANITOID AND THEIR ENCLAVES Kestanbol Granitoyidi ve Mafik Mikrogranüler Enklavlarının (Ezine Çanakkale) Mineral ve Tüm Kayaỗ Jeokimyas: Felsik ve Mafik Magma Etkileiminin Kantlar ệzet: Ezine-ầanakkale civarında yüzeylenen Miyosen yaşlı Kestanbol granitoyidi, Batı Anadolu’da, Anatolid-Torid Platformu’nun geỗ Kretasede ỗarpmasyla oluan, ỗarpma sonras granitoyidlerden bir tanesidir Erken Miyosende balayan ỗarpma sonras magmatizma, alkalinden-kalkalkaline deien ửzelliklerde olup, bửlgesel tektonik kontrollü olarak, plütonizma ve volkanizma birlikte eşyaşlı olarak oluşmaktadır Kestanbol granitoyidi bửlgesel metamorfik temel kayaỗlar iỗerisine sokulum yapm ve volkanik-volkano-klastik sedimanter kayaỗlarla ửrtỹlmỹtỹr Buna ilaveten plỹtonun bat ve dou kesimleri büyük faylarla sınırlanır Pluton eşyaşlı mafik ve felsik magmaların karm ỹrỹnleri olan mafik magmatik enklavlar iỗerir ve sk sk felsik ve mafik dayklarla kesilir Kestanbol granitoyidi quvars monzonitik bileşimdedir ancak bu kayaỗlarn enklavlar monzonit, monzodiyorit ve kuvars monzodiyorit bileimdedir MME-Ana kaya ỗiftleri, antirapakivi, bỗams biyotit, inemsi apatit, sỹngerimsihỹcremsi plajiyoklaz ve ỗivi balarna benzeyen yamalar iỗeren plajiyoklaz dokusu gibi baz ửzel mixing dokular iỗermektedirler Her iki kayaỗ grubu da mineralojik benzerliklerin yanısıra birbirleriyle bazı etkileşimler ve benzerlikler sergilemektedir Buna karşın, majör ve iz element davranışları bakımından farklılıklar sunmaktadırlar Felsik ve mafik damar kayaỗlarnn mineralojik-petrografik ửzellikleri felsik ana kayaỗlara ve mafik MMElara benzerler Mineral kimyas sonuỗlarna gửre plajiyoklazlar albit-labrador (An850), amfiboller magnezyo-hornblend ve biyotitler +2 Mg-biyotit bileşimindedirler Kestanbol granitoyidi amfibol minerallerinin Mg/Mg+Fe = 0.55–0.87 değeri, +2 t MME’lardaki Mg/Mg+Fe = 0.55–0.74 değeri ile benzerdir Biyotitlerin FeO /MgO oranı ise, 1.01 ve 1.55 arasndadr Bu kayaỗlar ỗarpma sonras kửkenli, subalkalin, metaluminal, yỹksek K-‘lu kalk-alkalin karakterlidir ve eşyaşlı felsik ve mafik magmaların değişik oranda ve değişik magma ortamlarında karışması ile oluşmuşlardır Anahtar Sözcükler: Kestanbol granitoyidi, magma mingling/mixing, mafik mikrogranüler anklav (MME), melez magma, çarpışma sonrası Introduction Mafic microgranular enclaves play a significant role in the genesis of granitoid rocks, particularly calcalkaline granitoids In granitoid systems, among many different types of interaction between coeval felsic and mafic magmas, three main processes are distinguished: mixing, mingling and chemical exchange (Barbarin 1988, 2005; Didier & and Barbarin 1991; Barbarin & Didier 1992) Magma mixing causes homogenization of the interacting melt phases and the partial dissolution of early crystals (corrosion) in new hybrid magma, whereas, mingling or co-mingling involve partial mixing or interpretation of pervasive changes in felsic-mafic magmas (Barbarin & Didier 1992) Magma mingling products are mafic magmatic enclaves (MME) that are classically considered as globules of quenched mafic magmas within the felsic host magmas (Vernon 1986) Chemical exchange generally forms after thermal equilibration, in which major element diffusion between melts of contrasting composition occurs along contact surfaces of felsic and mafic magmas (Barbarin & Didier 1992) 102 In western Anatolia, calc-alkaline and I-type granitoid rocks, with different ages and compositions display extensive evidence of interactions between mafic and felsic magmas The Kestanbol pluton, therefore, must bear some field, petrographic, mineralogical, and geochemical features relevant to such magmatic processes such as magma mixing and magma mingling The Kestanbol granitoid intruded crustal metasedimentary rocks All these post-collisional plutons in western Anatolia are related to the collision between the Anatolide-Tauride platform and the Pontides that occurred during the late Cretaceous period (Figure 1; Karacık & Yılmaz 1998) The N–S convergence continued until the Neogene and magmatism began during the early Miocene (Karacık & Yılmaz 1998) The plutonic products of this magmatism are associated with volcanic and volcano-sedimentary rocks This paper presents a comprehensive petrography, mineral chemistry, and whole rock geochemistry of the Kestanbol granitoid and its microgranular enclaves In addition, the possible origin of the microgranular enclaves and the Dalyan Tavakl Akỗakeỗili Gửkỗebayr Alada Kửseler Yaylack Kayack Koỗali Kemalli Firanlı Kestanbol Geyikli Mecidiye Şapı Kebir EZİNE Çamkưy N ANTALYA 46 ANKARA BOZCA ADA EZİNE AYVACIK alluvium (Quaternary) ERZURUM SCALE YENİCE 25km Denizgören ophiolite (Early Cretaceous) thrust km sample location fault valley village Karadağ metamorphic assemblage (Permian ?) 200km VAN SCALE BİGA DİYARBAKIR Kestanbol granitoid (Early Miocene) sedimentary association (Late Miocene-Pliocene) Ayvacık volcanics (Early Miocene) BAYRAMİÇ ÇAN LAPSEKİ ÇANAKKALE Kestanbol ELAZIĞ TRABZON GELİBOLU SEA SEA NİĞDE SİNOP ECEBAT MEDITERRANEAN MUĞLA GƯKÇEADA İZMİR ESKİŞEHİR BLACK İSTANBUL ÇANAKKALE EDİRNE EXPLANATIONS N SEA EAEGEAN SEA AEGEAN Figure Geological map of the Kestanbol (W Ezine-Çanakkale) area (modified from Karacık & Yılmaz 1998) S E A A E G E A N Kumburnu S.YILMAZ ŞAHİN ET AL 103 KESTANBOL GRANITOID AND THEIR ENCLAVES interaction processes between acidic and basic magmas in this plutonic environment are discussed Geological Setting Western Anatolia has been characterized by extensive magmatic activity during late Eocene to late Miocene time (Yılmaz 1997; Karacık & Yılmaz 1998; Delaloye & Bingöl 2000; Yılmaz et al 2001; Aldanmaz 2006) This magmatic activity resulted in coeval plutonism and volcanism with alkaline to calc-alkaline features and was controlled by the regional tectonic evolution Regional tectonic and magmatic activity during most of the Miocene is considered to be largely influenced by lithospheric spreading and thinning subsequent to earlier plate collision and stacking (Aldanmaz 2006) The magmatism started in the Oligocene, intensified during the early Miocene and waned in the late Miocene–Pliocene (Yılmaz 1997) In western Anatolia, two geochemically distinct phases of magmatic activity are distinguished The early phases that produced the granitic plutons and associated intermediate volcanic rocks were commonly calk-alkaline in composition (Yılmaz 1997) Alkaline rock varieties during this period were rare The late phase that produced basaltic lavas was generally alkaline or transitional (Yılmaz 1997) The north and northwestern Anatolia granitoids 40 39 belong to two large groups according to Ar/ Ar age determination by Delaloye & Bingöl (2000) The first group is comprised of young granitoids (late Cretaceous to late Miocene) mainly distributed in the western part and the second consists of older granitoids (pre-Ordovician to late Jurassic) concentrated in a belt in northwestern and northern Anatolia The young granitoids are intrusive into the old granitoid belt Their geology, petrology, geochronology and geodynamic evolution have been studied (Birkle & Satır 1992; Karacık 1995; Yılmaz 1997; Karacık & Yılmaz 1998; Delaloye & Bingöl 2000; Okay & Satır 2000; Yılmaz et al 2001; Aldanmaz 2006) The Kestanbol granitoid, one of the intrusive bodies in the Western Anatolia magmatic province, is located south of Ezine-Çanakkale Intrusive rocks can be found along a N–S trend within the major tectonic belt named the Sakarya 104 Continent The Kestanbol granitoid is a calcalkaline, post-collisional, and I-type pluton that has a Miocene age (21.28 Ma; Birkle & Satır 1992) within the Sakarya Continent, which is bounded by the Intra Pontide Suture Zone on the north and the İzmir-Ankara Suture Zone on the south The Sakarya Continent consists of metamorphic and non-metamorphic Palaeozoic rocks overlain by Mesozoic and Cenozoic rocks (Figure 1; Yılmaz 1997) Geological properties of the Kestanbol granitoid were determined in detail by Karacık & Yılmaz (1998) In the studied area the main geological units include Palaeozoic–Permian metamorphic rocks, Triassic ophiolitic rocks, a Miocene granitoid pluton and sedimentary rocks The Kestanbol granitoid was emplaced into the regionally metamorphosed basement rocks of the Sakarya Continent and generated a well-developed metamorphic aureole to the west, north and northeast (Andaỗ 1973; Karack & Ylmaz 1998) To the south, volcanic and volcanoclastic sedimentary rocks overlie the pluton In addition, the western and eastern parts of the pluton are bordered major faults (Figure 1) The granitic magma appears to have ascended through the extensional zones, formed where the bends or releasing steps along the NE–SW occurred (Karacık 1995) The Kestanbol pluton consists of monzonitic rocks and was derived from crustal melts that mixed with mantle-derived mafic magma The pluton includes mafic microgranular enclaves (MME) that are products of mixing of felsic and mafic magmas (Yılmaz Şahin et al 2004; Figure 2) It is cut by leucogranitic and lamprophyric dykes that are commonly found around Aladağ and Firanlı villages (Figure 1) Petrography Kestanbol Granitoid (KG) The Kestanbol granitoid (KG) crops out over an area of 200 km to the south of Ezine (Figure 1), and is emplaced into the regionally metamorphosed basement rocks The pluton is lithologically made up of monzonitic rocks and crosscut by a set of dykes of aplite, pegmatite, lamprophyre and porphyritic latite The width of the dykes varies from 1–2 cm to 1–2 m S.YILMAZ ŞAHİN ET AL Figure Field photographs showing the mafic microgranular enclaves: (a) Sharp-boundary between ellipsoidal-ovoid shaped MME and KG, (b) different sizes and shaped enclaves, (c) elongated MME, (d) syn-plutonic dyke within the Kestanbol pluton Microscopical pictures of some special mixing texture: (e) spike zones in plagioclase, (f) biotite/hornblende zone in plagioclase phenocryst, (g) blade-shaped biotite, (h) acicular apatite within MMEs and their host rocks plj– plagioclase; bi– biotite; ap– apatite 105 KESTANBOL GRANITOID AND THEIR ENCLAVES The dykes are concentrated around Firanlı and Aladağ villages (Figure 1) Perthitic K-feldspar is the dominant rock-forming mineral in the dykes Along the east and southeast borders, the plutonic rocks pass gradually into fine-textured porphyritic volcanic rocks, including rhyolite, rhyodacite and dacite, and andesitic and trachyandesitic pyroclastic rocks The volcanic rocks consist mainly of different proportions of plagioclase, quartz, K-feldspar (sanidine), biotite, hornblende, opaque minerals (magnetite and pyrite) and accessory minerals (titanite, epidote, apatite, zircon) The pluton is bounded by sedimentary rocks along the north and northwest borders The Kestanbol granitoid is composed of coarsegrained equigranular quartz monzonite and subordinate monzogranite (Figure 3; Debon & Le Fort 1983), which can sometimes be fine-grained and porphyritic with K-feldspar megacrysts and abundant plagioclase phenocrysts The porphyritic granitoid includes large (1–5 cm), euhedral, pink megacrysts of orthoclase (wt% 20–75 by volume) set in a medium-coarse grained subhedral-anhedral groundmass consisting of ortoclase (20–75 wt%), plagioclase (An20–35) (10–45 wt%), quartz (12–35 wt%), hornblende (5–15 wt%), biotite (2–10 wt%), rarely pyroxene (2–5 wt%) with accessory minerals (1–2 wt%) such as titanite, apatite, zircon, allanite, epidote and opaque minerals (magnetite, ilmenite, pyrite and rutile) Some radioactive accessory minerals (titanite, apatite, zircon, allanite, epidote, thorite, and uranothorite; 0.1–4.5 wt%) are also common in the pluton (Örgün et al 2007) As the UTh values are very high in the Kestanbol pluton, the pluton is referred to as radioactive (Andaỗ 1973; Örgün et al 2007) Zircon was also observed as a part of the magnetite Around zircon inclusions in hornblende and biotite minerals, radioactive pleochroic aureoles were seen Secondary minerals are chlorite, sericite, muscovite and iron-oxide minerals Mafic Microgranular Enclaves (MMEs) The mafic microgranular/magmatic enclaves (MME) are particularly abundant in the calc-alkaline Kestanbol granitoid (KG) and provide information 106 on the role of mafic magmas in the initiation and evolution of felsic host magmas (Didier & Barbarin 1991; Yılmaz & Boztuğ 1994) Different types of MME within Kestanbol granitoid have been distinguished by their grain size, texture, structure, mineralogical composition, nature and abundance of phenocrysts, external morphology and contacts with host granitoids (Yılmaz Şahin et al 2004; Figure 2a) The mafic microgranular enclaves (MMEs) may be of fundamental significance in interpreting the history of the KG They are disseminated throughout south and southwestern part of the pluton Their shapes, chemical composition, mineralogy and texture undoubtedly support a magmatic origin as a result of repeated interactions between acid and basic magmas (Barbarin 1988) They are always darker than the host rock, generally rounded or ellipsoidal in shape, and elongated parallel to the flow direction of the felsic host rock due to plastic deformation during the partially liquid state (Vernon et al 1988; Figure 2c) They commonly have sharp contacts with felsic host rock but diffuse contacts were also observed, which can be attributed to the undercooling and mingling of hybrid microgranular enclave globules formed by the mixing of mafic and felsic magmas The size of the MMEs commonly varies from to 50 cm and sometimes may reach up to m across They have a holocrystallinehypidiomorphic inequigranular texture with common plagioclase phenocrysts The composition of the MMEs varies from monzonite-quartz monzonite to diorite and quartz diorite (Figure 3; Debon & Le Fort 1983) Their mineralogical composition is similar to the monzonitic host rock but differs in modal proportions The monzonitic rocks consist of plagioclase (An18–22) -hornblendebiotite-K-feldspar (orthoclase) -quartz-pyroxene, together with accessory minerals such as apatite, titanite, epidote, and Fe-Ti oxide minerals More mafic minerals are seen in the fine-grained margin of the MMEs Both the KG and its MMEs show some mixing texture such as antirapakivi, lath-shaped small plagioclase within large plagioclase, poikilitic K-feldspar/plagioclase, rarely acicular apatite in host rocks and commonly, spike zone in plagioclase, hornblende/biotite zones in K-feldspar/plagioclase S.YILMAZ ŞAHİN ET AL Q = Si/3 - (K + Na + 2Ca/3) 400 granite monzogranite (adamellite) granodiorite tonalite quartz syenite quartz monzonit quartz monzodiorite quartz diorite syenite 10 monzonite 11 monzodiorite 12 Gabbro/diorite 300 mafic vein rocks felsic vein rocks mafic microgranular enclaves (MME) felsic host rocks 200 100 -400 12 -300 11 10 -200 -100 100 200 300 P = K - (Na + Ca) Figure Nomenclature diagram (Debon & Le Fort 1983) of Kestanbol granitoid (KG) and their mafic microgranular enclaves (MMEs) megacrystals, blade-shaped biotite, acicular apatite, poikilitic K-feldspar/plagioclase, spongy cellular plagioclase and dissolution melting in plagioclase (Hibbard 1991, 1995; Fernandez & Barbarin 1991) in the MMEs (Figure 2e, f, g & h) K-feldpar megacrysts are found both in the KG and in the MME where they are partially dissolved, or at the enclave-host contact, providing persuasive evidence for the importance of magma mixing (Vernon 1986) These megacrysts compositionally and texturally closely resemble crystals from the host granitoid and are inferred to have been tranferred from the host granitoid while both magmas were still partially molten (Vernon 1986; Barbarin 1990) Vein Rocks Around Aladağ, Firanlı and the northwestern Kestanbol villages the Kestanbol pluton is cut by an extensive set of felsic and mafic dykes Aplitic, pegmatitic and granophyric dykes are fine- to medium-grained, equigranular, and locally porphyritic, where K-feldspar megacrysts are present They include K-feldspar (generally perthitic), plagioclase, quartz with minor biotite and accessory minerals such as apatite, zircon and opaques However, the mafic dykes have lamprophyre, leucite porphyry and microdioritic compositions They are dark, fine-grained, and have a sharp contact with felsic host rocks All of these dykes were injected after the crystallization of the KG and they generally follow the joint planes However, there are also several fault zones both in these localities and other parts of the pluton and alteration is common in these regions Association of vein rocks, faults and hydrothermal alteration in these zones has created high radioactivity concentrations (Örgün et al 2007) 107 KESTANBOL GRANITOID AND THEIR ENCLAVES Mineral and Whole Rock Geochemistry Analytical Methods A total of 57 samples that were taken from the MMEhost rock pairs, host rocks without the MMEs, felsic and mafic vein rocks were subjected to whole rock major and trace element chemical analysis (Tables 1– 3) using the ICP-MS of the ACME Laboratory in Canada Mineral chemical analyses were made on 16 polished MME-host rock samples Samples were prepared for electron-microprobe studies at the Geochemistry laboratory, İstanbul Technical University Carbon-coated thin sections were analysed at the TÜBİTAK Marmara Research Center (MAM-Gebze-İstanbul) Field Emission Scanning Electron Microscope (SEM) Laboratory using the JEOL JSM-6335F-EDS (EDAX) electron-microprobe (Table 4) One thin section only was analysed at the Mineralogy and Petrology Institute, Hamburg University, using a CAMECA SX-100 electronmicroprobe (equipped with wavelength an energy dispersive spectrometers) at the following operating conditions: accelerating voltage 15 kV, beam current 20 nA, and beam diameter μm Mineral Geochemistry Plagioclase Thirty-six analyses of feldspar minerals were obtained in the Kestanbol granitoids and its MMEs (Table 4) Plagioclases are found as phenocrysts within the host rocks, but in the MMEs they form both megacrysts and small crystals within the enclave groundmass Large plagioclase phenocrysts in the MME have similar shape and composition to those in the monzonitic host rocks They show variable types of compositional zoning as patchy, normal and rarely reverse zones Plagioclases, thus, were analysed from at least two points for a single crystal, such as rim and core during the SEM studies (Table 4a, b) These minerals represent a wide range of composition within the Kestanbol granitoids (KG) and their MMEs The composition of plagioclases ranges from An12 (albite) to An48 (andesine) in felsic host rocks and from An8 (albite) to An50 (andesine/labradorite) in the MMEs (Figure 4a) The cores of the pluton and its MMEs are relatively more calcic in contrast to sodic rims These 108 values are similar to each other due to the chemical interaction between felsic and mafic magmas (Barbarin & Didier 1992; Barbarin 1999) Plagioclases in the MME and host rocks show some disequilibrium texture such as poikilitic plagioclase, lath-shaped small plagioclase in large plagioclase, spike zones within a plagioclase in the KG and its MMEs (Figure 2b) Especially, disequilibrium textures in plagioclase phenocrysts reflect a magma mixing process in the felsic host and mafic magmas Amphibole The representative amphibole analyses from the KG and their MMEs are given in Table 4c and d Amphiboles are abundantly found both in felsic host rocks and their MMEs Amphiboles belong to the calcic group with a dominant chemical composition of magnesio-hornblende (Leake et al 1997; Yavuz 2007) (Figure 4b) The studied amphiboles had high FeO wt% (11.69–24.28 in host rocks and 8.21–16.62 in the MMEs), but low MgO wt.% (10.38–18.10 in felsic host rocks and 11.31– 15.47 in the MMEs), with the Mg/(Mg+Fe2+) ratios ranging from 0.54 to 0.80 The compositions of amphiboles within the KG and its MMEs were indistinguishable, except that a few amphiboles in the KG were observed to have higher Mg/(Mg+Fe2+) ratios with decreasing Si atomic per formula unit (apfu) of amphiboles, which probably evolved as a result of the changing silica activity of the binary (mafic-felsic) magma mixing system On the basis of Al-in hornblende geobarometer and hornblendeplagioclase geothermometer evaluations (Blundy & Holland 1990), the KG was formed under conditions of 1.17–3.6 kbar and 659–799 °C, whereas geothermobarometric calculations for the samples from the MME yielded 1.24–3.84 Kbar and 692–766 °C It is suggested that mafic-felsic magma mixing and mingling of MME globules within the felsic KG host might have occurred at 3.5 Kbar pressure, equivalent to a shallow crustal level (~12 km depth) These features are similar to these of the Malanjkhand granitoids from central India (Kumar & Rino 2006) The emplacement of the Kestanbol granitoid was closely preceded by the coeval, felsic Ayvacık volcanics, whose geological and geochemical features are similar to the Kestanbol pluton (Karacık & Yılmaz 1998) 4.76 0.42 1.00 0.77 99.55 132 16 19 4.51 0.28 1.00 0.85 99.57 103 13 19 K2O P2O5 LOI A/CNK TOTAL V Co Ga 7.93 1.12 5.42 0.88 2.47 0.36 2.35 0.35 0.82 5.59 0.83 4.12 0.73 2.13 0.32 2.09 0.34 0.79 Gd Tb Dy Ho Er Tm Yb Lu EuN/Eu* 0.79 0.35 2.32 0.36 2.35 0.78 4.92 1.01 6.56 2.19 11 60 17 159 85 62 8.0 27 231 22.7 955 1373 199 22 10 10 19 14 108 99.52 0.82 0.80 0.34 4.99 3.64 4.35 2.25 0.08 4.71 15.81 0.60 61.95 0.78 0.31 2.08 0.34 2.11 0.74 4.51 0.94 6.51 2.07 10 60 17 159 91 17.4 80 7.2 25 228 20 850 1072 204 25 11 12 19 13 95 99.51 0.84 0.70 0.30 4.79 3.56 4.14 2.12 0.08 4.44 15.63 0.57 63.18 Fe2O3,, total iron , LOI, loss on ignition 12 2.61 1.84 Sm Eu 18 66 15 51 Nd Ce Pr 89 162 78 139 La 54 8.2 50 11.9 Th U 30 6.9 24 6.9 237 220 Zr Hf 18.3 Y 1048 799 16.7 Nb Ba Sr 176 1334 184 1103 Rb 21 3.45 3.65 Na2O 26 5.21 4.22 CaO Zn 2.55 2.12 MgO 12 0.10 0.08 MnO 13 5.64 4.34 tFe2O3 10 15.74 15.83 Al2O3 15 0.68 0.55 Pb 60.00 62.99 SiO2 TiO2 Cu Elements 0.77 0.25 1.81 0.29 1.77 0.56 3.53 0.72 4.51 1.51 45 13 122 73 16.1 59 6.8 20 184 19.1 644 803 256 24 22 18 10 66 99.57 0.89 0.60 0.21 4.61 3.63 3.09 1.41 0.07 3.26 14.75 0.42 67.52 0.80 0.32 1.90 0.31 2.08 0.69 4.19 0.88 5.9 2.02 10 58 16 155 86 14.3 62 7.4 24 223 19 861 1008 204 22 21 45 18 14 99 99.46 0.83 0.90 0.33 4.72 3.6 4.32 2.26 0.07 4.72 15.79 0.59 62.16 0.80 0.30 2.05 0.32 2.14 0.76 4.52 0.99 6.72 2.24 11 63 18 162 90 15.7 61 7.4 26 230 19.2 956 1242 188 27 17 20 18 14 108 99.53 0.84 1.00 0.33 4.53 3.62 4.39 2.44 0.08 4.93 15.78 0.62 61.81 0.82 0.33 2.12 0.34 2.17 0.72 4.25 0.92 6.16 2.1 10 59 16 151 84 16.3 62 7.8 26 244 20.4 809 1144 204 19 20 16 19 13 94 99.48 0.87 1.00 0.31 4.95 3.61 3.65 2.12 0.07 4.30 15.56 0.54 63.37 0.75 0.33 2.05 0.33 2.26 0.74 4.13 0.9 6.02 1.9 10 58 16 144 80 15.9 59 6.6 25 200 22.1 836 1051 206 17 11 18 12 82 99.52 0.87 0.90 0.26 4.72 3.6 3.61 1.90 0.07 3.87 15.39 0.5 64.70 0.79 0.38 2.23 0.36 2.38 0.81 4.48 0.93 5.62 1.83 55 13 147 80 14 62 7.4 27 212 20.9 762 1056 174 18 11 17 17 12 88 99.58 0.87 0.80 0.24 4.71 3.38 4.00 1.98 0.07 4.30 15.58 0.55 63.97 10 0.76 0.29 1.80 0.27 1.80 0.68 3.79 0.76 5.29 1.62 47 13 124 70 10.7 47 6.5 21 200 14.7 772 1122 178 27 28 15 18 13 88 99.49 0.87 0.60 0.28 4.60 3.67 4.09 2.21 0.07 4.26 16.06 0.56 63.09 11 0.75 0.32 1.93 0.31 2.00 0.67 3.64 0.74 4.87 1.54 45 13 118 67 11.8 58 6.7 23 212 14.9 650 1005 212 31 25 18 12 79 99.58 0.90 0.80 0.23 4.68 3.50 3.62 2.11 0.07 3.89 15.61 0.52 64.56 12 0.80 0.30 1.77 0.27 1.88 0.64 3.65 0.73 4.93 1.53 46 16 122 71 10.4 42 6.2 21 178 14.7 608 913 212 29 16 18 11 70 99.59 0.90 0.80 0.20 4.53 3.56 3.5 1.99 0.07 3.60 15.50 0.48 65.35 13 0.76 0.34 2.34 0.38 2.54 0.87 5.10 1.01 6.98 2.09 10 60 16 143 78 12.6 53 6.6 29 212 18.5 890 1101 174 28 11 23 18 13 103 99.56 0.85 0.50 0.27 4.45 3.61 4.49 2.25 0.09 4.63 16.14 0.62 62.51 14 0.84 0.32 2.05 0.34 2.10 0.79 4.38 0.85 6.02 2.02 57 16 146 81 17 47 8.1 25 271 17.5 899 1054 170 28 19 13 92 99.57 0.87 0.90 0.31 4.21 3.65 4.53 2.29 0.09 4.71 16.30 0.61 61.97 15 0.84 0.34 2.23 0.33 2.19 0.77 4.41 0.82 5.81 1.99 56 17 147 84 9.7 47 8.2 25 256 17.1 984 1159 154 27 10 27 19 14 104 99.54 0.84 2.50 0.32 4.07 3.71 4.81 2.36 0.08 4.94 16.24 0.63 59.88 16 0.79 0.33 1.95 0.35 2.33 0.85 5.28 1.04 7.16 2.3 11 61 12 155 85 9.6 40 7.9 28 264 16.1 1018 1348 165 32 11 16 20 14 111 99.48 0.81 0.90 0.36 4.59 3.53 5.02 2.48 0.1 5.10 16.14 0.61 60.65 17 0.69 0.31 1.80 0.33 1.98 0.67 3.94 0.76 5.12 1.44 45 15 111 61 7.5 43 6.2 22 198 15.8 614 914 193 37 21 12 19 11 69 99.51 0.89 1.00 0.22 4.45 3.71 3.56 1.94 0.08 3.69 15.48 0.50 64.88 18 0.75 0.31 1.98 0.31 1.99 0.73 3.83 0.79 4.98 1.54 50 14 140 81 12.3 65 6.9 23 205 15.7 649 959 197 28 10 19 11 73 99.61 0.89 1.30 0.23 4.46 3.54 3.79 2.11 0.07 3.76 15.59 0.50 64.26 19 0.79 0.31 1.84 0.31 2.04 0.69 3.85 0.76 5.19 1.66 50 12 127 73 14.1 54 6.9 23 211 15.1 746 1025 203 22 12 10 18 12 86 99.61 0.86 0.90 0.25 4.48 3.59 4.01 2.01 0.08 4.31 15.48 0.53 63.97 20 0.79 0.26 1.77 0.28 1.85 0.63 3.59 0.71 4.95 1.62 45 16 112 63 7.3 36 5.8 20 195 13.4 646 1076 185 27 26 35 18 13 87 99.58 0.88 1.70 0.27 4.29 3.37 4.09 2.70 0.08 4.44 15.57 0.56 62.51 21 0.81 0.32 1.86 0.33 2.25 0.81 4.89 0.94 6.79 2.18 10 59 16 148 84 11.1 47 7.0 26 227 17.5 894 1119 172 26 12 12 17 12 96 99.50 0.80 0.70 0.34 4.85 3.38 4.73 2.16 0.10 4.79 15.58 0.56 62.31 22 0.74 0.32 2.02 0.33 1.95 0.69 3.96 0.78 5.14 1.65 49 13 127 74 15.4 59 6.5 22 197 17.2 767 960 186 22 17 11 81 99.48 0.88 1.10 0.24 4.54 3.57 3.83 1.89 0.07 4.20 15.72 0.53 63.80 29 0.82 0.30 1.85 0.31 2.11 0.72 4.23 0.86 5.82 1.84 56 15 139 78 14.3 65 6.3 23 207 18 797 973 205 25 29 14 17 12 83 99.53 0.85 0.80 0.31 4.67 3.66 3.94 2.09 0.07 4.44 15.53 0.55 63.47 32 27 0.75 0.31 2.17 0.31 2.58 0.86 5.77 1.20 8.16 2.42 12 77 19 178 82 9.7 50 8.3 30 283 21 1120 1707 207 21 15 56 18 15 120 99.54 0.82 0.60 0.41 5.50 3.76 4.50 2.41 0.10 4.95 16.65 0.66 59.99 Table Results of whole rock major (wt%), trace (ppm) and REE (ppm) chemical analysis of Kestanbol granitoid tFe2O3– total iron; LOI– loss on ignition 0.73 0.26 1.82 0.28 2.00 0.69 3.98 0.83 5.38 1.61 8.4 51 14 129 62 9.9 40 8.1 22 246 16 860 1318 180 62 07 55 18 11 94 99.78 0.87 0.30 0.28 4.53 3.81 4.09 2.15 0.08 4.31 16.24 0.56 63.43 61 0.61 0.32 2.16 0.33 2.55 0.80 4.76 1.10 6.85 1.65 9.9 64 17 154 70 10.8 63 7.4 28 206 21 891 1220 180 20 10 09 17 12 97 99.79 0.85 0.60 0.31 4.42 3.72 4.47 2.39 0.09 4.73 16.21 0.64 62.20 62 S.YILMAZ ŞAHİN ET AL 109 110 53.46 0.97 16.89 7.75 0.14 3.93 7.03 3.29 4.38 0.67 1.10 0.74 99.70 203 25 20 80 12 35 237 1241 1047 17 292 32 8.6 34 08 93.5 187.1 20.92 77.7 13.5 2.51 9.05 1.26 5.68 0.95 2.52 0.41 2.26 0.36 0.69 57.97 0.78 17.11 6.31 0.10 3.07 4.99 4.14 3.57 0.45 1.00 0.87 99.63 165 21 23 35 12 45 204 1175 652 15 221 24 7.3 27 08 67.1 129.8 14.16 53.7 9.2 1.62 5.99 0.79 4.07 0.68 2.08 0.29 1.77 0.30 0.67 56.05 0.81 17.52 6.26 0.11 3.15 5.92 4.10 4.26 0.43 1.00 0.79 99.72 155 19 20 205 14 32 215 1135 796 16 200 23 6.0 28 11 67.5 135.1 14.94 55.8 9.4 2.00 6.09 0.80 4.08 0.69 1.96 0.28 1.69 0.29 0.81 4/1 Fe2O3,, total iron , LOI, loss on ignition SiO2 TiO2 Al2O3 tFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI A/CNK TOTAL V Co Ga Cu Pb Zn Rb Ba Sr Nb Zr Y Hf Th U La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu EuN/Eu* 2/1 1/1 52.34 1.00 15.19 7.53 0.17 5.52 7.80 2.80 4.60 0.63 1.80 0.64 99.65 206 30 20 136 22 53 262 1655 836 17 298 35 9.0 31 09 82.8 172.8 20.40 76.6 14.1 2.72 9.24 1.21 5.96 1.01 2.88 0.39 2.37 0.37 0.73 7/1 56.44 0.84 16.20 7.02 0.12 3.76 6.02 4.60 2.01 0.67 1.80 0.78 99.79 146 23 23 28 10 34 123 554 747 23 295 21 9.6 21 22 124.3 202.2 18.32 63.3 10.1 1.70 5.66 0.82 3.58 0.62 1.73 0.26 1.64 0.32 0.69 9/1 58.34 0.81 16.48 6.31 0.12 3.36 5.53 3.72 3.38 0.38 1.20 0.83 99.77 151 20 22 60 14 43 177 1250 657 14 238 20 7.4 44 15 80.3 131.7 12.94 45.7 8.5 1.24 5.41 0.69 3.60 0.63 1.87 0.25 1.60 0.28 0.56 10/1 59.19 0.73 16.92 5.44 0.09 2.95 4.84 3.80 4.11 0.39 1.10 0.87 99.69 128 17 21 43 58 46 182 1506 906 13 223 24 6.9 33 06 72 143.1 15.11 55.4 9.4 1.89 5.78 0.85 4.19 0.75 2.18 0.31 1.89 0.30 0.78 11/1 53.40 1.01 18.91 8.43 0.10 3.25 5.06 4.99 2.05 0.68 1.80 0.96 99.80 198 24 30 45 34 87 201 786 630 17 353 25 10.6 30 10 109.3 196 19.06 64.9 10.3 1.88 6.11 0.86 4.28 0.77 2.24 0.34 1.97 0.35 0.72 13/1 52.51 1.00 17.55 8.56 0.14 4.22 7.15 4.25 2.69 0.61 1.00 0.77 99.81 216 25 22 53 09 51 159 519 784 17 327 32 9.7 38 09 92.6 180.9 19.29 71.3 12.6 1.52 8.09 1.10 5.35 0.96 2.85 0.43 2.27 0.40 0.46 14/1 53.73 0.74 14.49 7.25 0.20 7.57 7.48 3.23 3.31 0.22 1.50 0.64 99.86 149 29 17 157 08 43 175 565 527 13 162 23 4.7 29 37 39.8 80 8.83 34.4 6.6 1.07 4.61 0.66 3.59 0.71 2.12 0.31 1.86 0.29 0.59 15/1 55.54 0.78 14.82 6.85 0.15 5.50 7.35 3.63 2.64 0.26 2.20 0.67 99.84 168 25 17 91 13 34 109 606 685 15 173 26 5.2 21 05 40.5 82.3 9.36 36.6 6.7 1.24 4.81 0.74 4.16 0.76 2.28 0.38 2.17 0.35 0.67 16/1 51.76 1.02 16.45 9.16 0.16 4.25 7.87 4.02 2.61 0.89 1.50 0.69 99.79 250 25 21 18 12 53 125 549 815 21 315 43 9.1 34 08 124.3 256.7 28.56 105.5 18.5 3.03 12.19 1.68 7.93 1.36 3.44 0.47 2.93 0.43 0.62 17/1 56.70 0.78 17.08 6.67 0.15 3.29 5.49 5.08 2.33 0.42 1.70 0.82 99.83 151 18 24 15 33 67 179 714 585 14 257 26 7.2 27 11 66.3 133.6 14.89 55.3 10.0 1.63 6.34 0.91 4.52 0.79 2.21 0.31 1.93 0.31 0.63 18/1 57.05 0.79 15.62 5.91 0.16 5.02 6.16 3.54 3.76 0.32 1.30 0.74 99.79 127 22 22 13 10 47 213 1239 591 12 202 20 5.9 13 08 45.0 87.7 9.67 38 7.1 1.43 4.77 0.67 3.72 0.63 1.72 0.25 1.58 0.26 0.75 19/1 57.68 0.82 17.78 6.66 0.08 2.80 4.63 4.65 2.65 0.46 1.40 0.94 99.77 157 21 25 16 09 40 158 963 834 13 256 18 6.8 19 07 65.6 122.9 12.27 43.8 6.7 1.55 4.14 0.56 2.68 0.53 1.45 0.23 1.56 0.28 0.90 20/1 57.65 0.81 16.51 6.63 0.10 3.39 5.36 3.62 3.61 0.46 1.50 0.84 99.74 169 18 22 84 22 26 170 1361 811 15 167 25 4.9 27 07 71.7 146.1 15.93 58.0 9.2 1.96 6.23 0.86 4.28 0.77 2.05 0.28 1.78 0.29 0.79 21/1 Table Results of whole rock major (wt%), trace (ppm) and REE (ppm) chemical analysis of mafic microgranular enclaves of the Kestanbol granitoid 54.39 0.90 15.74 7.51 0.16 4.47 7.27 3.65 4.10 0.67 0.80 0.66 99.76 206 24 19 09 10 37 154 986 841 17 278 39 7.7 37 07 106.8 221.2 24.31 90.3 16.1 2.67 10.58 1.47 6.95 1.16 2.81 0.40 2.57 0.38 0.63 22/1 54.38 0.94 17.62 7.25 0.13 4.04 6.48 3.99 3.53 0.51 0.90 0.79 99.79 163 23 20 95 29 39 200 1046 824 14 188 19 5.5 19 6.5 69.4 133.6 13.30 50.0 8.1 1.39 5.72 0.85 3.54 0.55 1.80 0.26 1.58 0.26 0.62 62/1 KESTANBOL GRANITOID AND THEIR ENCLAVES S.YILMAZ ŞAHİN ET AL Table The results of whole-rock major (wt%), trace (ppm) and REE (ppm) chemical analysis of felsic and mafic dykes of Kestanbol granitoid FELSIC DYKES SiO2 TiO2 Al2O3 tFe2O3 MnO MgO CaO Na2O K2O P2O5 LOI A/CNK TOTAL V Co Ga Cu Pb Zn Rb Ba Sr Nb Zr Y Hf Th U La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu EuN/Eu* MAFIC DYKES 26 32/1 42 52/1 52/2 57 61/1 51/1 38/1 38/3 48 67 64.03 0.46 15.44 3.83 0.07 1.78 3.48 3.46 4.83 0.22 1.80 0.75 99.40 68 11 18 17 51 43 200 1148 792 17 238 23 7.3 52 10.4 96.1 160.6 16.46 58.8 9.2 1.78 5.76 0.82 3.93 0.74 2.07 0.32 1.86 0.29 0.75 77.71 0.09 11.98 0.75 0.01 0.10 0.63 3.14 4.91 0.01 0.70 0.49 100.03 08 0.80 16.4 19 17 05 299 81 55 21 104 08 6.1 39 19.9 34.2 46.6 4.04 10.7 1.5 0.19 0.92 0.19 1.01 0.20 0.74 0.15 1.10 0.19 0.49 63.00 0.58 15.84 4.11 0.02 2.40 3.47 4.53 4.49 0.28 1.00 0.83 99.72 89 11 18 1.60 7.3 09 165 1089 607 14 203 21 6.6 40 7.5 68.7 119.3 13.11 48.9 8.1 1.75 5.19 0.76 3.60 0.66 1.89 0.29 1.77 0.27 0.83 40.64 0.20 9.92 4.59 0.26 4.45 27.25 1.05 2.11 0.01 9.40 0.73 99.88 40 03 13 101 65 671 134 235 198 13 403 21 1.2 90.4 31 33.7 58.2 6.52 26.7 4.6 0.96 3.47 0.52 2.75 0.49 1.63 0.24 2.05 0.34 0.73 60.40 0.38 17.34 1.99 0.07 0.35 2.06 3.07 10.28 0.08 3.70 0.64 96.02 42 1.90 16 194 98 334 510 1298 767 42 274 18 3.5 142 29 65 127 13.08 47.6 7.00 1.20 4.71 0.75 3.30 0.49 1.38 0.21 1.41 0.23 0.64 61.44 0.58 15.29 4.42 0.08 2.65 4.79 3.38 4.92 0.30 1.90 0.65 97.85 94 15 17 60 20 43 211 1357 890 18 281 26 1.6 60.5 14.5 77.00 161.2 16.77 64.3 10.7 1.80 6.66 1.02 4.86 0.77 2.32 0.32 2.00 0.28 0.65 54.55 0.97 17.54 7.63 0.13 4.09 6.45 4.25 2.95 0.52 0.70 0.53 99.78 183 22 22 59 11 42 206 1003 644 14 276 26 0.7 35.6 10.4 65.7 134.6 15.01 62.3 9.90 1.39 6.61 1.07 4.78 0.71 2.20 0.28 1.80 0.30 0.53 52.70 0.73 18.38 6.05 0.13 3.13 6.00 3.99 6.42 0.53 1.40 0.79 99.46 131 16 18 66 81 38 238 1687 1284 38 544 28 2.6 92.1 31.6 99.6 205.2 21.08 78.2 12.8 2.62 8.09 1.25 5.71 0.93 2.47 0.35 2.35 0.37 0.79 45.22 0.22 9.11 2.96 0.05 10.54 29.3 0.08 0.18 0.05 7.3 0.84 97.71 34 125 12 06 12 07 9.20 46 164 07 63.2 07 1.3 7.70 4.70 22.2 46.2 5.95 22.4 3.40 0.72 2.03 0.28 1.19 0.17 0.53 0.08 0.44 0.06 0.84 52.63 0.70 12.35 7.83 0.15 11.48 6.12 2.05 3.27 0.39 2.70 0.73 99.67 170 38 17 22 43 78 166 941 760 21 246 34 7.5 9.3 46.3 75 154.5 17.21 65 12 2.35 8.03 1.21 6.05 1.02 2.69 0.41 2.61 0.4 0.73 52.81 0.83 15.77 7.51 0.13 3.68 8.44 3.15 4.01 0.67 2.60 0.83 99.61 165 22 19 58 09 40 102 1538 1252 21 364 31 10.4 62 18.3 99.5 189.8 22.18 84.3 15 3.22 9.35 1.36 6.33 1.06 2.89 0.43 2.53 0.37 0.83 51.41 0.83 17.27 7.20 0.14 3.80 7.16 3.54 5.81 0.67 1.70 0.89 99.53 178 22 20 117 74 36 221 1957 1588 30 444 35 11 85.7 24.2 113 237 24.93 88.50 14.90 3.36 9.02 1.39 6.28 1.03 2.64 0.38 2.50 0.37 0.89 Fe2O3,, total iron , LOI, loss on ignition 111 112 59.96 21.56 6.55 8.29 0.19 96.55 62.08 16.26 10.85 10.19 0.57 99.95 SiO2 Al2O3 CaO Na2O K2O Total 66.65 20.20 1.20 9.82 0.25 98.12 59.19 24.87 6.88 7.21 0.38 98.53 SiO2 Al2O3 CaO Na2O K2O Total 96.5 48.29 0.85 5.27 13.26 0.57 15.17 11.71 1.22 0.47 96.8 SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O Total * Microprobe analyses 48.37 0.84 4.99 12.97 0.46 15.33 11.88 1.16 0.47 Core Comment Sample No c Hornblend-Host Rim Rim Core Comments * Microprobe analyses 1* Sample No b Plagioclase - MME * Microprobe analyses Rim Core Comments Sample No a Plagioclase - Host 1* 97.02 49.01 0.97 4.71 12.67 0.60 15.53 11.87 1.23 0.43 Core 97.81 64.57 18.55 0.09 2.19 12.41 Ortoc 98.29 58.61 25.07 7.11 7.19 0.31 Core 1* 96.68 49.76 0.70 4.34 11.85 0.55 16.19 11.80 1.09 0.40 Rim 97.37 60.18 23.59 5.61 4.22 3.77 Core 98.69 63.17 22.29 3.80 9.02 0.41 Rim 96.44 40.82 3.93 11.80 16.07 13.39 1.24 9.19 97.66 62.94 22.17 1.36 2.98 8.21 Rim 97.58 64.41 18.53 0.12 2.39 12.13 Core 98.99 55.75 2.85 11.69 15.62 13.08 - 97.91 61.82 23.38 5.16 7.02 0.53 Core 97.23 64.24 18.27 0.07 2.13 12.52 Rim 1* (Orthoclase) 95.8 45.45 1.55 7.99 12.72 14.86 12.07 1.16 98.18 60.25 24.95 6.79 5.48 0.71 Rim 100.01 61.95 23.75 6.97 6.30 1.04 Plj 96.36 49.25 1.53 6.95 12.03 13.68 10.51 0.84 100.81 61.51 24.06 7.39 7.04 0.81 Pl-1 100.44 64.63 22.45 7.07 5.63 0.66 Core 96.97 50.36 6.13 12.19 14.70 12.00 1.59 100.64 60.44 25.28 9.54 4.93 0.45 P-1 97.49 60.02 23.48 7.10 6.89 - Rim 99.42 0.77 37.10 0.73 17.74 24.28 0.70 18.10 98.99 64.27 19.41 1.71 3.15 10.45 100.01 65.66 22.47 5.63 6.25 - Core 99.09 48.03 6.69 15.36 13.00 12.14 1.55 0.91 98.89 61.47 24.25 6.90 5.76 0.51 10 101.42 65.87 22.18 7.15 5.70 0.52 Rim 99.06 0.49 9.91 40.01 4.22 12.77 18.76 12.90 10 101.43 65.56 23.02 6.34 6.51 11 98.03 58.55 23.99 6.80 8.16 0.53 Plj 12 100.44 49.99 6.61 17.90 14.92 11.02 - 11 97.39 60.84 24.73 6.27 5.19 0.36 Core 98.71 62.44 22.51 6.82 6.94 - Plj 98.14 48.41 1.49 7.27 14.91 12.16 11.33 1.56 1.01 12 97.09 61.28 24.61 3.13 1.68 6.39 Rim 97.13 59.35 25.06 7.08 4.91 0.73 Plj 98.57 51.63 5.58 13.64 14.38 11.92 1.42 13 98.99 62.14 23.81 5.61 7.43 13 98.00 62.22 23.12 5.88 5.76 1.02 Plj 10 98.50 47.96 4.80 6.97 12.48 10.38 13.54 1.61 0.76 17 98.61 61.68 24.05 6.83 6.05 17 97.37 61.65 22.58 4.91 8.23 - Plj 11 63.81 23.91 6.37 6.10 0.53 Rim 100.61 100.72 60.48 25.70 7.92 5.98 0.53 Core 12 98.50 63.16 21.45 4.05 5.23 4.61 Plj 13 99.39 62.09 23.18 6.67 7.10 0.35 Plj 17 Table Representative analyses of (a) plagioclases in the Kestanbol pluton, (b) plagioclases in mafic microgranular enclaves (c) hornblende minerals in the Kestanbol granitoid, (d) hornblende minerals in mafic microgranular enclaves (e) biotite minerals in the Kestanbol granitoid, (f) biotite minerals in mafic microgranular enclaves KESTANBOL GRANITOID AND THEIR ENCLAVES S.YILMAZ ŞAHİN ET AL Table Continued d Hornblend - MME Sample No 1/1* 1/1 2/1 3/1 6/1 7/1 8/1 9/1 10/1 11/1 12/1 13/1 17/1 49.92 1.01 5.00 14.14 13.37 12.52 0.43 53.53 47.84 1.45 7.55 15.09 12.75 13.17 - 48.10 1.55 6.40 14.80 1.49 12.95 1.49 0.64 51.40 2.19 8.21 13.95 19.87 - 50.03 0.82 7.72 14.11 12.72 12.26 - 4.53 14.90 15.05 13.10 0.75 48.25 1.13 8.35 16.62 11.76 11.46 1.42 52.06 0.92 4.96 12.34 14.61 11.65 1.79 - 48.33 1.32 7.50 15.98 0.94 11.31 11.40 1.66 1.00 Comments Core Rim SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 49.01 0.85 4.84 12.56 0.58 15.47 11.84 1.14 0.53 48.76 0.78 5.42 13.39 0.61 15.14 11.71 1.30 0.51 49.89 1.90 6.49 12.86 13.32 10.24 1.57 - 56.10 7.27 8.45 13.19 11.25 2.34 - 45.92 2.45 10.93 14.09 13.24 6.30 - Total 96.82 97.62 96.27 98.60 97.22 96.39 97.75 97.66 97.85 98.89 99.73 98.99 98.33 99.40 10 11 12 13 17 * Microprobe analyses e Biotite - Host Sample No 1* Comments Core Rim SiO2 TiO2 Al2O3 FeO MnO MgO Na2O K2O 36.82 4.35 13.54 16.34 0.32 14.31 0.12 8.58 37.04 4.00 13.18 16.52 0.33 14.66 0.09 8.44 36.78 2.88 12.20 15.87 0.77 14.14 1.14 7.76 39.00 4.86 13.28 13.78 16.04 0.63 10.00 38.25 5.35 13.30 17.28 13.42 1.04 9.24 40.65 4.10 12.05 16.72 13.80 9.87 40.16 4.23 13.34 16.35 14.00 10.31 38.27 4.25 15.15 17.13 0.60 15.25 8.82 37.59 3.80 14.44 18.37 13.52 10.72 39.41 3.97 13.18 17.37 13.09 1.81 8.62 39.24 4.16 14.60 18.77 13.75 10.10 39.61 3.92 14.32 18.27 0.44 13.29 10.47 40.41 4.96 13.45 16.93 13.16 0.98 9.91 40.13 4.87 13.41 18.05 13.14 9.91 Total 94.39 94.27 94.47 97.59 97.88 97.19 98.39 99.47 98.44 97.45 100.62 100.32 99.80 99.50 10 11 12 13 17 40.86 5.32 14.05 17.18 14.15 10.24 38.66 4.40 12.24 15.84 13.44 1.20 9.18 38.94 5.42 12.88 16.60 13.99 1.87 10.29 36.44 2.65 13.37 19.11 0.40 13.24 0.70 9.00 38.78 3.49 12.26 18.18 12.66 2.60 9.66 40.32 4.02 12.89 19.13 13.75 9.88 39.07 3.95 13.35 18.19 0.52 14.28 10.38 40.08 3.41 14.62 19.31 12.46 8.91 40.18 4.14 13.19 17.23 13.34 10.04 38.58 4.73 13.36 18.29 12.92 10.23 101.8 94.96 99.99 94.91 97.63 99.99 99.74 98.79 99.01 98.11 * Microprobe analyses f Biotite - MME Sample No 1* SiO2 TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O 36.85 4.66 13.32 16.62 0.33 14.19 0.05 0.12 0.12 36.42 4.38 13.55 16.45 0.32 14.19 0.04 0.12 7.81 40.42 4.65 13.79 15.98 15.32 9.73 38.72 5.05 14.31 15.33 15.16 2.04 9.40 Total 86.14 93.28 99.89 100.01 * Microprobe analyses Biotite A total of 28 point analyses of biotite from the KG and the MMEs are given in Table 4e and f Biotite analyses from the KG and the MMEs were recalculated using the Mica+ software (Yavuz 2003a) Biotite is the most abundant ferromagnesian mineral in the KG and its MMEs Compositionally, biotite displays a limited range for VI the mole fraction of iron [XFe = (Fe+Al )/ (Fe+Mg+AlVI )] ranging from 0.32 to 0.45 in the quartz monzonite, but the variation of XFe in MME is between 0.36 and 0.50 In terms of Mg – vı 3+ 2+ (Al +Fe +Ti) – (Fe +Mn) ternary components (Foster 1960; Yavuz 2003b), the compositions of biotite from the KG and the MMEs belong to the Mg-biotites (Figure 5a) The FeOtot/MgO ratios of biotites in the KG and the MMEs range from 0.86 to 113 KESTANBOL GRANITOID AND THEIR ENCLAVES Or host core (An23-48) host rim (An12-18) MME core (An28-50) MME rim (An8-40) type granitoid suites (Abdel-Rahman 1994) As shown in the ternary MgO-FeOtot-Al2O3 diagram, all the biotite data from the KG and MMEs fall within the calc-alkaline orogenic suites area (AbdelRahman 1994; Figure 5b) Whole Rock Geochemistry In this chapter a joint review of the major and trace element geochemistry of the felsic host rock and the MME sample pairs, and felsic and mafic dykes is given While felsic dykes resemble felsic host rocks, mafic rocks show similar behaviour to the MMEs in some geochemical diagrams (Tables 1–4, Figure 3) An Ab (a) 1.00 Tremolite Magnesio-hornblende 0.80 2+ Mg/(Mg+Fe ) Tschermakite 0.60 Actinolite 0.40 Ferroactinolite Ferrohornblende Ferrotschermakite 0.20 0.00 8.00 (b) 7.50 7.00 6.50 6.00 5.50 Si Figure (a) Compositional variations of plagioclase from the KG and their MMEs in Ab-Or-An triangular diagram (1) orthoclase; (2) anorthoclase; (3) albite; (4) oligoclase; (5) andesine; (6) labradorite; (7) bytownite; (8) anorthite (b) Composition of amphiboles in host rocks (open circles) and their MMEs (filled circles) 1.37 with an average of 1.12, and vary from 1.01 to 1.55 with an average of 1.28, respectively These values are similar to the Mg biotites (FeOtot/MgO= 1.76), typically associated with calcic hornblende and/or pyroxene that are commonly found in calcalkaline (mostly orogenic and subduction-related), I114 Most KG and felsic vein rock samples and some MMEs plot in the subalkaline field, except for some MMEs and mafic vein rocks whose settings lie in the alkaline area on a total alkali (Na2O+K2O)-silica (SiO2) diagram (Irvine & Baragar 1971; Figure 6a) All the samples plot in the calc-alkaline area on an AFM diagram and in the high-K field on a K2O-SiO2 diagram (Irvine & Baragar 1971; Le Maitre et al 1989; Figure 6b, c) The KG is markedly metaluminous (mol A/CNK

Ngày đăng: 13/01/2020, 15:48

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN