THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng | |
---|---|
Số trang | 758 |
Dung lượng | 9,2 MB |
Nội dung
Ngày đăng: 08/01/2020, 08:54
Nguồn tham khảo
Tài liệu tham khảo | Loại | Chi tiết | ||
---|---|---|---|---|
10.1016/S0304-4149(99)00101-5Yuen WK (2001) Application of geometric bounds to convergence rates of Markov chains and Markov processes on R(n). ProQuest LLC, Ann Arbor, MI, URL http://gateway.proquest.com/openurl?url ver=Z39.88-2004&rft val fmt=info:ofi/fmt:kev:mtx:dissertation&res dat=xri:pqdiss&rft dat=xri:pqdiss:NQ58619, thesis (Ph.D.)–University of Toronto (Canada)Yuen WK (2002) Generalization of discrete-time geometric bounds to convergence rate of Markov processes on R n . Stoch Models 18(2):301–331, DOI https://doi.org/10.1081/STM-120004469 | Sách, tạp chí |
|
||
124, DOI https://doi.org/10.1016/S0246-0203(03)00061-XChing WK, Huang X, Ng MK, Siu TK (2013) Markov chains, International Series in Operations Research & Management Science, vol 189, 2nd edn. Springer, New York, DOI https://doi.org/10.1007/978-1-4614-6312-2, models, algorithms and applicationsChung KL (1953) Contributions to the theory of Markov chains. J Research Nat Bur Standards 50:203–208Chung KL (1954) Contributions to the theory of Markov chains. II. Trans Amer Math Soc 76:397–419, DOI https://doi.org/10.2307/1990789Chung KL (1964) The general theory of Markov processes according to Doeblin | Link | |||
9781118881866, analytic and Monte Carlo computationsGranger CWJ, Swanson NR (1997) An introduction to stochastic unit-root processes. J Econometrics 80(1):35–62, DOI https://doi.org/10.1016/S0304- 4076(96)00016-4Griffeath D (1975) Uniform coupling of non-homogeneous Markov chains. J Appl Probability 12(4):753–762Griffeath D (1978) Coupling methods for Markov processes. In: Studies in proba- bility and ergodic theory, Adv. in Math. Suppl. Stud., vol 2, Academic Press, New York-London, pp 1–43Guillin A (2001) Moderate deviations of inhomogeneous functionals of Markov processes and application to averaging. Stochastic Process Appl 92(2):287–313, DOI https://doi.org/10.1016/S0304-4149(00)00081-8Guillin A, L´eonard C, Wu L, Yao N (2009) Transportation-information inequali- ties for Markov processes. Probab Theory Related Fields 144(3–4):669–695, DOI https://doi.org/10.1007/s00440-008-0159-5 | Link | |||
1017, URL http://projecteuclid.org/euclid.pjm/1102995584Privault N (2008) Potential Theory in Classical Probability, Springer, Berlin, Hei- delberg, pp 3–59. DOI https://doi.org/10.1007/978-3-540-69365-9 2Privault N (2013) Understanding Markov chains. Springer Undergraduate Mathe- matics Series, Springer Singapore, Singapore, DOI https://doi.org/10.1007/978- 981-4451-51-2, examples and applicationsRachev ST, R¨uschendorf L (1998) Mass transportation problems. Vol. I. Probability and its Applications (New York), Springer, New York, theoryR´enyi A (1957) On the asymptotic distribution of the sum of a random number of independent random variables. Acta Math Acad Sci Hungar 8:193–199, DOI https://doi.org/10.1007/BF02025242Revuz D (1975) Markov chains. North-Holland Publishing Co., Amsterdam- Oxford; American Elsevier Publishing Co., Inc., New York, North-Holland Math- ematical Library, Vol. 11Revuz D (1984) Markov Chains, 2nd edn. North-Holland Publishing, Amsterdam Rio E (1993) Covariance inequalities for strongly mixing processes. Ann InstH Poincar´e Probab Statist 29(4):587–597, URL http://www.numdam.org/item?id=AIHPB 1993 29 4 587 0Rio E (1994) In´egalit´es de moments pour les suites stationnaires et fortement m´elangeantes. C R Acad Sci Paris S´er I Math 318(4):355–360Rio E (2000a) In´egalit´es de hoeffding pour des fonctions lipshitziennes de suites d´ependantes. Comptes Rendus de l’Acad´emie des Sciences pp 905–908 | Link | |||
405, DOI https://doi.org/10.1137/1037083Rosenthal JS (1995b) Minorization conditions and convergence rates for Markov chain Monte Carlo. J Amer Statist Assoc 90(430):558–566Rosenthal JS (2001) A review of asymptotic convergence for general state space Markov chains. Far East J Theor Stat 5(1):37–50Rosenthal JS (2002) Quantitative convergence rates of Markov chains: a simple account. Electron Comm Probab 7:123–128, DOI https://doi.org/10.1214/ECP.v7-1054Rosenthal JS (2009) Markov chain Monte Carlo algorithms: theory and practice. In:Monte Carlo and quasi-Monte Carlo methods 2008, Springer, Berlin, pp 157–169, DOI https://doi.org/10.1007/978-3-642-04107-5 9 | Link |
TỪ KHÓA LIÊN QUAN
TÀI LIỆU CÙNG NGƯỜI DÙNG
TÀI LIỆU LIÊN QUAN