1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Một số thuật toán metaheuristic giải bài toán bao phủ diện tích và đối tượng trong mạng cảm biến không dây

204 50 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 204
Dung lượng 2,64 MB

Nội dung

BË GIO D÷C V O TO TR ÕNG I HÅC BCH KHOA H NËI NGUYN THÀ HNH MËT SÈ THUT TON METAHEURISTIC GII BI TON BAO PH’ DIN TCH V ÈI T —NG TRONG MNG CM BIN KHỈNG DY LUN N TIN S KHOA HÅC MY TNH H NỴi - 2019 BË GIO D÷C V O TO TR ÕNG I HÅC BCH KHOA H NËI NGUYN THÀ HNH MËT SÈ THUT TON METAHEURISTIC GII BI TON BAO PH’ DIN TCH V ÈI T —NG TRONG MNG CM BIN KHỈNG DY Ng nh : M sậ : Khoa hc mĂy tẵnh 9480101 LUN N TIN S KHOA HÅC MY TNH NG ÕI H ŒNG DN KHOA HÅC: PGS.TS Hu˝nh Th‡ Thanh Bẳnh PGS.TS Nguyạn c Nghắa H Nẻi - 2019 Lèi cam oan Nghiản cu sinh cam oan luên Ăn n y l cấng trẳnh nghiản cu ca chẵnh mẳnh dểi sá hểng dăn ca têp th cĂn bẻ hểng dăn Luên Ăn c s dng thấng tin trẵch dăn t nhiãu ngun tham khÊo khĂc v cĂc thấng tin trẵch dăn ềc ghi r ngun gậc CĂc sậ liằu, kát quÊ luên Ăn l trung thác v ch˜a t¯ng ˜Ịc cÊng bË c¡c cÊng tr¼nh nghiản cu ca bĐt k tĂc giÊ n o khĂc Thay mt têp th giĂo viản hểng dăn PGS.TS Hunh Th Thanh Bẳnh ii H Nẻi, ng y 05 thĂng 11 nôm 2019 Nghiản cu sinh Nguyạn Th HÔnh Lèi cÊm ẽn Lèi Ưu tiản, tấi xin b y t lãng biát ẽn sƠu sc tểi cĂc thƯy cấ giĂo hểng dăn, PGS.TS Hunh Th Thanh Bẳnh v PGS.TS Nguyạn c Nghắa ,  nh hểng khoa hc v tên tƠm gip ễ, ch bÊo suật quĂ trẳnh ho n th nh luên Ăn tÔi trèng Ôi hc BĂch Khoa H Nẻi Tấi xin chƠn th nh cÊm ẽn Ban giĂm hiằu, Ban lÂnh Ôo Viằn cấng nghằ thấng tin v truyãn thấng, cĂc thƯy cấ bẻ mấn Khoa hc mĂy tẵnh v cĂc bÔn phãng nghiản cu Mấ hẳnh ha, mấ phng v tậi u ha, trèng Ôi hc BĂch khoa H Nẻi  tÔo iãu kiằn thuên lềi nhĐt tấi ho n th nh chẽng trẳnh hc têp v thác hiằn luên Ăn nghiản cu khoa hc ca mẳnh Tấi xin chƠn th nh cÊm ẽn Ban giĂm hiằu trèng Ôi hc Phẽng ấng, têp th cĂn bẻ, giÊng viản Khoa cấng nghằ thấng tin v truy·n thÊng nÏi nghi¶n c˘u sinh cÊng t¡c v c¡c bÔn b thƠn thiát  luấn tÔo iãu kiằn, ẻng viản, khuyán khẵch tấi ho n th nh luên ¡n n y CuËi cÚng, tÊi ch¥n th nh b y t lãng cÊm ẽn tểi gia ẳnh  kiản trẳ, chia s, ẻng viản nghiản cu sinh suật quĂ trẳnh hc têp v ho n th nh luên ¡n n y H NỴi, ng y 05 th¡ng 11 nôm 2019 Nghiản cu sinh Nguyạn Th HÔnh iii MữC L÷C BNG THUT NG⁄ VIT TT DANH SCH BNG DANH SCH HNH V M– U CÌ S– Lfi THUYT 1.1 MÔng cÊm bián khấng dƠy 1.1.1 1.1.2 1.1.3 1.1.4 1.2 C¡c mÊ h¼nh bao phı cıa c£m bi¸ 1.2.1 1.2.2 1.3 B i to¡n tËi ˜u 1.3.1 1.3.2 1.3.3 1.4 Kát luên chẽng BI TON C‹C I DIN TCH BAO PH’ TRONG MNG CM BIN KHỈNG DY KHặNG ầNG NHT iv 2.1 PhĂt biu b i to¡n 2.2 GiÊi thuêt ã xuĐt 2.2.1 2.2.2 2.2.3 2.2.4 2.3 K¸t qu£ th¸c nghi»m 2.3.1 2.3.2 2.3.3 2.4 Kát luên chẽng BI TON C‹C I DIN TCH BAO PH’ TRONG MNG CM BIN KHặNG DY KHặNG ầNG NHT C RNG BUËC CH ŒNG NGI VT 3.1 3.2 3.3 3.4 Ph¡t biºu b i to¡n GiÊi thuêt ã xuĐt 3.2.1 3.2.2 K¸t qu£ th¸c nghi»m 3.3.1 3.3.2 3.3.3 Kát luên chẽng BI TON BAO PH’ ÈI T —NG M BO KT NÈI V CHÀU LÉI TRONG MNG CM BIN KHỈNG DY V MNG CM BIN KHặNG DY C SÔ DữNG IM THU PHT DI ËNG 4.1 B i to¡n bao phı Ëi t˜Òng £m bÊo kát nậi v chu lẩi mÔng cÊm bián khÊng d¥y 4.1.1 Ph¡t biºu b i toĂn GiÊi thuêt ã xuĐt 4.1.2 v 4.1.3 Kát quÊ th¸c nghi»m 114 4.2 B i to¡n bao ph ậi tềng Êm bÊ bián khấng dƠy c s dng cĂc i 4.2.1 4.2.2 4.2.3 4.3 Kát luên chẽng KT LUN DANH MữC CặNG TRNH CặNG Bẩ TI LIU THAM KHO vi BNG THUT NG⁄ VIT TT Ch˙ vi¸t tt IoT WSNs MWSNs SWSNS HWSNS LoS VFA MVFA GA PSO CS ICS FPA CFPA DPSO ACB MCT SCAN ITS MR RADA MDC ROM RAM LX AMXO TC NCFT SSCAT FS USP sand: a wireless sensor network for target detection, classification, and tracking Computer Networks, 46(5):605634, 2004 141 [24] Guang-Zhong Yang and Guangzhong Yang Body sensor networks, vol-ume Springer, 2006 [25] S Mini, Siba K Udgata, and Samrat L Sabat Sensor deployment and scheduling for target coverage problem in wireless sensor networks IEEE Sensors Journal, 14(3):636644, 2014 [26] C Y Chang, C T Chang, Y C Chen, and H R Chang Obstacle-resistant deployment algorithms for wireless sensor networks IEEE Trans-actions on Vehicular Technology , 58(6):29252941, July 2009 ISSN 0018-9545 doi: 10.1109/TVT.2008.2010619 [27] Yong Xu and Xin Yao A ga approach to the optimal placement of sensors in wireless sensor networks with obstacles and preferences In CCNC 2006 2006 3rd IEEE Consumer Communications and Networking Con-ference, 2006., volume 1, pages 127131, Jan 2006 doi: 10.1109/CCNC 2006.1593001 [28] Haisheng Tan, Yuexuan Wang, Xiaohong Hao, Qiang-Sheng Hua, and Francis C M Lau Arbitrary obstacles constrained full coverage in wire-less sensor networks In Gopal Pandurangan, V S Anil Kumar, Gu Ming, Yunhao Liu, and Yingshu Li, editors, Wireless Algorithms, Systems, and Applications, pages 110, Berlin, Heidelberg, 2010 Springer Berlin Heidel-berg ISBN 978-3-64214654-1 [29] Jae-Hyun SEO, Yong-Hyuk KIM, Hwang-Bin RYOU, Si-Ho CHA, and Minho JO Optimal sensor deployment for wireless surveillance sensor networks by a hybrid steady-state genetic algorithm IEICE Transactions on Communications, E91.B(11):35343543, 2008 doi: 10.1093/ietcom/ e91-b.11.3534 [30] Andrew Howard, Maja J Mataric, and Gaurav S Sukhatme Mobile sensor network deployment using potential fields: A distributed, scalable solution to the area coverage problem In Distributed Autonomous Robotic Systems 5, pages 299308 Springer, 2002 [31] Yi Zou and Krishnendu Chakrabarty Sensor deployment and target local-ization in distributed sensor networks ACM Transactions on Embedded Computing Systems (TECS), 3(1):6191, 2004 [33] Colin R Reeves and Jonathan E Rowe Genetic algorithms: Principles and perspectives, vol 20 of Operations Research/Computer Science Interfaces Series, 2003 142 [32] Yao Zou and Krishnendu Chakrabarty Sensor deployment and target localization based on virtual forces In INFOCOM 2003 TwentySecond Annual Joint Conference of the IEEE Computer and Communications IEEE Societies, volume 2, pages 12931303 IEEE, 2003 [34] Qin Xu and Qianping Wang Coverage optimization deployment based on virtual force directed in wireless sensor networks In International Con- ference on Computer Technology and Science ICCTS , 2012 [35] Ines Khoufi, Pascale Minet, and Anis Laouiti Oa-dvfa: A distributed virtual forces-based algorithm to monitor an area with unknown obstacles In Consumer Communications & Networking Conference (CCNC), 2016 13th IEEE Annual, pages 10361041 IEEE, 2016 [36] Marco Locatelli and Ulrich Raber Packing equal circles in a square: a deterministic global optimization approach Discrete Applied Mathematics , 122(1-3):139166, 2002 [37] Ines Khoufi, Pascale Minet, Anis Laouiti, and Erwan Livolant A simple method for the deployment of wireless sensors to ensure full coverage of an irregular area with obstacles In Proceedings of the 17th ACM international conference on Modeling, analysis and simulation of wireless and mobile systems, pages 203210 ACM, 2014 [38] Haisheng Tan, Yuexuan Wang, Xiaohong Hao, Qiang-Sheng Hua, and Francis CM Lau Arbitrary obstacles constrained full coverage in wire-less sensor networks In International Conference on Wireless Algorithms, Systems, and Applications, pages 110 Springer, 2010 [39] Nguyạn ẳnh Thc Lêp trẳnh tián ha, nh xuĐt b£n gi¡o dˆc 2001 [40] Dinh Thi Ha Ly, Nguyen Thi Hanh, Huynh Thi Thanh Binh, and Nguyen Duc Nghia An improved genetic algorithm for maximizing area coverage in wireless sensor networks In SoICT, 2015 [41] Salma Begum, Nazma Tara, and Sharmin Sultana Energy-efficient target coverage in wireless sensor networks based on modified ant colony algo-rithm International Journal of Ad hoc, Sensor & Ubiquitous Computing (IJASUC) Vol, 1:2936, 2010 [42] Omar Banimelhem, Moad Mowafi, and Walid Aljoby Genetic algorithm based node deployment in hybrid wireless sensor networks Communica-tions and Network, 5(04):273, 2013 [43] Van-Dai Ta, Shih-Chang Huang, and Huynh Thi Thanh Binh Cover-ing the target objects with mobile sensors by using genetic algorithm in wireless sensor networks JCP, 10(5):300308, 2015 [44] Qun Zhao and Mohan Gurusamy Lifetime maximization for connected target coverage in wireless sensor networks IEEE/ACM Transactions on Networking (TON), 16(6):13781391, 2008 143 [45] Qun Zhao and Mohan Gurusamy Maximizing network lifetime for con-nected target coverage in wireless sensor networks In Wireless and Mobile Computing, Networking and Communications, 2006.(WiMob'2006) IEEE International Conference on , pages 94101 IEEE, 2006 [46] Deying Li, Jiannong Cao, Ming Liu, and Yuan Zheng K-connected target coverage problem in wireless sensor networks In International Conference on Combinatorial Optimization and Applications , pages 2031 Springer, 2007 [47] Koushik Kar and Suman Banerjee Node placement for connected coverage in sensor networks In WiOpt'03: Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks , pages 2pages, 2003 [48] Javad Rezazadeh, Marjan Moradi, and Abdul Samad Ismail Mobile wire-less sensor networks overview International Journal of Computer Com- munications and Networks, 2(1):1722, 2012 [49] Joshua Reich, Vishal Misra, Dan Rubenstein, and Gil Zussman Connec-tivity maintenance in mobile wireless networks via constrained mobility IEEE Journal on Selected Areas in Communications , 30(5):935950, 2012 [50] Uichin Lee and Mario Gerla A survey of urban vehicular sensing platforms Computer Networks, 54(4):527544, 2010 [51] Uichin Lee, Eugenio Magistretti, Mario Gerla, Paolo Bellavista, and Anto-nio Corradi Dissemination and harvesting of urban data using vehicular sensing platforms IEEE transactions on vehicular technology , 58(2):882 901, 2009 [52] Mohamed Amine Kafi, Yacine Challal, Djamel Djenouri, Messaoud Doudou, Abdelmadjid Bouabdallah, and Nadjib Badache A study of wireless sensor networks for urban traffic monitoring: applications and architectures Procedia computer science , 19:617626, 2013 [53] Giuseppe Anastasi, Marco Conti, and Mario Di Francesco An analyti-cal study of reliable and energy-efficient data collection in sparse sensor networks with mobile relays In European Conference on Wireless Sensor Networks, pages 199215 Springer, 2009 [54] Kunal Shah, Mario Di Francesco, Giuseppe Anastasi, and Mohan Kumar A framework for resource-aware data accumulation in sparse wireless sen-sor networks Computer Communications, 34(17):20942103, 2011 [55] Qingguo Zhang and Mable P Fok A two-phase coverage-enhancing algo-rithm for hybrid wireless sensor networks Sensors, 17(1):117, 2017 144 [56] Guo-Hui Lin and Guoliang Xue Steiner tree problem with minimum num-ber of steiner points and bounded edgelength Information Processing Letters, 69(2):53 57, 1999 [57] Dejun Yang, Satyajayant Misra, Xi Fang, Guoliang Xue, and Junshan Zhang Two-tiered constrained relay node placement in wireless sensor networks: Computational complexity and efficient approximations IEEE Transactions on Mobile Computing , 11(8):13991411, 2012 [58] Zhiyin Chen, Xiaofeng Gao, Fan Wu, and Guihai Chen A ptas to minimize mobile sensor movement for target coverage problem In INFOCOM 2016-The 35th Annual IEEE International Conference on Computer Com-munications, IEEE, pages 19 IEEE, 2016 [59] Yinying Yang, Mirela I Fonoage, and Mihaela Cardei Improving network lifetime with mobile wireless sensor networks Computer communications, 33(4):409419, 2010 [60] Mirela Marta and Mihaela Cardei Improved sensor network lifetime with multiple mobile sinks Pervasive and Mobile computing , 5(5):542555, 2009 [61] Athanasios Kinalis, Sotiris Nikoletseas, Dimitra Patroumpa, and Jose Rolim Biased sink mobility with adaptive stop times for low latency data collection in sensor networks Information fusion, 15:5663, 2014 [62] Saim Ghafoor, Mubashir Husain Rehmani, Sunghyun Cho, and Sung-Han Park An efficient trajectory design for mobile sink in a wireless sensor network Computers & Electrical Engineering , 40(7):20892100, 2014 [63] Hamidreza Salarian, Kwan-Wu Chin, and Fazel Naghdy An energyefficient mobile-sink path selection strategy for wireless sensor networks IEEE Transactions on vehicular technology , 63(5):24072419, 2014 [64] Nguyen Thi Thanh Nga, Nguyen Kim Khanh, and Son Ngo Hong Entropy based correlation clustering for wireless sensor network in multi-correlated regional environment In 2016 International Conference on Electronics, Information, and Communications (ICEIC) , pages 14 IEEE, 2016 [65] Nguyen Thi Thanh Nga, Nguyen Kim Khanh, and Son Ngo Hong Entropy correlation and its impact on routing with compression in wireless sensor network In Proceedings of the Seventh Symposium on Information and Communication Technology , pages 235242 ACM, 2016 [66] Lả Trng Vắnh ng Thanh HÊi Tậi u vng ph sng ca mÔng cÊm bián khấng dƠy bơng thuêt toĂn voronoi mấi trèng 3d Ôi hc LÔt, 6(2):187196, 2016 145 [67] Nguyen Thi Tam, Dang Thanh Hai, et al Improving lifetime and network connections of 3d wireless sensor networks based on fuzzy clustering and particle swarm optimization Wireless Networks, 24(5):14771490, 2018 [68] Nguyen Thanh Tung and Huynh Thi Thanh Binh Base station location-aware optimization model of the lifetime of wireless sensor networks Mo- bile Networks and Applications , 21(1):1017, 2016 [69] Stephen Boyd and Lieven Vandenberghe Convex optimization Cambridge university press, 2004 [70] Xin-She Yang Cuckoo search and firefly algorithm: theory and applica-tions, volume 516 Springer, 2013 [71] c Nghắa Nguyạn and Tấ Th nh Nguyạn ToĂn rèi rÔc Ôi hc Quậc gia H Nẻi, 2007 [72] Alexander Schrijver Theory of linear and integer programming John Wiley & Sons, 1998 [73] Alexander Souza Combinatorial algorithms Lecture Notes, Winter Term 2010/2011, 2010 [74] Ailsa H Land and Alison G Doig An automatic method of solving dis-crete programming problems Econometrica: Journal of the Econometric Society, pages 497520, 1960 [75] Andries P Engelbrecht Computational Intelligence: An Introduction Wi-ley Publishing, 2nd edition, 2007 ISBN 0470035617 [76] Zbigniew Michalewicz and David B Fogel How to solve it: modern heuris-tics Springer Science & Business Media, 2013 [77] H Holland John Adaptation in natural and artificial systems: an intro-ductory analysis with applications to biology, control, and artificial intel-ligence USA: University of Michigan, 1975 [78] Ernst Mayr Populations, species, and evolution: an abridgment of animal species and evolution Harvard University Press, 1970 [79] J Kennedy and R Eberhart Optimization particle swarm In Proceedings of the 1995 IEEE International Conference on Evolutionary Computing , pages 19421948, 1995 [80] Yuhui Shi and Russell Eberhart A modified particle swarm optimizer In Evolutionary Computation Proceedings, 1998 IEEE World Congress on Computational Intelligence., The 1998 IEEE International Conference on , pages 6973 IEEE, 1998 146 [81] Xin-She Yang and Suash Deb Cuckoo search via l²vy flights In Nature & Biologically Inspired Computing, 2009 NaBIC 2009 World Congress on , pages 210214 IEEE, 2009 [82] Rosario N Mantegna and H Eugene Stanley Stochastic process with ultra-slow convergence to a gaussian: the truncated l²vy flight Physical Review Letters, 73(22):2946, 1994 [83] Andy M Reynolds and Mark A Frye Free-flight odor tracking in drosophila is consistent with an optimal intermittent scale-free search PloS one, (4):e354, 2007 [84] Changlei Liu and Guohong Cao Spatial-temporal coverage optimization in wireless sensor networks IEEE Transactions on Mobile Computing , 10 (4):465478, 2011 [85] Celal Ozturk, Dervis Karaboga, and Beyza Gorkemli Probabilistic dy-namic deployment of wireless sensor networks by artificial bee colony al-gorithm sensors, 11(6):60566065, 2011 [86] D Henderson, SH Jacobson, and AW Johnson The theory and practice of simulated annealing handbook of metaheuristics f glover and ga kochen-berger, 2003 [87] Qinghai Bai Analysis of particle swarm optimization algorithm Computer and information science, 3(1):180, 2010 [88] Bahareh Nakisa and Mohammad Naim Rastgoo A survey: Particle swarm optimization based algorithms to solve premature convergence problem Journal of Computer Science , 10(9):17581765, 2014 [89] Ali Kaveh Advances in metaheuristic algorithms for optimal design of structures Springer, 2014 [90] Xin-She Yanga, Mehmet Karamanoglua, and Xingshi Heb Multiobjective flower algorithm for optimization a school of science and technology Mid-dlesex University, London NW4 4BT, UK school of Science, Xi'an Poly-technic University, Xi'an, PR China ICCS , 2013 [91] El-Ghazali Talbi Metaheuristics: from design to implementation , vol- ume 74 John Wiley & Sons, 2009 [92] Edmund K Burke, James P Newall, and Rupert F Weare Initialization strategies and diversity in evolutionary timetabling Evolutionary compu-tation, 6(1):81103, 1998 [93] Aki Sorsa, Riikka Peltokangas, and Kauko Leiviska Real-coded genetic algorithms and nonlinear parameter identification In Intelligent Systems, 147 2008 IS'08 4th International IEEE Conference , volume 2, pages 1042 IEEE, 2008 [94] Kusum Deep and Manoj Thakur A new crossover operator for real coded genetic algorithms Applied mathematics and computation , 188(1):895 911, 2007 [95] Aki Sorsa, Riikka Peltokangas, and Kauko Leiviska Real-coded genetic algorithms and nonlinear parameter identification In Intelligent Systems, 2008 IS'08 4th International IEEE Conference , volume 2, pages 1042 IEEE, 2008 [96] Y Zou and Krishnendu Chakrabarty Sensor deployment and target lo-calization based on virtual forces In IEEE INFOCOM 2003 Twenty- second Annual Joint Conference of the IEEE Computer and Communica-tions Societies (IEEE Cat No.03CH37428) , volume 2, pages 12931303 vol.2, March 2003 [97] Dorit S Hochbaum and Wolfgang Maass Approximation schemes for cov-ering and packing problems in image processing and vlsi Journal of the ACM (JACM), 32(1):130136, 1985 [98] Thomas H Cormen Section 24.3: Dijkstra's algorithm Introduction to algorithms, pages 595601, 2001 [99] Dorit S Hochbaum and Wolfgang Maass Approximation schemes for covering and packing problems in image processing and vlsi J ACM, 32 (1):130136, January 1985 ISSN 0004-5411 [100] James MacQueen et al Some methods for classification and analysis of multivariate observations In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability , volume 1, pages 281297 Oak-land, CA, USA., 1967 [101] S Lloyd Least squares quantization in pcm IEEE Transactions on In-formation Theory, 28(2):129137, March 1982 [102] K Buchin and W Mulzer Delaunay triangulations in o(sort(n)) time and more In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 139148, Oct 2009 [103] J B Kruskal On the Shortest Spanning Subtree of a Graph and the Traveling Salesman Problem In Proceedings of the American Mathematical Society, 7, 1956 148 ... tẵch bao ph ca hai giÊi thu c¡c k‡ch b£n 1,3 v PhƯn trôm diằn tẵch bao ph ca kch bÊn PhƯn trôm diằn tẵch bao ph ca kch bÊn PhƯn trôm diằn tẵch bao ph ca kch bÊn PhƯn trôm diằn tẵch bao. .. toĂn bao ph mÔng cÊm bián khấng dƠy CĂc yáu tậ Ênh h ng án vĐn ã bao ph ca mÔng cÊm bián khấng dƠy CĂc giÊi thuêt metaheuristic C¡c nghi¶n c˘u li¶n quan b i to¡n tËi ˜u h‚a bao phı di»n t½ch v bao. .. Ăn têp trung nghiản cu hai mấ hẳnh b i to¡n bao phı di»n t½ch v b i to¡n bao phı Ëi t˜Òng B i to¡n bao phı diằn tẵch: Cho án nôm 2011, nhc án b i toĂn bao ph diằn tẵch mÔng cÊm bián khấng dƠy,

Ngày đăng: 25/11/2019, 14:54

TỪ KHÓA LIÊN QUAN

w