1. Trang chủ
  2. » Giáo án - Bài giảng

19 1 21 master method proof tủ tài liệu training pdf

19 52 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 2,37 MB

Nội dung

Master Method Proof (Part 1) Design and Analysis of Algorithms I The Master Method Assume : recurrence is I ( For some constant c ti II And n is a power of b (general case is similar, but more tedious ti Idea : generalize MergeSort analysis (i.e., use a recursion tree ti Nextcore AI Gopal Shangari THE RECURSION TREE Level Level Level logbn a braches Base cases (size 1ti Work at a Single Level Total work at level j [ignoring work in recursive calls] Total Work Summing over all levels j = 0,1,2,…, logbn : Total work Design and Analysis of Algorithms I Master Method Intui3on for the Cases Nextcore AI Gopal Shangari HOW TO THINK ABOUT (*) Interpreta3on a = rate of subproblem prolifera3on (RSP) bd = rate of work shrinkage (RWS) (per subproblem) Nextcore AI Gopal Shangari Which of the following statements are true? (Check all that apply.ti INTUITION FOR THE CASES RSP = RWS => Same amount of work each level (like [expect Merge dlog(nti] RSP < RWS => less work eachO(n level => most work at the Sortti [might expect root dti] => most work at O(n RSP > RWS => more work each level the leaves [might expect O(# leavesti] Nextcore AI - Gopal Shangari Master Method Proof (Part II) Design and Analysis of Algorithms I THE STORY SO FAR/CASE = for all j =1 = (logbn + 1) [ end Case ] Nextcore AI Gopal Shangari Basic Sums Fact For , we have Proof : by induction (you check) Upshot: If r

Ngày đăng: 17/11/2019, 07:34