1. Trang chủ
  2. » Giáo Dục - Đào Tạo

Question bank MOD indefinite integration 389 kho tài liệu bách khoa

15 57 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 15
Dung lượng 527,98 KB

Nội dung

Q.1 If y = tan n e2 x + tan n ex (A) Q.2 d 2y nx then = dx nx 1 (B) (C) (D) u ( x) u' ( x) u(x) = If = p and v ' ( x ) v( x ) v( x ) Let u(x) and v(x) are differentiable functions such that p q has the value equal to p q (A) (B) ' = q, then Q.3 f ' (x ) f ' ' (x) Suppose (C) (D) – f ( x) = where f (x) is continuously differentiable function with f '(x) f ' (x) and satisfies f (0) = and f ' (0) = then f (x) is (B) 2ex – (C) e2x (A) x2 + 2x + Q.4 (A) & f (x) = tan x2 then If x = t3 tan x2 sin t 3t2 3t2 (C) 3x tan 5x (5x 6)2 (D) none d 2y + t + & y = sin t then = dx (A) 3t2 3t2 t cos t 1 sin t t cos t 1 sin t (B) (D) Let g is the inverse function of f & f (x) = (A) 10 Q.7 dy = dx (B) tan x tan x 3t2 Q.6 tan x3 (C) f Q.5 3x 5x If y = f (D) 4ex/2 – (B) 3t2 x2 If g(2) = a then g (2) is equal to a 10 (C) a2 a2 a 10 cos t 3t2 x10 t cos t (D) a 10 a2 cot (e x ) dx is equal to : ex (A) ln (e2x + 1) cot (e x ) +x+c ex cot (e x ) 2x (B) ln (e + 1) + +x+c ex (C) ln (e2x + 1) cot (e x ) ex cot (e x ) 2x (D) ln (e + 1) + ex x+c x+c ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.8 If y = (A) Q.9 38 27 is : (C) 27 38 (D) none dx equals : x (1 x ) (A) ln x + ln (1 + x7) + c (B) ln x ln (1 x7) + c (C) ln x ln (1 + x7) + c (D) ln x + ln (1 x7) + c If f (x) = a2 x2 a a2 x2 x where a > and x < a, then f ' (0) has the value equal to a x (B) a a (C) a Suppose that f (0) = and f ' (0) = 2, and let g (x) = f to (A) (B) (C) xdx Q.13 x2 (A) ln (C) Q.14 38 27 (B) x7 (A) Q.12 d 2y at x = dx cos x (cos x )1 (cos 3x )1 is not defined at x = If f (x) is continuous The function f (x) = x2 at x = then f (0) equals (A) (B) (C) (D) – Q.10 Q.11 then If (1 x ) (D) a x f f ( x ) The value of g ' (0) is equal (D) is equal to : x2 + c (B) 1 x2 + c x2 + c (D) none of these x a = b cot–1(b ln y), b > then, value of yy'' + yy' ln y equals (A) y' (B) y' (C) (D) ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.15 (A) P Q.16 (x) + P (x) (B) P (x) P Q.18 (x) If f (x) = x (A) Let f(x) = g (x) cos x1 if x 0 if x equals (D) a constant (D) none where g(x) is an even function differentiable at x = 0, passing (C) is equal to (D) does not exist cos x sin x x dx = ln f ( x ) + g(x) + C where C is the constant of integration and f (x) e x sin x x is positive, then f (x) + g (x) has the value equal to (B) ex + sin x (C) ex – sin x (D) ex + sin x + x (A) ex + sin x + 2x If Q.20 3x2 Let f (x) = x 2x 5x (A) is equal to If y = (A) 1 x n m x for x for x p m emnp + (B) 1 x m n emn/p : then f (B) is equal to 27 x p n (C) is equal to 27 + 1 x (C) m p x n p then enp/m (D) does not exist np dy at e m is equal to: dx (D) none f f x2 x 2 x (C) 10 If f is differentiable in (0, 6) & f (4) = then Limit (A) Q.23 (x) & g (x) = f [ f (x)] then for x > 20, g (x) = (B) (C) Q.19 Q.22 (C) P (x) P d 2y dx 3x w.r.t x If F(10) = 60 then the value of F(13), is x (B) 132 (C) 248 (D) 264 through the origin Then f (0) (A) is equal to (B) is equal to Q.21 y3 Let F(x) be the primitive of (A) 66 Q.17 d dx If y2 = P(x), is a polynomial of degree 3, then Integral of (A) ln cos (C) (B) 5/4 (D) 20 2cotx(cotx cos ecx ) w.r.t x is : x +c x ln cos + c 2 (B) ln sin (D) ln sin x x +c ln(cosec x cot x) + c ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.24 cos x sin x cos x Let f(x) = cos 2x sin 2x cos 2x then f cos 3x sin 3x cos 3x (A) Q.25 (B) – 12 (C) f (x h) f (x) where f (x) means [f(x)]2 If f(x) = x lnx then h D * f (x ) x e has the value (A) e (B) 2e x (A) (C) x ln x x ln2 x x2 x2 x + c (B) x ln2 x x2 x + x If (x) = x sin x then Limit x /2 (A) Q.28 (D) 8e dx equals : x2 (C) 4e x2 ln x Q.27 (D) 12 People living at Mars, instead of the usual definition of derivative D f(x), define a new kind of derivative, D*f(x) by the formula D*f(x) = Limit h Q.26 = +c (x) (D) x x ln x x +c x2 x2 +x+c = (B) (C) (D) none Let f (x) = x + sin x Suppose g denotes the inverse function of f The value of g' has the value equal to (A) Q.29 2 (B) (C) (D) 2 A differentiable function satisfies 3f 2(x) f '(x) = 2x Given f (2) = then the value of f (3) is (A) Q.30 24 If y = x + ex then (A) ex (B) (C) 6 (D) d 2x is : dy (B) ex e x (C) ex e x (D) 1 ex ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.31 Primitive of f (x) = x ·2ln ( x (A) (C) Q.32 ln ( x w.r.t x is 2( x 1) ( x 1) 2ln ( x (B) ln +C ( x 1) ln +C 2(ln 1) Let y = ln (1 + cos x)2 f (x) g (x) f (x ) 1) +C d2y then the value of + y / equals e dx (B) cos x 2 ( x 1) ln +C 2(ln 1) (D) (C) (1 cos x ) Let g (x) be an antiderivative for f (x) Then ln (A) Q.34 1) 1) (A) Q.33 g( x ) f (x) g (x) (B) g (x) (D) (1 cos x ) is an antiderivative for f (x ) (C) If f is twice differentiable such that f (x ) f (x), f (x) h (x) f (x ) h (0 ) then the equation y = h(x) represents : (A) a curve of degree (C) a straight line with slope 2 g(x) g(x ) , h (1) (D) none f (x ) and (B) a curve passing through the origin (D) a straight line with y intercept equal to Q.35 If f(x) is a twice differentiable function, then between two consecutive roots of the equation f (x) = 0, there exists : (A) atleast one root of f(x) = (B) atmost one root of f(x) = (C) exactly one root of f(x) = (D) atmost one root of f (x) = Q.36 A function y = f (x) satisfies f "(x) = – f x – sin( x) ; f '(2) = + is (A) ln (B) (C) – ln cos Q.37 Let a, b, c are non zero constant number then Lim r (A) and f (1)=0 The value of a2 b2 c2 2bc (B) c2 a b2 2bc (C) b2 (D) – ln a b c cos cos r r r equals b c sin sin r r c2 a 2bc (D) independent of a, b and c ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.38 Q.39 cos3 x cos5 x dx sin x sin x (A) sin x (C) sin x tan (sin x) + c (sin x) tan (sin x) + c If f (x) = + x 2 x + x 2 x , then the value of 10 f ' (102 ) (B) is (C) is (D) does not exist (A) is – Q.40 Which one of the following is TRUE dx x (A) x (C) Q.41 (B) x tan x C (D) dx x x ln | x | cos x dx cos x Cx x C cos 1 cos x sin x 13 (B) sin cos x sin x 13 (C) 10 w.r.t x at x is (D) Let f (x) be a polynomial function of second degree If f (1) = f (–1) and a, b, c are in A.P., then f '(a), f '(b) and f '(c) are in (A) G.P (B) H.P (C) A.G.P (D) A.P (2x 1) dx ( x 4x 1)3 / 2 (A) (C) Q.44 C The derivative of the function, (A) Q.43 x ln | x | cos x dx cos x f x Q.42 sin x + c (sin x) + tan (sin x) + c (B) sin x (D) sin x (x (x x3 4x 1)1 / C (B) x2 x 1)1 / C (D) y If x2 + y2 = R2 (R > 0) then k = (A) – R2 (B) – R y (x (x x 4x 1)1/ C 4x 1)1 / C where k in terms of R alone is equal to (C) R (D) – R2 ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.45 sin(101x ) ·sin 99 x dx equals sin(100 x )(sin x )100 (A) +C 100 (C) cos(100 x )(sin x )100 (B) +C 100 cos(100 x )(cos x )100 +C 100 (D) sin(100 x )(sin x )101 +C 101 Q.46 If f & g are differentiable functions such that g (a) = & g(a) = b and if fog is an identity function then f (b) has the value equal to : (A) 2/3 (B) (C) (D) 1/2 Q.47 Given f(x) = x3 + x2 sin 1.5 a x sin a sin 2a (A) f(x) is not defined at x = sin (C) f (x) is not defined at x = sin Q.48 Q.49 Given: f(x) = 4x3 Q.51 If y = (A + Bx) emx + (m 1) (A) ex (B) emx If In = (sin x ) n dx n N Q.52 xp d 2y then dx product ab is equal to (A) 25 (B) 2m (C) e n 2a a2 xp xp q C then dy + m2y is equal to : dx mx (D) e(1 m) x (B) sin2x · cos2x + C sin 2x [cos22x + – cos2x] + C Suppose f (x) = eax + ebx, where a q C (D) (B) f (1/2) < (D) f (1/2) > Then I4 – I6 is equal to (A) sin x · (cos x)5 + C (C) xq 6x2 cos 2a + 3x sin 2a sin 6a + ex 8a + 17) then : (B) f (sin 8) > (D) f (sin 8) < P X p 2q q x q dx is The evaluation of X p q 2x p q xq xp C C (B) p q (A) – p q (C) x x (A) f(x) is not defined at x = 1/2 (C) f (x) is not defined at x = 1/2 Q.50 arc sin (a2 (D) sin 2x [cos22x + + cos2x ] + C b, and that f '' (x) – f ' (x) – 15 f (x) = for all x Then the (C) – 15 (D) – ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.53 Let h (x) be differentiable for all x and let f (x) = (kx + ex) h(x) where k is some constant If h (0) = 5, h ' (0) = – and f ' (0) = 18 then the value of k is equal to (A) (B) (C) (D) 2.2 Q.54 e tan x (1 x ) (A) e tan x tan (C) e 1x sec 1 x2 tan x sec cos 1 x2 x2 dx e tan 1x tan (D) e 1x (B) C x2 C (x > 0) tan x 2 cos ec C x2 C Q.55 Let f(x) = xn , n being a non-negative integer The number of values of n for which f (p + q) = f (p) + f (q) is valid for all p, q > is : (A) (B) (C) (D) none of these Q.56 Let ef(x) = ln x If g(x) is the inverse function of f(x) then g (x) equals to : (A) ex Q.57 ( x 1) dx x2 ( x 3x 1) tan x (A) ln x Q.58 x (C) e = ln | f (x) | + C (B) tan–1 x x (x ex ) (D) e(x + ln x) then f (x) is (C) cot–1 x x (D) ln tan x x A non zero polynomial with real coefficients has the property that f (x) = f ' (x) · f ''(x) The leading coefficient of f (x) is (A) Q.59 (B) ex + x Let f (x) = (B) (C) 12 (D) 18 sin x cos x ( sin x 1) + then sin x cos x e x f ( x ) f ' ( x ) dx where c is the constant of integeration) (A) ex tanx + c Q.60 (B) excotx + c (C) ex cosec2x + c (D) exsec2x + c The function f(x) = ex + x, being differentiable and one to one, has a differentiable inverse d –1 f–1(x) The value of (f ) at the point f(l n2) is dx (A) n2 (B) (C) (D) none ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.61 The ends A and B of a rod of l ength are sliding along the curve y = 2x2 Let xA and xB be the dx B x-coordinate of the ends At the moment when A is at (0, 0) and B is at (1, 2) the derivative has the dx A value(s) equal to (A) 1/3 (B) 1/5 (C) 1/8 (D) 1/9 Q.62 If y = (A) Q.63 (a x) a x (b x ) x b a x x x b (a b) (B) (a x) (x b) 2x then dy wherever it is defined is equal to : dx (a b) (a x) (x b) (a b ) (C) (D) (a x) (x b) 2x (a b) (a x) (x b) cotn x d x , then I0 + I1 + (I2 + I3 + + I8) + I9 + I10 equals to : If In = (where u = cot x) u2 (A) u + (C) Q.64 u u9 u2 2! u9 9! (D) u u2 2u u9 9u 10 dy is dx (D) non existent For the curve represented implicitly as 3x – 2y = 1, the value of Lim x d x dy If dy dx (B) equal to (A) + (C) equal to log23 d 2y = K then the value of K is equal to dx (B) –1 (C) e Q.66 (B) (A) equal to Q.65 u x2 if x if x (D) Let y = f(x) = Then which of the following can best represent the graph of y = f(x)? (A) Q.67 (B) Let f (x) = sin3x + sin3 x (C) + sin3 x sin 3x cos 3x C (B) – 4 where C is an arbitrary constant (A) – C (C) (D) then the primitive of f (x) w.r.t x is sin 3x C (D) cos 3x C ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors 10 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.68 (A) Q.69 Q.70 n x (B) The integral cot x e (A) tan x e sin x +C cos x (C) e sin x sin x m n n m n n m m x (C) – w.r.t x is x mn (D) cos x dx equals (B) 2e +C (D) (B) 24 a (ax + b)2 sin x +C cot x e sin x +C cos x If y = at2 + 2bt + c and t = ax2 + 2bx + c, then (A) 24 a2 (at + b) d 3y equals dx (C) 24 a (at + b)2 (D) 24 a2 (ax + b) x (1 ln x ) dx equals ln x x Q.71 x (A) ln ln x Limit x ln ln x x ln x x ln ln x x (C) Q.72 x Differential coefficient of m m n (A) x x a b a arc tan tan x a C ln x x C b arc tan x b (B) ln x x (B) ln ln x x tan ln x x (D) ln ln x x tan 1 ln x x C ln x x C has the value equal to (C) (a b ) 6a b (D) a b2 3a b2 (2 x 3) dx = C– where f (x) is of the form of ax2 + bx + c then x ( x 1)( x 2)(x 3) f (x) (a + b + c) equals (A) (B) (C) (D) none Q.73 If Q.74 Suppose A = dy dy of x2 + y2 = at ( , ), B = of sin y + sin x = sin x · sin y at ( , ) and dx dx dy of 2exy + ex ey – ex – ey = exy + at (1, 1), then (A + B + C) has the value equal to dx (A) – (B) e (C) – (D) C= ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors 11 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) t dy dy x Q.75 A function is represented parametrically by the equations x = ; y = then dx dx t t 2t has the value equal to (A) (B) (C) –1 (D) –2 Q.76 Suppose A = x2 If 12(A + B) = (A) dx and B = 6x 25 x2 dx 6x 27 x x + ! · ln + C, then the value of ( + !) is x (B) (C) (D) · tan–1 Q.77 Suppose the function f (x) – f (2x) has the derivative at x = and derivative at x = The derivative of the function f (x) – f (4x) at x = 1, has the value equal to (A) 19 (B) (C) 17 (D) 14 Q.78 If x + y = 3e2 then D(xy) vanishes when x equals to (A) e (B) e2 (C) ee Q.79 dx Let x 2008 where p, q, r (A) 6024 Q.80 Q.82 N and need not be distinct, then the value of (p + q + r) equals (B) 6022 (C) 6021 (D) 6020 " (B) " (C) " d2y The value of at the point where t = is dx (A) (B) (C) – If F (t) = ( x y) dt then the value of F (A) Q.83 +C A curve is represented parametrically by the equations x = et cos t and y = et sin t where t is a parameter Then The relation between the parameter 't' and the angle " between the tangent to the given curve and the x-axis is given by, 't' equals (A) Q.81 xq = p ln xr x (D) 2e2 (B) – (D) " (D) – F (0) is (C) e /2 (D) Consider the following statements Statement-1: f (x) = x ex and g (x) = ex(x + 1) are both aperiodic function because ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors 12 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Statement-2: Derivative of a differentiable aperiodic function is an aperiodic function (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1 (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1 (C) Statement-1 is true, statement-2 is false (D) Statement-1 is false, statement-2 is true x Q.84 Statement-1: The function F (x) = ( x 1)( x 1) dx is discontinuous at x = because Statement-2: If F (x) = f ( x ) dx and f (x) is discontinuous at x = a then F (x) is also discontinuous at x = a (A) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1 (B) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1 (C) Statement-1 is true, statement-2 is false (D) Statement-1 is false, statement-2 is true Q.85 If y x y x = c (where c 2x (A) c Q.86 0), then dy has the value equal to dx x (B) y2 x y If y = tan x tan 2x tan 3x then (C) y y2 x x2 c2 (D) 2y dy has the value equal to dx (A) sec2 3x tan x tan 2x + sec2 x tan 2x tan 3x + sec2 2x tan 3x tan x (B) 2y (cosec 2x + cosec 4x + cosec 6x) (C) sec2 3x sec2 2x sec2 x (D) sec2 x + sec2 2x + sec2 3x Q.87 n (tan x ) dx equal: sin x cos x (B) ln (sin x sec x) + c (D) (A) ln2 (cot x) + c (C) Q.88 If 2x + 2y = 2x + y then (A) 2y 2x ln (sec x) + c 2 ln (cos x cosec x) + c dy has the value equal to dx (B) 1 2x (C) 2y 2x (D) y 2x 2y ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors 13 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.89 For the function y = f (x) = (x2 + bx + c)ex, which of the following holds? (A) if f (x) > for all real x # $ f ' (x) > (B) if f (x) > for all real x # f ' (x) > (C) if f ' (x) > for all real x # f (x) > (D) if f ' (x) > for all real x # $ f (x) > Q.90 If eu sin 2x dx can be found in terms of known functions of x then u can be: (A) x (B) sin x (C) cos x (D) cos 2x Q.91 Let f (x) = x x x 1 x then (A) f (10) = (C) domain of f (x) is x % Q.92 Let f (x) = 3x2 sin x x cos (B) f (3/2) = (D) none , if x x ; f(0) = and f(1/ ) = then : (A) f(x) is continuous at x = (C) f (x) is continuous at x = Q.93 If y = x ( nx ) (A) nx (C) Q.94 Q.95 n( nx ) dy is equal to : dx nx n nx (B) f(x) is non derivable at x = (D) f (x) is non derivable at x = , then nx y ((ln x)2 + ln (ln x)) x nx (B) (D) (ln x)ln (ln x) (2 ln (ln x) + 1) y ny (2 ln (ln x) + 1) x nx Which of the following functions are not derivable at x = 0? (A) f (x) = sin–12x (C) h (x) = sin–1 x2 x2 x2 (B) g (x) = sin–1 2x 1 4x (D) k (x) = sin–1(cos x) sin x sin x cos x cos x dx and K = dx If C is an arbitrary constant of Suppose J = sin x cos x sin x cos x integration then which of the following is/are correct? (A) J = (x – sin x + cos x) + C (C) J = x – K + C (B) J = K – (sin x + cos x) + C (D) K = (x – sin x + cos x) + C ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors 14 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005) Q.1 C Q.2 A Q.3 C Q.4 B Q.5 A Q.6 B Q.7 C Q.8 A Q.9 B Q.10 C Q.11 D Q.12 C Q.13 B Q.14 B Q.15 C Q.16 B Q.17 A Q.18 B Q.19 B Q.20 B Q.21 D Q.22 D Q.23 B Q.24 C Q.25 C Q.26 A Q.27 A Q.28 C Q.29 B Q.30 B Q.31 C Q.32 A Q.33 B Q.34 C Q.35 B Q.36 D Q.37 C Q.38 C Q.39 C Q.40 B Q.41 C Q.42 D Q.43 B Q.44 B Q.45 A Q.46 D Q.47 D Q.48 C Q.49 D Q.50 A Q.51 C Q.52 C Q.53 C Q.54 C Q.55 C Q.56 C Q.57 B Q.58 D Q.59 A Q.60 B Q.61 D Q.62 B Q.63 B Q.64 C Q.65 D Q.66 C Q.67 D Q.68 B Q.69 B Q.70 D Q.71 B Q.72 D Q.73 B Q.74 C Q.75 C Q.76 B Q.77 A Q.78 B Q.79 C Q.80 C Q.81 B Q.82 C Q.83 C Q.84 C Q.85 A, B, C Q.86 A, B, C Q.87 A, C, D Q.88 A, B, C, D Q.89 A, C Q.90 A, B, C, D Q.91 A, B Q.92 A, C, D Q.93 B, D Q.94 B, C, D Q.95 B, C ETOOS Academy Pvt Ltd : F-106, Road No 2, Indraprastha Industrial Area, End of Evergreen Motors 15 (Mahindra Showroom), BSNL Office Lane, Jhalawar Road, Kota, Rajasthan (324005)

Ngày đăng: 16/11/2019, 20:59