Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 46 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
46
Dung lượng
859 KB
Nội dung
Sở giáo dục và đào tạo Kỳ thi chọn học sinh giỏi lớp 12 BTTH Thanh Hoá Giải toán bằng máy tính CASIO năm học 2006-2007 Thời gian làm bài : 150 phút Đề Chính thức Đáp án Đề A Điểm của bài thi Các giám khảo (Họ và tên, chữ ký) Số phách Bằng số 1. Bằng chữ 2. Chú ý : 1.) Nếu không nói gì thêm, hãy tính chính xác đến 6 chữ số thập phân 2.) Chỉ ghi kết quả vào ô kết quả và không đợc có thêm ký hiệu gì khác. Đề bài Kết quả Bài 1. (2 điểm) Tính gần đúng các nghiệm của phơng trình : 2 x = 2x + 3 x 1 - 1,296434 (1đ) x 2 3,247023 (1đ) Bài 2. (2 điểm) Tính Q = - 2 2 2 2 2 4 2 2 2 3 5 4 7 2 3 4 a b a bc a c a c a bc b c + + với a = 0,325; b = 3,123; c = 0,231 Q 24,977358 (2đ) Bài 3. (2 điểm) Tính gần đúng diện tích và chu vi của đa giác đều 70 cạnh nội tiếp đờng tròn đơn vị. C 6,281076 (1đ) S 3,137376 (1đ) Bài 4. (2 điểm) Tính nghiệm gần đúng của phơng trình: 3cos2x + 4sin2x - 2 = 0 x 1 59 0 46'33"+k180 0 (1đ) x 2 -6 0 38'45"+k180 0 (1đ) Bài 5. (2 điểm) Tính gần đúng toạ độ giao điểm của đờng thẳng x - 2y - 3 = 0 và đờng tròn x 2 + y 2 = 4 (1,926650; - 0,536675) (1đ) (- 0,726625; -1,863325) (1đ) Bài 6. (2 điểm) Giải phơng trình: 2 3 1 6 3 7 15 11 ( ) 3 5 3 2 4 3 2 3 5 x x + = + x - 1,449181 (2đ) Bài 7. (2 điểm) Tính gần đúng diện tích tam giác ABC có cạnh AB = 5, A = 84 0 13'38", B = 34 0 51'33" S 8,134091 (1đ) Đáp án Đề A 1 Bài 8. (2 điểm) Cho tam giác ABC có các đỉnh A(1; 3), B(-5; 2), C(5; 5) a) Tính giá trị gần đúng độ dài ba cạnh của tam giác b) Tính gần đúng (độ, phút, giây) số đo của góc A. a)AB 6,082763(0,5đ) BC 10,440307(0,5đ) CA 4,472136(0,5đ) b)A 162 0 53'50"(0,5đ) Bài 9. (2 điểm) Cho hàm số y = 2 2 3 2 3 x x x + Tính gần đúng giá trị cực đại, giá trị cực tiểu của hàm số. CĐ - 0,380832 (1đ) CT 18,380832 (1đ) Bài 10. (2 điểm) Xác định tâm và tính bán kính đờng tròn tiếp xúc với đ- ờng thẳng y = x - 1 và cả hai nhánh của y = 1 x . I 1 ( a; - a) với a 2,581139 (0,5đ) I 2 (b; - b) với b - 0,581139 (0,5đ) R 1 1,528961 (0,5đ) R 2 2,943175 (0,5đ) --------------------- Hết ------------------------ 2 Sở giáo dục và đào tạo Kỳ thi chọn học sinh giỏi lớp 12 BTTH Thanh Hoá Giải toán bằng máy tính CASIO năm học 2006 -2007 Thời gian làm bài : 150 phút Đề Chính thức Đáp án Đề B Điểm của bài thi Các giám khảo (Họ và tên, chữ ký) Số phách Bằng số 1. Bằng chữ 2. Chú ý : 1.) Nếu không nói gì thêm, hãy tính chính xác đến 6 chữ số thập phân 2.) Chỉ ghi kết quả vào ô kết quả và không đợc có thêm ký hiệu gì khác. Đề bài Kết quả Bài 1. (2 điểm) Tính gần đúng các nghiệm của phơng trình : 2 x = 2x + 7 x 1 -3,454386 (1đ) x 2 3,884500 (1đ) Bài 2. (2 điểm) Tính P = - 2 2 2 2 2 4 2 2 2 3 5 4 7 2 3 4 a b a bc a c a c a bc b c + + với a = 0,235; b = 3,321; c = 0,213 P 10,549357 (2đ) Bài 3. (2 điểm) Tính gần đúng diện tích và chu vi của đa giác đều 60 cạnh nội tiếp đờng tròn đơn vị. C 6,280315 (1đ) S 3,135854 (1đ) Bài 4. (2 điểm) Tính nghiệm gần đúng của phơng trình: 3cos3x + 4sin3x - 2 = 0 x 1 39 0 51'2"+k120 0 (1đ) x 2 - 4 0 25'50"+k120 0 (1đ) Bài 5. (2 điểm) Tính gần đúng toạ độ giao điểm của đờng thẳng 3x - y + 5 = 0 và đờng tròn x 2 + y 2 = 4 (- 1,112702; 1,661895) (1đ) (- 1,887298; - 0,661895) (1đ) Bài 6. (2 điểm) Giải phơng trình: 2 5 1 6 3 7 15 11 ( ) 3 2 3 2 4 3 2 3 5 x x + = + x - 2,518827 (2đ) Bài 7. (2 điểm) Tính gần đúng diện tích tam giác ABC có cạnh AB = 7, A = 84 0 13'38", B = 34 0 51'33" S 15,942819 (2đ) 3 Đáp án Đề B Bài 8. (2 điểm) Cho tam giác ABC có các đỉnh A(1; 5), B(-5; 2), C(7; 1) a) Tính giá trị gần đúng độ dài ba cạnh của tam giác b) Tính gần đúng (độ, phút, giây) số đo của góc A. a)AB 6,708204 (0,5đ) BC 12,041595 (0,5đ) CA 7,211103 (0,5đ) b)A 119 0 44'42" (0,5đ) Bài 9. (2 điểm) Cho hàm số y = 2 2 3 1 3 x x x + Tính gần đúng giá trị cực đại, giá trị cực tiểu của hàm số CĐ 0,055728 (1đ) CT 17,944272 (1đ) Bài 10. (2 điểm) Xác định tâm và tính bán kính đờng tròn tiếp xúc với đ- ờng thẳng y = x + 1 và cả hai nhánh của y = 1 x . I 1 (a; - a) với a 0,581139 (0,5đ) I 2 (b; - b) với b - 2,581139 (0,5đ) R 1 1,528961 (0,5đ) R 2 2,943175 (0,5đ) 4 Sở giáo dục và đào tạo Kỳ thi chọn đội tuyển hsg lớp 12 BTTH Thanh Hoá Giải toán bằng máy tính CASIO năm học 2006 -2007 Thời gian làm bài : 150 phút Đề Chính thức Hớng dẫn chấm và biểu điểm Điểm của bài thi Các giám khảo (Họ và tên, chữ ký) Số phách Bằng số 1. Bằng chữ 2. Chú ý : Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân Đề bài Kết quả Bài 1. (5 điểm) Tính gần đúng nghiệm của phơng trình 2 x = 5x + 3 x 1 - 0,45400 (2,5đ) x 2 4,73831 (2,5đ) Bài 2. (5 điểm) Tìm nghiệm của phơng trình sau : 3cos3x - 4x + 2 = 0 x 0,51634 (5đ) Bài 3. (5 điểm) Cho hàm số y = x 3 - 2x 2 + x + 4 Tính gần đúng khoảng cách giữa hai điểm cực đại và cực tiểu của hàm số. 0,68293 (5đ) Bài 4. (5 điểm) Tính gần đúng diện tích hình tròn ngoại tiếp tam giác có đỉnh A(1; 2), B(3; -2), C(4; 5) S 43,63323 (5đ) Bài 5. (5 điểm) Tính gần đúng giới hạn của dãy số có số hạng tổng quát là U n = ] sin 1 sin(1 .sin1) n 1 4 4 4 2 4 4 4 3 U n 0,48903 (5đ) Bài 6. (5 điểm) Cho (E) 2 2 1 9 4 x y + = ; (d) 2 x - 3 y = 0 và (d') 3 x+ 2 y = 0 1) Xác định các giao điểm M, N của (d) với (E) và giao điểm P, Q của (d') với (E) 2) Tính diện tích tứ giác MPNQ. 1) M(1,89737; 1,54919) N(-1,89737; - 1,54919) P( 1,43427; - 1,75662) Q(- 1,43427; 1,75662) (2,5đ) 2) S 11,10984 (2,5đ) Bài 7. (5 điểm) Cho tứ giác ABCD có diện tích bằng 852,845 cm 2 và AB + AC + CD = 82,6 cm. Tính độ dài hai đờng chéo AC và BD. AC = 41,3 cm (2,5đ) BD 58,40702 cm (2,5đ) 5 Bài 8. (5 điểm) Một ngời gửi tiền tiết kiệm 1000 USD vào ngân hàng trong khoảng thời gian là 10 năm với lãi suất 5% năm. Ngời đó nhận đợc số tiền nhiều hơn hay ít hơn bao nhiêu nếu ngân hàng trả lãi suất 5 % 12 một tháng. Nhiều hơn: 18,11487 (5đ) Bài 9. (5 điểm) Cho tam giác đều ABC nội tiếp đờng tròn (O; R). Quay tam giác ABC quanh tâm O một góc 90 0 , ta đợc tam giác A 1 B 1 C 1 . Tính giá trị gần đúng diện tích phần chung của hai tam giác khi biết R = 5,467 cm. S 28,42243 cm 2 (5đ) Bài 10 (5 điểm) Tính gần đúng diện tính của phần tô đậm trong hình tròn đơn vị (nh hình vẽ) S 1,07685 đvdt (5đ) ------------------Hết---------------- 6 Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi lớp 12 thpt Thanh hoá giảI toán bằng máy tính casio Năm học 2006 - 2007 Đề bài Kết quả Bài 1 (2 điểm) Tính giá trị của hàm số 2 1 6 28 28 6 x x x y + + = tại x = 2007 y 21,97853 (2 điểm) Bài 2 (2 điểm) Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số: ( ) cos2 5 sin 3f x x x= + + maxf(x) 3,35705 (1 điểm) minf(x) -1,50402 (1 điểm) Bài 3 (2 điểm) Tìm nghiệm gần đúng của phơng trình 3 x = x + 4sinx x 1 1,56189 (1 điểm) x 2 0,27249 (1 điểm) Bài 4 (2 điểm) Cho dãy số { } n a đợc xác định theo công thức: a 1 = 1, a 2 = 2, a n+2 = 5a n+1 + 3a n với mọi n nguyên dơng. Hãy tính giá trị của a 15 a 15 = 10755272317 (2 điểm) Bài 5 (2 điểm) Cho tấm bìa hình chữ nhật có cạnh là a và b (với b < a). Tính giá trị gần đúng của cạnh hình vuông mà ta cắt bỏ từ bốn góc của tấm bìa để tạo nên một hình hộp chữ nhật không có nắp có thể tích lớn nhất khi biết a = 7 cm, b = 5 cm. 2 2 1 ( ) 6 x a b a b ab= + + x 0,95917 cm (2 điểm) Bài 6 (2 điểm) Trên đoạn thẳng AB lấy hai điểm C và D sao cho C thuộc đoạn AD. M là một điểm ngoài AB sao cho ã ã 2 AMD CMB = = và ã 5 13 CMD = . Giả sử diện tích các tam giác AMD và BMC lần lợt là 1,945 và 2,912. Tính diện tích tam giác ABM. S 3,40111 (2 điểm) Bài 7 (2 điểm) Cho hình tứ diện S.ABC có ABC là tam giác đều cạnh bằng a, SA vuông góc với mặt phẳng (ABC) và SA = 2a. Gọi là mặt phẳng qua B và vuông góc với SC. Tính gần đúng giá trị diện tích của thiết diện đợc tạo ra khi cắt tứ diện bởi mặt phẳng và a = 5 cm. 2 15 20 a S = S 4,84123 cm 2 (2 điểm) 7 Đề A Đáp án Đề bài Kết quả Bài 8 (2 điểm) Cho hàm số y = 2 1 x x (C) Hai tiệm cận của đồ thị (C) cắt nhau tại điểm I. Tìm giá trị gần đúng của hoàng độ điểm M thuộc nhánh phải của đồ thị (C) mà tiếp tuyến tại M vuông góc với đờng thẳng đi qua các điểm I và M. 0 4 1 1 2 x = + x 0 1,84090 (2 điểm) Bài 9 (2 điểm) Cho nửa vòng tròn bán kính R. C là một điểm tuỳ ý trên nửa vòng tròn, OC chia nửa vòng tròn thành hai hình quạt. Trong hai hình quạt nội tiếp hai vòng tròn, gọi M, N là hai tiếp điểm của hai vòng tròn với đờng kính của nửa vòng tròn đã cho. Tìm gần đúng giá trị nhỏ nhất của MN khi R = 28,67 cm. min 2 ( 2 1)MN R= MN min 23,75101 cm (2 điểm) Bài 10 (2 điểm) Cho góc tam diện vuông Oxyz đỉnh O. Lấy A, B, C lần lợt trên Ox, Oy, Oz sao cho: OA + OB + OC + AB + AC + BC = l (l là một lợng dơng cho trớc). Gọi V là thể tích tứ diện OABC. Tính gần đúng giá trị lớn nhất của V khi l = 2,6901 cm. 3 3 ( 2 1) 162 max l V = V max 0,00854 cm 3 (2 điểm) 8 Sở Giáo dục và Đào tạo Kỳ thi chọn học sinh giỏi lớp 12 thpt Thanh hoá giảI toán bằng máy tính casio Năm học 2006 - 2007 Đề bài Kết quả Bài 1 (2 điểm) Tính giá trị của hàm số 2 2 12 12 9 x x x y + + = tại x = 2007 y 2,97536 (2 điểm) Bài 2 (2 điểm) Tính gần đúng giá trị lớn nhất và giá trị nhỏ nhất của hàm số: ( ) cos2 7 sin 4f x x x= + maxf(x) = -0,125 (1 điểm) minf(x) -5,64575 (1 điểm) Bài 3 (2 điểm) Tìm nghiệm gần đúng của phơng trình 3 x = x + 2cosx x 1 0,72654 (1 điểm) x 2 -0,88657 (1 điểm) Bài 4 (2 điểm) Cho dãy số { } n a đợc xác định theo công thức: a 1 = 1, a 2 = 2, a n+2 = 4a n+1 + 3a n với mọi n nguyên dơng. Hãy tính giá trị của a 15 a 15 = 1090820819 (2 điểm) Bài 5 (2 điểm) Cho tấm bìa hình chữ nhật có cạnh là a và b (với b < a). Tính giá trị gần đúng của cạnh hình vuông mà ta cắt bỏ từ bốn góc của tấm bìa để tạo nên một hình hộp chữ nhật không có nắp có thể tích lớn nhất khi biết a = 9 cm, b = 7 cm. 2 2 1 ( ) 6 x a b a b ab= + + x 1,30244 cm (2 điểm) Bài 6 (2 điểm) Trên đoạn thẳng MN lấy hai điểm A và B sao cho A thuộc đoạn MB. E là một điểm ngoài MN sao cho ã ã 2 MEB AEN = = và ã 3 11 AEB = . Giả sử diện tích các tam giác MEB và NEA lần lợt là 1,975 và 2,345. Tính diện tích tam giác MEN. S 3,58139 (2 điểm) Bài 7 (2 điểm) Cho hình tứ diện S.ABC có ABC là tam giác đều cạnh bằng a, SA vuông góc với mặt phẳng (ABC) và SA = 2a. Gọi là mặt phẳng qua B và vuông góc với SC. Tính gần đúng giá trị diện tích của thiết diện đợc tạo ra khi cắt tứ diện bởi mặt phẳng và a = 7 cm. 2 15 20 a S = S 9,48881 cm 2 (2 điểm) 9 Đề B Đáp án Đề bài Kết quả Bài 8 (2 điểm) Cho hàm số 2 2 2 1 x x y x + = Tìm giá trị gần đúng hoành độ của điểm M trên đồ thị của hàm số sao cho khoảng cách từ M đến giao điểm của hai đờng tiệm cận là nhỏ nhất. 4 4 1 1 2 1 1 2 x x = + = x 1 1,84090 (1 điểm) x 2 0,15910 (1 điểm) Bài 9 (2 điểm) Cho nửa vòng tròn bán kính R. C là một điểm tuỳ ý trên nửa vòng tròn, OC chia nửa đờng tròn thành hai hình quạt. Trong hai hình quạt nội tiếp hai vòng tròn, gọi M, N là hai tiếp điểm của hai vòng tròn với đờng kính của nửa vòng tròn đã cho. Tìm gần đúng giá trị nhỏ nhất của MN khi R = 25,1176 cm. min 2 ( 2 1)MN R= MN min 20,80810 cm (2 điểm) Bài 10 (2 điểm) Cho góc tam diện vuông Oxyz đỉnh O. Lấy A, B, C lần lợt trên Ox, Oy, Oz sao cho: OA + OB + OC + AB + AC + BC = l (l là một lợng dơng cho trớc). Gọi V là thể tích tứ diện OABC. Tính gần đúng giá trị lớn nhất của V khi l = 1,7092 cm. 3 3 ( 2 1) 162 max l V = V max 0,00219 cm 3 (2 điểm) 10 [...]... hoá giảI toán bằng máy tính casio Năm học 2005 - 2006 Thời gian 150 phút đề chính thức đề chẵn Các giám khảo (Họ tên, chữ ký) Điểm của toàn bài thi Bằng số 1 Bằng chữ Số phách 2 Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio fx-570MS trở xuống 2 Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân 3 Chỉ ghi kết quả vào ô và không đợc có thêm ký hiệu gì khác Đề bài Kết quả Bài 1 (2 điểm)... btth giảI toán bằng máy tính casio Năm học 2005 - 2006 12 Thời gian 150 phút đề chính thức đề lẻ Các giám khảo (Họ tên, chữ ký) Điểm của toàn bài thi Bằng số 1 Bằng chữ Số phách 2 Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio fx-570MS trở xuống 2 Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân 3 Chỉ ghi kết quả vào ô và không đợc có thêm ký hiệu gì khác Đề bài Kết quả Bài 1 (2 điểm)... thpt giảI toán bằng máy tính casio Năm học 2005 - 2006 14 Thời gian 150 phút đề chính thức đề chẵn Các giám khảo (Họ tên, chữ ký) Điểm của toàn bài thi Bằng số 1 Bằng chữ Số phách 2 Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio fx-570MS trở xuống 2 Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân 3 Chỉ ghi kết quả vào ô và không đợc có thêm ký hiệu gì khác Đề bài Kết quả Bài 1 (2 điểm)... thpt giảI toán bằng máy tính casio Năm học 2005 - 2006 Thời gian 150 phút 16 đề chính thức đề lẻ Các giám khảo (Họ tên, chữ ký) Điểm của toàn bài thi Bằng số 1 Bằng chữ Số phách 2 Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio fx-570MS trở xuống 2 Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân 3 Chỉ ghi kết quả vào ô và không đợc có thêm ký hiệu gì khác Đề bài Kết quả Bài 1 (2 điểm)... thBT Sở Giáo dục và Đào tạo Thanh hoá giảI toán bằng máy tính casio Năm học 2005 - 2006 Thời gian làm bài 150 phút Đáp án Đề chính thức đề lẻ Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio fx-570MS trở xuống 2 Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân 3 Chỉ ghi kết quả vào ô và không đợc có thêm ký hiệu gì khác Đề bài Bài 1 (2 điểm) 3 2 Cho hàm số y = f(x) = x - 3x - 2x + 4... thi chọn học sinh giỏi lớp 12 thpt Sở Giáo dục và Đào tạo Thanh hoá giảI toán bằng máy tính casio Năm học 2005 - 2006 Đáp án Đề chẵn Đề bài Kết quả Bài 1 (2 điểm) Cho hàm số y = x1 = x+2 x2 3 17 2 Tính giá trị gần đúng hoành độ của tất cả những điểm nằm trên đồ thị - 0,56155 (1 điểm) hàm số đã cho và cách đều hai trục toạ độ 3 + 17 x2 = 2 3,56155 (1 điểm) (1 điểm) 0 0 Tìm các nghiệm gần đúng của... tính casio Năm học 2005 - 2006 Thời gian làm bài 150 phút SBD: Họ và tên: Giám thị số 1 Ngày sinh: Lớp: Giám thị số 2 Trờng: Số phách (Chủ tịch HĐ chấm thi ghi) Chủ tịch hội đồng chấm thi cắt phách theo đờng kẻ này đề chính thức đề chẵn Các giám khảo (Họ tên, chữ ký) Điểm của toàn bài thi Bằng số 1 Bằng chữ Số phách 2 Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio. .. Thanh hoá giảI toán bằng máy tính casio Năm học 2005 - 2006 Thời gian làm bài 150 phút Đáp án Đề chính thức đề chẵn Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio fx-570MS trở xuống 2 Nếu không nói gì thêm, hãy tính chính xác đến 5 chữ số thập phân 3 Chỉ ghi kết quả vào ô và không đợc có thêm ký hiệu gì khác Đề bài Kết quả Bài 1 (2 điểm) Tính giá trị các biểu thức A= 5x 2 y 2 4 x 2 yz + 7 x 2 z 4 2x... tính casio Năm học 2005 - 2006 Thời gian làm bài 150 phút 30 Họ và tên: Giám thị số 1 Ngày sinh: Lớp: Giám thị số 2 Trờng: Số phách (Chủ tịch HĐ chấm thi ghi) Chủ tịch hội đồng chấm thi cắt phách theo đờng kẻ này đề chính thức đề lẻ Các giám khảo (Họ tên, chữ ký) Điểm của toàn bài thi Bằng số 1 Bằng chữ Số phách 2 Chú ý: 1 Thí sinh chỉ đợc sử dụng máy tính Casio. .. dục và Đào tạo Kỳ thi chọn học sinh giỏi lớp 12 thpt 18 Thanh hoá giảI toán bằng máy tính casio Năm học 2005 - 2006 Đáp án Đề chẵn Đề bài Kết quả Bài 1 (2 điểm) Cho hàm số y = x1 - 0,56155 (1 điểm) x+2 x2 Tính giá trị gần đúng hoành độ của tất cả những điểm nằm trên đồ thị x2 3,56155 (1 điểm) hàm số đã cho và cách đều hai trục toạ độ (1 điểm) 0 0 Tìm các nghiệm gần đúng của phơng trình 5cosx + 3sinx . BTTH Thanh Hoá Giải toán bằng máy tính CASIO năm học 2006-2007 Thời gian làm bài : 150 phút Đề Chính thức Đáp án Đề A Điểm của bài thi Các giám khảo (Họ. BTTH Thanh Hoá Giải toán bằng máy tính CASIO năm học 2006 -2007 Thời gian làm bài : 150 phút Đề Chính thức Đáp án Đề B Điểm của bài thi Các giám khảo (Họ
nh
gần đúng diện tích hình tròn ngoại tiếp tam giác có đỉnh (Trang 5)
nh
gần đúng diện tính của phần tô đậm trong hình tròn (Trang 6)
ho
tấm bìa hình chữ nhật có cạnh là a và b (với b < a). Tính giá trị gần đúng của cạnh hình vuông mà ta cắt bỏ từ bốn góc của tấm bìa để tạo nên một hình hộp chữ nhật không có nắp có thể tích lớn nhất khi biết a = 7 cm, b = 5 cm (Trang 7)
ho
tấm bìa hình chữ nhật có cạnh là a và b (với b < a). Tính giá trị gần đúng của cạnh hình vuông mà ta cắt bỏ từ bốn góc của tấm bìa để tạo nên một hình hộp chữ nhật không có nắp có thể tích lớn nhất khi biết a = 9 cm, b = 7 cm (Trang 9)
nh
gần đúng diện tích toàn phần của hình chóp S.ABCD. Biết đáy ABCD là hình chữ nhật có các cạnh AB = 6 dm, AD = 43 dm, SA = 8 dm và SA vuông góc với đáy (Trang 11)
nh
gần đúng diện tích toàn phần của hình chóp S.ABCD. Biết đáy ABCD là hình chữ nhật có các cạnh AB = 6 dm, AD = 43 dm, SA = 8 dm và SA vuông góc với đáy (Trang 13)
b.
Tính giá trị gần đúng diện tích hình tròn ngoại tiếp tam giác đó (Trang 15)
b.
Tính giá trị gần đúng diện tích hình tròn ngoại tiếp tam giác đó (Trang 19)
b.
Tính giá trị gần đúng diện tích hình tròn ngoại tiếp tam giác đó (Trang 23)
ho
hình lập phơng ABCD.A'B'C'D' có độ dài cạnh bằng a. Dựng mặt phẳng chứa đờng chéo AC của hình vuông ABCD và đi qua trung điểm M của cạnh B'C' (Trang 28)
ho
hình lập phơng ABCD.A'B'C'D' có độ dài cạnh bằng a. Dựng mặt phẳng chứa đờng chéo AC của hình vuông ABCD và đi qua trung điểm M của cạnh B'C' (Trang 30)
nh
gần đúng diện tích toàn phần của hình chóp S.ABCD biết đáy ABCD là hình chữ nhật có các cạnh AB = 6 dm, AD = 43 dm, SA = 8 dm và vuông góc với đáy (Trang 31)
t
hình vuông và một tam giác đều cùng nội tiếp một đờng tròn đơn vị sao cho một cạnh của tam giác song song với một cạnh của hình vuông (Trang 32)
nh
gần đúng diện tích toàn phần của hình chóp S.ABCD biết đáy ABCD là hình chữ nhật có các cạnh AB = 6 dm, AD = 43 dm, SA = 8 dm và vuông góc với đáy (Trang 33)
t
hình vuông và một tam giác đều cùng nội tiếp một đờng tròn đơn vị sao cho một cạnh của tam giác song song với một cạnh của hình vuông (Trang 34)
nh
gần đúng thể tích hình chóp S.ABCD biết rằng ABCD là hình chữ nhật với AB= 10 cm, AD = 6cm, SA = SB = SC =SD = 12 cm (Trang 35)
ho
hình lập phơng ABCD.A1B1C1D1 cạnh có độ dài là 7 cm, trên đờngthẳng AA1 lấy điểm M, trên đờng thẳng BC lấy điểm N sao cho đờng thẳng qua M, N cắt D1C1 tại điểm I (Trang 36)
rong
mặt phẳng (P) cho hình vuông ABCD có AB= 5cm. Gọ iO là giao điểm của hai - -ờng chéo hình vuông ABCD (Trang 38)
ho
đờng tròn tâm O bán kính R =5 cm. Cho một dây cung AB bằng cạnh hình vuông nội tiếp và một dây cung BC bằng cạnh tam giác đều nội tiếp đờng tròn (O) (Trang 45)