1. Trang chủ
  2. » Luận Văn - Báo Cáo

ĐỒ ÁN TỐT NGHIỆP NGÀNH XÂY DỰNG ( TIẾNG ANH ) part 3

60 148 2

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Đồ án tốt nghiệp ngành kỹ thuật xây dựng dân dụng, được tính toán và trình bày bằng ngôn ngữ: tiếng Anh, có file Auto Cad, Etab, Sap2000 đính kèm. Dành cho sinh viên ngành xây dựng có đề tài tham khảo và hỗ trợ đồ án. chia làm 5 part

GRADUATION THESIS PAGE INSTRUCTOR GRADUATION THESIS PAGE CHAPTER INSTRUCTOR DESIGN FRAMES 1.1 DETERMINE OF FRAME’S INNER FORCE FROM FLOOR 1-15: We have beams arrangement plan floor is shown in Fig 5.1: Fig 5.1 Beams arrangement plan floor 2-15 1.1.1 Premilinary of columns’s size: The building has 15 floors and roof floor with reinforcement concrete B25 So according to “TCVN 198-1997 mục 2.5.4” we change the columns’s size each floors In Axis Frame we have: + Column C9: Transmission area from slabs to C9 column : 7.5  �7.5  7.8 � SC9  ( ) �� � 59.2875 m � � Vertical force from beams to C7 column:   GRADUATION THESIS PAGE INSTRUCTOR G d  n bt b d  h d  h s  L �7.5 �2   7.8 �  1.1�25 �0.3  0.7  0.12  �� � 73.69 kN � � We have size of column C7 at floor 13 - 15: nt Ac  k � Si q si  G d  i 1 bR b  1.1 �3 � 59.2875 �8.19  73.69  �10  141420 mm 0.9 �14.5 �10 = > we choose the columns’s size of column C7 at floor 13-15 is 400x400 (mm) With: nt: amount of floor k: The coefficient refers to influence of bending moment, reinforcement ratio, column’s size ; + k = 1,1 – middle column + k = 1,2 – edge column + k = 1,3 – corner column qsi: Load by slab Use the same method for other columns we have premilinary of columns’s size is shown in Table 5.1: GRADUATION THESIS Colum n PAGE Ac (mm2) bc (mm) 53174 300 hc (mm ) 300 124073 450 450 194973 550 550 265872 650 650 20848 400 400 80394 400 400 187587 450 450 294779 550 550 401972 650 650 20848 400 400 69620 400 400 162447 450 450 255273 550 550 Base-4 348100 650 650 13-15 74097 300 300 172893 450 450 271690 550 550 370486 650 650 53174 300 300 124073 194973 450 550 450 550 Floor Si (m2) qsi (kN/m2 ) INSTRUCTOR Gd (kN) K 13-15 C1 9-12 5-8 Base-4 Roof water tank 13-15 C2 9-12 5-8 Base-4 Roof water tank 13-15 C3 9-12 5-8 C4 9-12 5-8 15.0 13.12 28.12 13.12 27.19 29.06 9.39 6.91 9.39 6.91 8.19 8.19 37.08 13.95 53.83 13.95 52.63 55.02 1.3 1.3 1.1 1.3 1.1 1.1 Base-4 C5 13-15 9-12 5-8 15.0 9.39 37.08 1.3 GRADUATION THESIS Colum n C6 bc (mm) Base-4 265872 650 hc (mm ) 650 13-15 85411 300 300 197193 450 450 309875 550 550 422557 650 650 20848 400 400 154578 400 400 360683 600 600 566788 750 750 772893 850 850 20848 400 400 149716 400 400 349337 600 600 584959 750 750 Base-4 748580 850 850 13-15 150196 400 400 350459 600 600 550721 750 750 Base-4 750983 850 850 13-15 85411 300 300 197193 450 450 309875 550 550 Base-4 422557 650 650 13-15 84076 300 300 196178 450 450 308280 550 550 420382 149811 650 400 650 400 Floor 9-12 5-8 9-12 5-8 Base-4 Roof water tank 13-15 C8 9-12 5-8 C9 C10 C11 C12 9-12 5-8 9-12 5-8 9-12 5-8 Base-4 13-15 Si (m2) 30.6 13.12 57.38 13.12 55.46 59.29 30.6 29.6 55.5 qsi (kN/m2 ) INSTRUCTOR Ac (mm2) Base-4 Roof water tank 13-15 C7 PAGE 8.19 6.91 9.39 6.91 9.39 8.775 8.19 9.39 9.39 Gd (kN) 55.74 13.95 72.49 13.95 71.29 73.69 55.74 54.54 71.29 K 1.2 1.3 1.1 1.3 1.1 1.1 1.2 1.2 1.1 GRADUATION THESIS Colum n PAGE Ac (mm2) bc (mm) 9-12 349559 600 hc (mm ) 600 5-8 549307 750 750 Base-4 749055 850 850 13-15 128814 400 400 300567 600 600 472320 750 750 Base-4 644073 850 850 13-15 154507 400 400 360517 600 600 566527 750 750 Base-4 772536 850 850 13-15 84076 300 300 196178 450 450 308280 550 550 Base-4 420382 650 650 13-15 49295 300 300 115022 450 450 180749 550 550 Base-4 246477 650 650 13-15 78020 300 300 182046 450 450 286073 550 550 Base-4 390100 650 650 13-15 40802 300 300 95204 450 450 149607 550 550 204010 650 650 Floor Si (m2) qsi (kN/m2 ) INSTRUCTOR Gd (kN) K 9-12 C13 C14 C15 C16 C19 C20 5-8 9-12 5-8 9-12 5-8 9-12 5-8 9-12 5-8 9-12 5-8 Base-4 53.65 57.35 29.6 14.0 27.12 14.0 8.19 9.39 8.19 9.39 9.39 7.36 70.01 72.49 54.54 33.49 53.83 33.49 1.1 1.1 1.2 1.3 1.1 1.3 Table 5.1 Columns’size premilinary GRADUATION THESIS PAGE We have arrangement of columns for Frame axis is shown in Fig 5.2: Fig 5.2 Columns arrangement of Frame axis 1.1.2 Staircase load + dead load: Staircase break : gs1 = 1.4 (kN/m2); Slant slab: gs2 = 3.2 (kN/m2) + Live load: pDEAD = 3.6 (kN/m2) INSTRUCTOR GRADUATION THESIS PAGE INSTRUCTOR 1.1.3 Load transmission from wall to beam We have load transmission from wall to beam is difinited by this formulation: g t  n t b  h floor  h d  We have wall load on beams is shown in Table 5.2: Wall load (kN/m) HeigL Floor L (m) Main beam Secondary beam “(300 x 700) mm” Wall 100 Wall 200 “(200 x 600) mm” Wall 100  γ =18 kN/m   γ =18 kN/m   γ =18 kN/m  3 t Basement 2-15 2.5 3.4 t 8.54 5.34 t 7.13 17.03 10.69 8.72 5.54 Table 5.2 Wall load on beams 1.1.4 Roof slab load We have dead load on roof slab is shown in Table 5.3 : δ γ gtc (m) (kN/m3) (kN/m2) Ceramic 0.10 20 0.2 1.1 0.22 Plaster 0.40 18 0.72 1.3 0.936 Reinforcement concrete 0.1 25 2.5 1.1 2.75 Water proffing - - 0.02 1.3 0.026 Mortar lining 0.15 18 0.27 1.3 0.35 Engineer systems - - 0.5 1.2 0.6 Layers n gDEAD (kN/m2) 4.882 Total Table 5.3 Dead load of roof slab Live load : ps  np tc  1.3 �0.75  0.95  kN / m  GRADUATION THESIS PAGE INSTRUCTOR 1.1.5 Load on slabs We have load on slabs is shown in Table 2.7 1.1.6 Load on basement’s slab Dead load: We have dead load of basement’s slab is shown in table 5.4: Layers Ceramic Mortar Water proofing Total δ γ gtc (m) 0.10 0.30 - (kN/m3) 20 18 - (kN/m2) 0.2 0.54 0.02 n 1.1 1.3 1.3 gDEAD (kN/m2) 0.22 0.702 0.026 0.948 Table 5.4 Dead load Live load: We have live load on basement’s slab is shown in table 5.5: ptc Performances n (kN/m2) Gara 1.2 Technical room 1.2 Toilet 1.5 1.3 Table 5.5 Live load ps (kN/m2) 3.6 1.95 1.1.7 Calculation charts using “Etab” We have: L 30.5   1.36 �2 B 22.3 ( L,B – long,short size of the bulding) = > Use 3D frame with the fixed supports between column’s foots and foundations By using “ Etab” we have calculation charts of loads on building is shown from Fig 5.3 to Fig 5.17 GRADUATION THESIS PAGE 10 Fig 5.3 Model of building INSTRUCTOR GRADUATION THESIS Floo r 13 12 11 10 PAGE 46 My kN.m Mx kN.m L0 m 811.46 175.71 48.66 2.4 18.78 149.86 90.59 2.4 14.39 133.58 102.4 2.4 16.24 152.76 44.59 2.4 7.96 182.21 129.1 2.4 14.05 162.61 145.0 2.4 17.73 185.58 60.84 2.4 4.83 169.78 130.6 2.4 10.26 151.50 145.5 2.4 12.53 172.57 58.00 2.4 -3.79 166.72 137.1 2.4 22.41 148.80 151.8 2.4 12.37 169.14 57.37 2.4 -5.19 142.26 128.7 2.4 12.63 126.93 141.6 2.4 13.49 144.12 50.89 2.4 -8.42 165.87 166.5 2.4 148.15 182.4 2.4 6.02 167.51 63.70 2.4 21.46 147.20 59.32 2.4 13.54 134.29 176.3 2.4 3.1 2876.2 2564.7 45 55 Cx m A stt (max) N kN 1240.9 1022.4 1066.1 1498.2 1268.5 1334.2 1761.8 1519.1 1609.5 2028.1 1771.5 1888.8 2298.3 2026.7 2173.1 2581.2 2293.2 2471.5 Cy m INSTRUCTOR cm Ach s cm μ ch % Steel 16.24 40.72 2.0 1618 17.73 40.72 1.6 1618 12.53 40.72 1.6 1618 22.41 40.72 1.6 1618 13.49 40.72 1.6 1618 6.02 40.72 1.3 1618 3.1 40.72 1.3 1618 45 55 4.47 GRADUATION THESIS Floo r N kN 2797.6 3182.1 2840.5 3027.3 3545.6 3171.8 3382.1 3876.2 3465.7 3799.1 4217.4 3767.0 4020.6 4577.1 4083.7 4512.1 4973.2 4434.5 4851.6 PAGE 47 Cy m A stt (max) My kN.m Mx kN.m L0 m 152.30 60.26 2.4 15.06 158.17 59.13 2.4 -1.55 149.97 180.6 2.4 11.14 169.98 163.1 2.4 12.09 128.53 48.98 2.4 6.13 119.83 161.2 2.4 9.84 135.41 147.9 2.4 14.07 140.43 53.49 2.4 -9.34 129.19 185.0 2.4 -6.55 145.05 53.17 2.4 11.51 143.59 48.64 2.4 3.44 131.98 180.1 2.4 1.8 148.36 167.7 2.4 132.19 38.37 2.4 15.47 122.37 142.1 2.4 4.28 135.75 38.42 2.4 14.95 111.06 13.42 5.8 27.98 97.84 94.45 5.8 7.89 116.34 13.78 5.8 23.98 65 Cx m INSTRUCTOR 65 cm Ach s cm μ ch % Steel 12.09 40.72 1.3 1618 14.07 40.72 1.3 1618 3.58 40.72 1.1 1618 8.55 40.72 1.1 1618 15.47 40.72 1.1 1618 27.98 40.72 1.1 1618 8.55 Table 5.20 Reinforcement for C19 column GRADUATION THESIS PAGE 48 INSTRUCTOR 1.5.2 Stirrup calculation Maximum shear force is at C14 column floor 4, with Qmax = 152 kN According to “TCVN 5574 – 2012 ,task 6.2.3.3” we have Qb �b3   f  n  R bt bh With: f : The coefficient considers the impact of compression wing at T, I sections f = n : Vertical force coefficient , n = b3 : For heavy concrete is 0.6 Q b  b3   f  n  R bt bh  0.6 �1.05 �103 �0.9 �0.65  369 kN Qmax < Qb Concrete can resist shear force, arrange component stirrup Space of component stirrup at L1’s space: 3400 � L � L1 �max �h c ; w ;450mm � max(900; ;450)  900  mm  � � s ct   8d s.min ;500mm;2b c    �18;500;2 �850  mm  144  mm  = > Choose 8a100 and arrange in L1’s space Space of component stirrup at L2’s space: R sc  225  MPa   400  MPa  � s ct  min(15d s.min ;500mm)  270 mm = > Choose 8a200 The stirrup must be arranged consecutive through frame button 1.6 BEAMS REINFORCEMENT AT AXIS FRAME D 1.6.1 Longitudinal reinforcement for beams Calculate for beam axis 3-4 at floor has section (300x700)mm with the inner forces : Mleft support = 166.78 kN.m; Mspan = 174.49 kN.m; Mright support = 248.29 kN.m Choose a = 0.05 m = > h0 = h – a = 0.7 – 0.05 = 0.65 m Definite Sf by formulation: GRADUATION THESIS PAGE 49 INSTRUCTOR � ' 6h f  �100  600  mm  � � �L  b d 7500  300 Sf ��   3600  mm  � Sf  600  mm  2 � �L 7500   1250  mm  � �6 Width of the wing side: b 'f  b d  2Sf  300  �600  1500  mm  Size of T section : b ' f  1500 mm;h 'f  100 mm;b  300 mm;h  700 mm  Definite neutral axis: M f   b R b b f' h f' (h  0.5h f' )  0.9 �14.5 �103 �1.5 �0.1 �(0.65  0.5 �0.1)  1174.5  kN.m  We have M = 174.5 < Mf , so the neutral axis is crossing the wing side, calculate by b rectangle sectiton ' f m  �h d   (1500 �700)mm Mspan  b R b bh  174.49  0.021 0.9 �14.5 �103 �1.5 �0.652 �     2    �0.021  0.021 Astt   b R b bh o 0.021�0.9 �14.5 �1500 �700   969 (mm )  9.69 (cm ) Rs 280 Check the raito :  Astt 969  0.05%      0.1%   max  2.94% bh o 1500 �650 Reinforcement for supports: M goi 166.78 m    0.101  b R b bh 0.9 �14.5 �103 �0.3 �0.652 �     2    �0.101  0.107  b R b bh o 0.107 �0.9 �14.5 �300 �700   968 (mm )  9.68 (cm ) Rs 280 Check the raito: A stt   A stt 968  0.05%      0.5%   max  2.94% bh o 300 �650 GRADUATION THESIS PAGE 50 INSTRUCTOR We use the same method for other beams, and have all beam’s reinforcements is show in Table 5.21: Fl oo r Axis 4–3 R 3–2 2–1 4–3 15 3–2 2–1 14 4–3 3–2 2–1 M (kN.m/m) SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n αm ξ -116.77 0.071 124.36 A stt A sch 2 Choose %μ ch (cm ) (cm ) 0.073 6.66 9.42 320 0.48 0.015 0.015 6.89 9.42 320 0.10 -94.66 -139.57 0.057 0.084 0.059 0.088 5.36 8.02 9.42 9.42 320 320 0.48 0.48 164.68 0.020 0.020 9.14 9.42 320 0.10 -189.30 -97.30 0.114 0.059 0.122 0.061 11.08 5.51 12.57 12.57 420 420 0.64 0.64 130.86 0.016 0.016 7.25 9.42 320 0.10 -204.35 -247.01 0.124 0.149 0.132 0.163 12.02 14.77 12.57 15.21 420 422 0.64 0.78 202.38 0.024 0.025 11.26 11.40 322 0.12 -130.08 -205.78 0.079 0.124 0.082 0.133 7.45 12.11 13.89 13.89 222  220 222  220 0.71 0.71 227.50 0.028 0.028 12.68 13.89 222  220 0.14 -292.79 -74.40 0.177 0.045 0.196 0.046 17.84 4.18 19.01 19.01 522 522 0.97 0.97 153.95 0.019 0.019 8.54 10.74 222  120 0.11 -359.37 -251.73 0.217 0.152 0.248 0.166 22.54 15.08 22.81 15.21 622 422 1.17 0.78 192.37 0.023 0.024 10.70 11.40 322 0.12 -141.51 -204.59 0.086 0.124 0.090 0.132 8.14 12.04 13.89 13.89 222  220 222  220 0.71 0.71 223.98 0.027 0.027 12.48 13.89 222  220 0.14 -293.68 -75.58 150.55 0.178 0.046 0.018 0.197 0.047 0.018 17.90 4.25 8.35 19.01 19.01 10.74 522 522 222  120 0.97 0.97 0.11 GRADUATION THESIS Fl oo r Axis 4–3 13 3–2 2–1 4–3 12 3–2 2–1 11 4–3 3–2 2–1 M (kN.m/m) PAGE 51 αm ξ INSTRUCTOR A stt A sch (cm2) (cm2) Choose %μ ch SP SP Spa n SP SP Spa n SP SP Spa n -356.77 -237.63 0.216 0.144 0.246 0.156 22.35 14.16 22.81 22.81 622 422 1.17 0.78 195.03 0.024 0.024 10.85 11.40 322 0.12 -161.86 -206.83 0.098 0.125 0.103 0.134 9.38 12.18 13.89 13.89 222  220 222  220 0.71 0.71 223.91 0.027 0.027 12.47 13.89 222  220 0.14 -293.58 -88.59 0.177 0.054 0.197 0.055 17.89 5.01 19.01 7.60 522 522 0.97 0.97 152.24 0.018 0.019 8.44 10.74 222  120 0.11 SP -351.36 0.212 0.242 21.96 22.81 622 1.17 SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n -241.50 0.146 0.159 14.41 15.21 422 0.78 189.36 0.023 0.023 10.53 10.74 222  120 0.11 -173.46 -206.88 0.105 0.125 0.111 0.134 10.09 12.18 13.89 13.89 222  220 222  120 0.71 0.71 212.34 0.026 0.026 11.82 13.89 222  120 0.14 -318.17 -85.65 0.192 0.052 0.216 0.053 19.59 4.83 21.49 21.49 422  220 422  220 1.10 1.10 154.04 0.019 0.019 8.54 10.74 222  120 0.11 -351.77 -247.54 0.213 0.150 0.242 0.163 21.99 14.81 22.81 15.21 622 422 1.17 0.78 185.44 0.022 0.023 10.31 10.74 222  120 0.11 -193.62 -212.05 0.117 0.128 0.125 0.138 11.35 12.51 13.89 13.89 222  220 222  220 0.71 0.71 205.57 0.025 0.025 11.44 11.40 322 0.12 -342.14 -91.29 156.33 0.207 0.055 0.019 0.234 0.057 0.019 21.29 5.16 8.67 21.49 21.49 10.74 422  220 422  220 222  120 1.10 1.10 0.11 GRADUATION THESIS Fl oo r Axis 4–3 10 3–2 2–1 4–3 3–2 2–1 4–3 3–2 2–1 M (kN.m/m) SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP PAGE 52 INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ -353.91 -234.41 0.214 0.142 0.244 0.153 22.14 13.95 187.22 0.023 0.023 -213.32 -212.75 0.129 0.129 205.66 Choose %μ ch 22.81 15.21 622 422 1.17 0.78 10.41 10.74 222  120 0.11 0.139 0.138 12.59 12.56 13.89 13.89 222  220 222  220 0.71 0.71 0.025 0.025 11.44 11.40 322 0.12 -344.53 -103.68 0.208 0.063 0.236 0.065 21.47 5.89 21.49 21.49 422  220 422  220 1.10 1.10 157.14 0.019 0.019 8.72 10.74 222  120 0.11 -349.56 -219.95 0.211 0.133 0.240 0.143 21.83 13.02 22.81 13.89 622 222  220 1.17 0.71 189.11 0.023 0.023 10.51 11.40 322 0.12 -232.97 -213.51 0.141 0.129 0.152 0.139 13.86 12.61 13.89 13.89 222  220 222  220 0.71 0.71 205.26 0.025 0.025 11.42 11.40 322 0.12 -345.92 -117.57 0.209 0.071 0.237 0.074 21.57 6.71 22.81 22.81 622 622 1.17 1.17 160.17 0.019 0.020 8.89 10.74 222  120 0.11 -341.89 -213.50 0.207 0.129 0.234 0.139 21.28 12.60 22.81 13.89 622 222  220 1.17 0.71 185.44 0.022 0.023 10.31 11.40 322 0.12 -252.22 -208.91 0.152 0.126 0.166 0.135 15.12 12.31 15.21 15.21 422 422 0.78 0.78 199.75 0.024 0.024 11.11 11.40 322 0.12 -356.67 -125.64 0.216 0.076 0.246 0.079 22.34 7.19 22.81 22.81 622 622 1.17 1.17 160.88 0.019 0.020 8.93 10.74 222  120 0.11 -334.95 0.202 0.229 20.78 21.49 422  220 1.10 GRADUATION THESIS Fl oo r Axis 4–3 3–2 2–1 4–3 3–2 2–1 4–3 3–2 2–1 4–3 M (kN.m/m) SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP PAGE 53 INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ -212.68 0.129 0.138 12.55 182.81 0.022 0.022 -270.18 -211.25 0.163 0.128 196.99 Choose %μ ch 13.62 225  122 0.70 10.16 11.40 322 0.12 0.179 0.137 16.31 12.46 17.42 17.42 225  222 225  222 0.89 0.89 0.024 0.024 10.96 11.40 322 0.12 -368.10 -133.49 0.223 0.081 0.255 0.084 23.18 7.66 24.54 24.54 525 525 1.26 1.26 164.43 0.020 0.020 9.13 11.40 322 0.12 -330.54 -202.78 0.200 0.123 0.225 0.131 20.47 11.92 22.33 13.62 325  222 225  122 1.15 0.70 185.53 0.022 0.023 10.31 11.40 322 0.12 -294.26 -210.00 0.178 0.127 0.197 0.136 17.94 12.38 19.63 19.63 425 425 1.01 1.01 196.53 0.024 0.024 10.93 11.40 322 0.12 -373.85 -147.44 0.226 0.101 0.260 0.107 23.61 12.36 24.54 24.54 525 525 1.26 0.99 156.53 0.039 0.040 12.68 15.21 422 0.23 -285.15 -216.83 0.196 0.033 0.220 0.033 25.44 10.50 27.24 13.62 425  222 225  122 1.10 0.20 282.10 0.026 0.026 13.61 15.21 422 0.14 -547.35 -212.98 0.083 0.129 0.087 0.138 27.24 12.57 27.24 27.24 425  222 425  222 0.40 1.40 197.47 0.024 0.024 10.98 11.40 322 0.12 -352.47 -153.11 0.213 0.093 0.242 0.097 22.04 8.84 22.33 22.33 325  222 325  222 1.15 1.15 168.50 0.020 0.021 9.35 11.40 322 0.12 -314.30 -180.33 0.190 0.109 0.213 0.116 19.32 10.52 19.63 10.74 425 222  120 1.01 0.55 GRADUATION THESIS Fl oo r Axis 3–2 2–1 4–3 3–2 2–1 4–3 3–2 2–1 4–3 M (kN.m/m) Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa PAGE 54 INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ 184.33 0.022 0.023 10.24 -306.25 -196.61 0.185 0.119 0.206 0.127 194.49 0.024 -350.53 -149.30 Choose %μ ch 10.74 222  120 0.11 18.76 11.53 19.01 19.01 522 522 0.97 0.97 0.024 10.81 10.74 222  120 0.11 0.212 0.090 0.241 0.095 21.90 8.61 22.81 22.81 622 622 1.17 1.17 165.88 0.020 0.020 9.21 10.74 222  120 0.11 -311.10 -180.07 0.188 0.109 0.210 0.116 19.10 10.50 19.01 10.74 522 222  120 0.97 0.55 182.94 0.022 0.022 10.17 10.74 222  120 0.11 -304.42 -197.73 0.184 0.120 0.205 0.128 18.64 11.61 19.01 19.01 522 522 0.97 0.97 193.51 0.023 0.024 10.76 11.40 322 0.12 -348.89 -151.12 0.211 0.091 0.240 0.096 21.78 8.72 22.81 22.81 622 622 1.17 1.17 168.33 0.020 0.021 9.34 10.74 222  120 0.11 -312.87 -172.12 0.189 0.104 0.212 0.110 19.22 10.01 21.49 10.74 422  220 222  120 1.10 0.55 183.88 0.022 0.022 10.22 10.74 222  120 0.11 -297.66 -196.90 0.180 0.119 0.200 0.127 18.17 11.55 19.01 19.01 522 522 0.97 0.97 194.43 0.024 0.024 10.81 11.40 322 0.12 -329.79 -156.13 0.199 0.094 0.225 0.099 20.41 9.03 21.49 21.49 422  220 422  220 1.10 1.10 169.34 0.020 0.021 9.40 10.74 222  120 0.11 -290.83 -169.82 195.50 0.176 0.103 0.024 0.195 0.109 0.024 17.65 9.87 10.87 17.69 10.74 11.40 322  220 222  120 322 0.91 0.55 0.12 GRADUATION THESIS Fl oo r M (kN.m/m) Axis 3–2 2–1 PAGE 55 n SP SP Spa n SP SP Spa n SP INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ -273.98 -201.72 0.166 0.122 0.182 0.130 16.56 11.86 198.02 0.024 0.024 -290.14 -166.78 0.175 0.101 174.49 -248.29 Choose %μ ch 17.69 17.69 322  220 322  220 0.91 0.91 11.01 11.40 322 0.12 0.194 0.107 17.66 9.68 17.69 17.69 322  220 322  220 0.91 0.91 0.021 0.021 9.69 10.74 222  120 0.11 0.150 0.163 14.86 15.21 422 0.78 Table 5.21 Beam’s reinforcements at axis frame D 1.6.2 Stirrup Beam at 3-4 axis floor (300x700) mm has Qmax = 322.1 kN at support  �82 d sw  mm  A w   50.27 mm We choose b2  2, f  0, n  2,  b  0.9 Calculation for space of stirrups: s tt   R sw n..d sw b2   n   b R bt bh 02 Q 2max 175 �2 � �82 �2 �0.9 �1.05 �300 �650  322.1�10   162  mm  Maximum space: s max b4   n   b R bt b.h 02 1.5 �0.9 �1.05 �300 �650    558  mm  Q max 322.1 �103 Component stirrup: ( h = 700 mm > 450 mm) According to “Task 8.7.6 TCVN 5574-2012”, for beams have h  450mm �h � s ct  � ;150mm � 150mm �3 for the space near the support (1/4 span) We have GRADUATION THESIS PAGE 56 s �min  sct ,s tt ,s max    150;162;558  INSTRUCTOR for the space near the support Choose : 8a150 at ( ¼ span ) Compressive resistance of concrete Q �0,3.w1.b1.R b b.h o  E s 21.104  7 E b �104 , w  nAsw � �82   0.002 bs �300 �150 w1   5 w   �7 �0.002  1.07  1.3 b1   R b   0.01 �14.5  0.86 Q  322.1 (kN)  0.3w1b1 b R b bh o  0.3 �1.07 �0.86 �0.9 �14.5 �300 �650 �10 3  703 (kN) Eligible , no need to increase beam’s section Shear force resistance of beam and stirrup ( destroy at 45 angle ) Q  Q b  Qsw  b2 (1  f  n )R bt bh  h0 Asw R sw s For rectangle section f  , structure does’nt have vertical force n  q sw R sw A sw 175 �2 � �82    117 (KN) s �150 h0 A sw R sw s   �1.05 �300 �650  650 �117  �10 3  486  kN  Q  b2 (1  f  n )R bt bh  � Q max  322.1 (kN)  Q  486 (kN) = >Concrete and stirrup have enough shear force resistance, no need to arrange slant stirrup  Calculation reinforcement for concrete and stirrup at mid span Q = 186 (kN.m) Compressive resistance of concrete Q0   b3 (1   n )R bt �b �h  0.6 �1.05 �300 �650 �10 3  123 (kN)  Q max  186 kN � Shear force resistance of concrete is not enough so we have calculate stirrup Calculation for space of stirrups : R sw n..d sw b2   n   b R bt bh 02 s tt  Q 2max  175 �2 � �82 �2 �0.9 �1.05 �300 �6502  186 �103   487  mm  GRADUATION THESIS PAGE 57 INSTRUCTOR Maximum space: s max b4   n   b R bt b.h 02 1.5 �0.9 �1.05 �300 �650    966  mm  Q max 186 �103 Component stirrup: ( h = 700 mm > 450 mm) According to “Task 8.7.6 TCVN 5574-2012”, for beams have h  450mm �3h � s ct  � ;500mm � 500mm �4 at 1/4 span We have s �min  sct ,s tt ,s max    500;487;966  near the support Choose : 8a300 at 1/2 span So we arrange 8a150 at 1/4 span of beams near the support and 8a300 at ½ span of beams for all the beams at axis frame D 1.6.3 Intersection reinforcement The intersection between secondary beam ( 200x600) mm and and main beam – axis floor ( 300x700) mm has highest shear force,is shown in Fig 5.22, Fig 5.23 Fig 5.22 Shear force of intersection between secondary beam and main beam (Left-kN) GRADUATION THESIS PAGE 58 INSTRUCTOR Fig5.23 Shear force of intersection between secondary beam and main beam(Right-kN) We have F = 74.69 + 53.2 = 127.89 (kN) We have formulation: � hs � F�  ���R sw Asw  �2A s,inc R s,inc sin  � h0 � h0 = hdc – a = 700 – 50 = 650 mm hs = h0 – hdp = 650 – 600 = 50 mm We use stirrup has : n = branch, choose Ø8, asw = 50.27 mm2 We have: � hs � � 0.05 � F� 1 � 127.89 � 1 � h0 � 0.65 � � � m�   5.59 nR sw a sw �175 �103 �50.27 �10 6 Choose m = 6, the number of stirrups for each side is So we arrange stirrup 8a50 for every intersections of secondary beam and main beam at axis frame D Web reinforcement calculation: For the beams has h > 700 mm we arrange web reinforcement at the middle of beam We choose component reinforcement 212 Check the requirement for beam ( 300x700)mm: according to “Taks 8.6.6 TCVN 5574 – 2012” b 30 A sch  2.26 cm  A s   h  a  �0.001   70  �5  � �0.001  0.9 cm 2 GRADUATION THESIS = > Eligible PAGE 59 INSTRUCTOR GRADUATION THESIS PAGE 60 INSTRUCTOR ... tank Roof 15 14 13 12 11 10 Floor heigL L (m) HeigL L (m) K Bx (m) By (m) Wx (kN) Wy (kN) 58.5 1.07 7.5 11.19 10.44 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 55.1 51.7 48 .3 44.9 41.5 38 .1 34 .7 31 .3. .. 30 .5 30 .5 30 .5 30 .5 30 .5 30 .5 30 .5 22 .3 22 .3 22 .3 22 .3 22 .3 22 .3 22 .3 83. 52 80 .35 78.24 75.06 71.89 68.72 61 .38 114. 23 109.90 107.00 102.67 98 .33 93. 99 83. 95 Table 5.6 – Static wind load (kN)... 138 .82 134 .48 130 .14 125.80 122.91 118.57 GRADUATION THESIS PAGE 23 INSTRUCTOR Floor Floor heigL L (m) HeigL L (m) K Bx (m) By (m) Wx (kN) Wy (kN) 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 24.5 21.1 17.7 14.3

Ngày đăng: 03/11/2019, 20:19

Xem thêm:

TỪ KHÓA LIÊN QUAN

Mục lục

    1.1. DETERMINE OF FRAME’S INNER FORCE FROM FLOOR 1-15:

    1.1.1. Premilinary of columns’s size:

    1.1.3. Load transmission from wall to beam

    1.1.6. Load on basement’s slab

    1.1.7. Calculation charts using “Etab”

    1.1.10. Calculation of unstatic wind loads

    1.4. Forces and moments by using “Etab”

    1.5. REINFORCEMENT CALCULATION OF AXIS FRAME D

    1.6. BEAMS REINFORCEMENT AT AXIS FRAME D

    1.6.1. Longitudinal reinforcement for beams

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN

w