Đồ án tốt nghiệp ngành kỹ thuật xây dựng dân dụng, được tính toán và trình bày bằng ngôn ngữ: tiếng Anh, có file Auto Cad, Etab, Sap2000 đính kèm. Dành cho sinh viên ngành xây dựng có đề tài tham khảo và hỗ trợ đồ án. chia làm 5 part
GRADUATION THESIS PAGE INSTRUCTOR GRADUATION THESIS PAGE CHAPTER INSTRUCTOR DESIGN FRAMES 1.1 DETERMINE OF FRAME’S INNER FORCE FROM FLOOR 1-15: We have beams arrangement plan floor is shown in Fig 5.1: Fig 5.1 Beams arrangement plan floor 2-15 1.1.1 Premilinary of columns’s size: The building has 15 floors and roof floor with reinforcement concrete B25 So according to “TCVN 198-1997 mục 2.5.4” we change the columns’s size each floors In Axis Frame we have: + Column C9: Transmission area from slabs to C9 column : 7.5 �7.5 7.8 � SC9 ( ) �� � 59.2875 m � � Vertical force from beams to C7 column: GRADUATION THESIS PAGE INSTRUCTOR G d n bt b d h d h s L �7.5 �2 7.8 � 1.1�25 �0.3 0.7 0.12 �� � 73.69 kN � � We have size of column C7 at floor 13 - 15: nt Ac k � Si q si G d i 1 bR b 1.1 �3 � 59.2875 �8.19 73.69 �10 141420 mm 0.9 �14.5 �10 = > we choose the columns’s size of column C7 at floor 13-15 is 400x400 (mm) With: nt: amount of floor k: The coefficient refers to influence of bending moment, reinforcement ratio, column’s size ; + k = 1,1 – middle column + k = 1,2 – edge column + k = 1,3 – corner column qsi: Load by slab Use the same method for other columns we have premilinary of columns’s size is shown in Table 5.1: GRADUATION THESIS Colum n PAGE Ac (mm2) bc (mm) 53174 300 hc (mm ) 300 124073 450 450 194973 550 550 265872 650 650 20848 400 400 80394 400 400 187587 450 450 294779 550 550 401972 650 650 20848 400 400 69620 400 400 162447 450 450 255273 550 550 Base-4 348100 650 650 13-15 74097 300 300 172893 450 450 271690 550 550 370486 650 650 53174 300 300 124073 194973 450 550 450 550 Floor Si (m2) qsi (kN/m2 ) INSTRUCTOR Gd (kN) K 13-15 C1 9-12 5-8 Base-4 Roof water tank 13-15 C2 9-12 5-8 Base-4 Roof water tank 13-15 C3 9-12 5-8 C4 9-12 5-8 15.0 13.12 28.12 13.12 27.19 29.06 9.39 6.91 9.39 6.91 8.19 8.19 37.08 13.95 53.83 13.95 52.63 55.02 1.3 1.3 1.1 1.3 1.1 1.1 Base-4 C5 13-15 9-12 5-8 15.0 9.39 37.08 1.3 GRADUATION THESIS Colum n C6 bc (mm) Base-4 265872 650 hc (mm ) 650 13-15 85411 300 300 197193 450 450 309875 550 550 422557 650 650 20848 400 400 154578 400 400 360683 600 600 566788 750 750 772893 850 850 20848 400 400 149716 400 400 349337 600 600 584959 750 750 Base-4 748580 850 850 13-15 150196 400 400 350459 600 600 550721 750 750 Base-4 750983 850 850 13-15 85411 300 300 197193 450 450 309875 550 550 Base-4 422557 650 650 13-15 84076 300 300 196178 450 450 308280 550 550 420382 149811 650 400 650 400 Floor 9-12 5-8 9-12 5-8 Base-4 Roof water tank 13-15 C8 9-12 5-8 C9 C10 C11 C12 9-12 5-8 9-12 5-8 9-12 5-8 Base-4 13-15 Si (m2) 30.6 13.12 57.38 13.12 55.46 59.29 30.6 29.6 55.5 qsi (kN/m2 ) INSTRUCTOR Ac (mm2) Base-4 Roof water tank 13-15 C7 PAGE 8.19 6.91 9.39 6.91 9.39 8.775 8.19 9.39 9.39 Gd (kN) 55.74 13.95 72.49 13.95 71.29 73.69 55.74 54.54 71.29 K 1.2 1.3 1.1 1.3 1.1 1.1 1.2 1.2 1.1 GRADUATION THESIS Colum n PAGE Ac (mm2) bc (mm) 9-12 349559 600 hc (mm ) 600 5-8 549307 750 750 Base-4 749055 850 850 13-15 128814 400 400 300567 600 600 472320 750 750 Base-4 644073 850 850 13-15 154507 400 400 360517 600 600 566527 750 750 Base-4 772536 850 850 13-15 84076 300 300 196178 450 450 308280 550 550 Base-4 420382 650 650 13-15 49295 300 300 115022 450 450 180749 550 550 Base-4 246477 650 650 13-15 78020 300 300 182046 450 450 286073 550 550 Base-4 390100 650 650 13-15 40802 300 300 95204 450 450 149607 550 550 204010 650 650 Floor Si (m2) qsi (kN/m2 ) INSTRUCTOR Gd (kN) K 9-12 C13 C14 C15 C16 C19 C20 5-8 9-12 5-8 9-12 5-8 9-12 5-8 9-12 5-8 9-12 5-8 Base-4 53.65 57.35 29.6 14.0 27.12 14.0 8.19 9.39 8.19 9.39 9.39 7.36 70.01 72.49 54.54 33.49 53.83 33.49 1.1 1.1 1.2 1.3 1.1 1.3 Table 5.1 Columns’size premilinary GRADUATION THESIS PAGE We have arrangement of columns for Frame axis is shown in Fig 5.2: Fig 5.2 Columns arrangement of Frame axis 1.1.2 Staircase load + dead load: Staircase break : gs1 = 1.4 (kN/m2); Slant slab: gs2 = 3.2 (kN/m2) + Live load: pDEAD = 3.6 (kN/m2) INSTRUCTOR GRADUATION THESIS PAGE INSTRUCTOR 1.1.3 Load transmission from wall to beam We have load transmission from wall to beam is difinited by this formulation: g t n t b h floor h d We have wall load on beams is shown in Table 5.2: Wall load (kN/m) HeigL Floor L (m) Main beam Secondary beam “(300 x 700) mm” Wall 100 Wall 200 “(200 x 600) mm” Wall 100 γ =18 kN/m γ =18 kN/m γ =18 kN/m 3 t Basement 2-15 2.5 3.4 t 8.54 5.34 t 7.13 17.03 10.69 8.72 5.54 Table 5.2 Wall load on beams 1.1.4 Roof slab load We have dead load on roof slab is shown in Table 5.3 : δ γ gtc (m) (kN/m3) (kN/m2) Ceramic 0.10 20 0.2 1.1 0.22 Plaster 0.40 18 0.72 1.3 0.936 Reinforcement concrete 0.1 25 2.5 1.1 2.75 Water proffing - - 0.02 1.3 0.026 Mortar lining 0.15 18 0.27 1.3 0.35 Engineer systems - - 0.5 1.2 0.6 Layers n gDEAD (kN/m2) 4.882 Total Table 5.3 Dead load of roof slab Live load : ps np tc 1.3 �0.75 0.95 kN / m GRADUATION THESIS PAGE INSTRUCTOR 1.1.5 Load on slabs We have load on slabs is shown in Table 2.7 1.1.6 Load on basement’s slab Dead load: We have dead load of basement’s slab is shown in table 5.4: Layers Ceramic Mortar Water proofing Total δ γ gtc (m) 0.10 0.30 - (kN/m3) 20 18 - (kN/m2) 0.2 0.54 0.02 n 1.1 1.3 1.3 gDEAD (kN/m2) 0.22 0.702 0.026 0.948 Table 5.4 Dead load Live load: We have live load on basement’s slab is shown in table 5.5: ptc Performances n (kN/m2) Gara 1.2 Technical room 1.2 Toilet 1.5 1.3 Table 5.5 Live load ps (kN/m2) 3.6 1.95 1.1.7 Calculation charts using “Etab” We have: L 30.5 1.36 �2 B 22.3 ( L,B – long,short size of the bulding) = > Use 3D frame with the fixed supports between column’s foots and foundations By using “ Etab” we have calculation charts of loads on building is shown from Fig 5.3 to Fig 5.17 GRADUATION THESIS PAGE 10 Fig 5.3 Model of building INSTRUCTOR GRADUATION THESIS Floo r 13 12 11 10 PAGE 46 My kN.m Mx kN.m L0 m 811.46 175.71 48.66 2.4 18.78 149.86 90.59 2.4 14.39 133.58 102.4 2.4 16.24 152.76 44.59 2.4 7.96 182.21 129.1 2.4 14.05 162.61 145.0 2.4 17.73 185.58 60.84 2.4 4.83 169.78 130.6 2.4 10.26 151.50 145.5 2.4 12.53 172.57 58.00 2.4 -3.79 166.72 137.1 2.4 22.41 148.80 151.8 2.4 12.37 169.14 57.37 2.4 -5.19 142.26 128.7 2.4 12.63 126.93 141.6 2.4 13.49 144.12 50.89 2.4 -8.42 165.87 166.5 2.4 148.15 182.4 2.4 6.02 167.51 63.70 2.4 21.46 147.20 59.32 2.4 13.54 134.29 176.3 2.4 3.1 2876.2 2564.7 45 55 Cx m A stt (max) N kN 1240.9 1022.4 1066.1 1498.2 1268.5 1334.2 1761.8 1519.1 1609.5 2028.1 1771.5 1888.8 2298.3 2026.7 2173.1 2581.2 2293.2 2471.5 Cy m INSTRUCTOR cm Ach s cm μ ch % Steel 16.24 40.72 2.0 1618 17.73 40.72 1.6 1618 12.53 40.72 1.6 1618 22.41 40.72 1.6 1618 13.49 40.72 1.6 1618 6.02 40.72 1.3 1618 3.1 40.72 1.3 1618 45 55 4.47 GRADUATION THESIS Floo r N kN 2797.6 3182.1 2840.5 3027.3 3545.6 3171.8 3382.1 3876.2 3465.7 3799.1 4217.4 3767.0 4020.6 4577.1 4083.7 4512.1 4973.2 4434.5 4851.6 PAGE 47 Cy m A stt (max) My kN.m Mx kN.m L0 m 152.30 60.26 2.4 15.06 158.17 59.13 2.4 -1.55 149.97 180.6 2.4 11.14 169.98 163.1 2.4 12.09 128.53 48.98 2.4 6.13 119.83 161.2 2.4 9.84 135.41 147.9 2.4 14.07 140.43 53.49 2.4 -9.34 129.19 185.0 2.4 -6.55 145.05 53.17 2.4 11.51 143.59 48.64 2.4 3.44 131.98 180.1 2.4 1.8 148.36 167.7 2.4 132.19 38.37 2.4 15.47 122.37 142.1 2.4 4.28 135.75 38.42 2.4 14.95 111.06 13.42 5.8 27.98 97.84 94.45 5.8 7.89 116.34 13.78 5.8 23.98 65 Cx m INSTRUCTOR 65 cm Ach s cm μ ch % Steel 12.09 40.72 1.3 1618 14.07 40.72 1.3 1618 3.58 40.72 1.1 1618 8.55 40.72 1.1 1618 15.47 40.72 1.1 1618 27.98 40.72 1.1 1618 8.55 Table 5.20 Reinforcement for C19 column GRADUATION THESIS PAGE 48 INSTRUCTOR 1.5.2 Stirrup calculation Maximum shear force is at C14 column floor 4, with Qmax = 152 kN According to “TCVN 5574 – 2012 ,task 6.2.3.3” we have Qb �b3 f n R bt bh With: f : The coefficient considers the impact of compression wing at T, I sections f = n : Vertical force coefficient , n = b3 : For heavy concrete is 0.6 Q b b3 f n R bt bh 0.6 �1.05 �103 �0.9 �0.65 369 kN Qmax < Qb Concrete can resist shear force, arrange component stirrup Space of component stirrup at L1’s space: 3400 � L � L1 �max �h c ; w ;450mm � max(900; ;450) 900 mm � � s ct 8d s.min ;500mm;2b c �18;500;2 �850 mm 144 mm = > Choose 8a100 and arrange in L1’s space Space of component stirrup at L2’s space: R sc 225 MPa 400 MPa � s ct min(15d s.min ;500mm) 270 mm = > Choose 8a200 The stirrup must be arranged consecutive through frame button 1.6 BEAMS REINFORCEMENT AT AXIS FRAME D 1.6.1 Longitudinal reinforcement for beams Calculate for beam axis 3-4 at floor has section (300x700)mm with the inner forces : Mleft support = 166.78 kN.m; Mspan = 174.49 kN.m; Mright support = 248.29 kN.m Choose a = 0.05 m = > h0 = h – a = 0.7 – 0.05 = 0.65 m Definite Sf by formulation: GRADUATION THESIS PAGE 49 INSTRUCTOR � ' 6h f �100 600 mm � � �L b d 7500 300 Sf �� 3600 mm � Sf 600 mm 2 � �L 7500 1250 mm � �6 Width of the wing side: b 'f b d 2Sf 300 �600 1500 mm Size of T section : b ' f 1500 mm;h 'f 100 mm;b 300 mm;h 700 mm Definite neutral axis: M f b R b b f' h f' (h 0.5h f' ) 0.9 �14.5 �103 �1.5 �0.1 �(0.65 0.5 �0.1) 1174.5 kN.m We have M = 174.5 < Mf , so the neutral axis is crossing the wing side, calculate by b rectangle sectiton ' f m �h d (1500 �700)mm Mspan b R b bh 174.49 0.021 0.9 �14.5 �103 �1.5 �0.652 � 2 �0.021 0.021 Astt b R b bh o 0.021�0.9 �14.5 �1500 �700 969 (mm ) 9.69 (cm ) Rs 280 Check the raito : Astt 969 0.05% 0.1% max 2.94% bh o 1500 �650 Reinforcement for supports: M goi 166.78 m 0.101 b R b bh 0.9 �14.5 �103 �0.3 �0.652 � 2 �0.101 0.107 b R b bh o 0.107 �0.9 �14.5 �300 �700 968 (mm ) 9.68 (cm ) Rs 280 Check the raito: A stt A stt 968 0.05% 0.5% max 2.94% bh o 300 �650 GRADUATION THESIS PAGE 50 INSTRUCTOR We use the same method for other beams, and have all beam’s reinforcements is show in Table 5.21: Fl oo r Axis 4–3 R 3–2 2–1 4–3 15 3–2 2–1 14 4–3 3–2 2–1 M (kN.m/m) SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n αm ξ -116.77 0.071 124.36 A stt A sch 2 Choose %μ ch (cm ) (cm ) 0.073 6.66 9.42 320 0.48 0.015 0.015 6.89 9.42 320 0.10 -94.66 -139.57 0.057 0.084 0.059 0.088 5.36 8.02 9.42 9.42 320 320 0.48 0.48 164.68 0.020 0.020 9.14 9.42 320 0.10 -189.30 -97.30 0.114 0.059 0.122 0.061 11.08 5.51 12.57 12.57 420 420 0.64 0.64 130.86 0.016 0.016 7.25 9.42 320 0.10 -204.35 -247.01 0.124 0.149 0.132 0.163 12.02 14.77 12.57 15.21 420 422 0.64 0.78 202.38 0.024 0.025 11.26 11.40 322 0.12 -130.08 -205.78 0.079 0.124 0.082 0.133 7.45 12.11 13.89 13.89 222 220 222 220 0.71 0.71 227.50 0.028 0.028 12.68 13.89 222 220 0.14 -292.79 -74.40 0.177 0.045 0.196 0.046 17.84 4.18 19.01 19.01 522 522 0.97 0.97 153.95 0.019 0.019 8.54 10.74 222 120 0.11 -359.37 -251.73 0.217 0.152 0.248 0.166 22.54 15.08 22.81 15.21 622 422 1.17 0.78 192.37 0.023 0.024 10.70 11.40 322 0.12 -141.51 -204.59 0.086 0.124 0.090 0.132 8.14 12.04 13.89 13.89 222 220 222 220 0.71 0.71 223.98 0.027 0.027 12.48 13.89 222 220 0.14 -293.68 -75.58 150.55 0.178 0.046 0.018 0.197 0.047 0.018 17.90 4.25 8.35 19.01 19.01 10.74 522 522 222 120 0.97 0.97 0.11 GRADUATION THESIS Fl oo r Axis 4–3 13 3–2 2–1 4–3 12 3–2 2–1 11 4–3 3–2 2–1 M (kN.m/m) PAGE 51 αm ξ INSTRUCTOR A stt A sch (cm2) (cm2) Choose %μ ch SP SP Spa n SP SP Spa n SP SP Spa n -356.77 -237.63 0.216 0.144 0.246 0.156 22.35 14.16 22.81 22.81 622 422 1.17 0.78 195.03 0.024 0.024 10.85 11.40 322 0.12 -161.86 -206.83 0.098 0.125 0.103 0.134 9.38 12.18 13.89 13.89 222 220 222 220 0.71 0.71 223.91 0.027 0.027 12.47 13.89 222 220 0.14 -293.58 -88.59 0.177 0.054 0.197 0.055 17.89 5.01 19.01 7.60 522 522 0.97 0.97 152.24 0.018 0.019 8.44 10.74 222 120 0.11 SP -351.36 0.212 0.242 21.96 22.81 622 1.17 SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n -241.50 0.146 0.159 14.41 15.21 422 0.78 189.36 0.023 0.023 10.53 10.74 222 120 0.11 -173.46 -206.88 0.105 0.125 0.111 0.134 10.09 12.18 13.89 13.89 222 220 222 120 0.71 0.71 212.34 0.026 0.026 11.82 13.89 222 120 0.14 -318.17 -85.65 0.192 0.052 0.216 0.053 19.59 4.83 21.49 21.49 422 220 422 220 1.10 1.10 154.04 0.019 0.019 8.54 10.74 222 120 0.11 -351.77 -247.54 0.213 0.150 0.242 0.163 21.99 14.81 22.81 15.21 622 422 1.17 0.78 185.44 0.022 0.023 10.31 10.74 222 120 0.11 -193.62 -212.05 0.117 0.128 0.125 0.138 11.35 12.51 13.89 13.89 222 220 222 220 0.71 0.71 205.57 0.025 0.025 11.44 11.40 322 0.12 -342.14 -91.29 156.33 0.207 0.055 0.019 0.234 0.057 0.019 21.29 5.16 8.67 21.49 21.49 10.74 422 220 422 220 222 120 1.10 1.10 0.11 GRADUATION THESIS Fl oo r Axis 4–3 10 3–2 2–1 4–3 3–2 2–1 4–3 3–2 2–1 M (kN.m/m) SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP PAGE 52 INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ -353.91 -234.41 0.214 0.142 0.244 0.153 22.14 13.95 187.22 0.023 0.023 -213.32 -212.75 0.129 0.129 205.66 Choose %μ ch 22.81 15.21 622 422 1.17 0.78 10.41 10.74 222 120 0.11 0.139 0.138 12.59 12.56 13.89 13.89 222 220 222 220 0.71 0.71 0.025 0.025 11.44 11.40 322 0.12 -344.53 -103.68 0.208 0.063 0.236 0.065 21.47 5.89 21.49 21.49 422 220 422 220 1.10 1.10 157.14 0.019 0.019 8.72 10.74 222 120 0.11 -349.56 -219.95 0.211 0.133 0.240 0.143 21.83 13.02 22.81 13.89 622 222 220 1.17 0.71 189.11 0.023 0.023 10.51 11.40 322 0.12 -232.97 -213.51 0.141 0.129 0.152 0.139 13.86 12.61 13.89 13.89 222 220 222 220 0.71 0.71 205.26 0.025 0.025 11.42 11.40 322 0.12 -345.92 -117.57 0.209 0.071 0.237 0.074 21.57 6.71 22.81 22.81 622 622 1.17 1.17 160.17 0.019 0.020 8.89 10.74 222 120 0.11 -341.89 -213.50 0.207 0.129 0.234 0.139 21.28 12.60 22.81 13.89 622 222 220 1.17 0.71 185.44 0.022 0.023 10.31 11.40 322 0.12 -252.22 -208.91 0.152 0.126 0.166 0.135 15.12 12.31 15.21 15.21 422 422 0.78 0.78 199.75 0.024 0.024 11.11 11.40 322 0.12 -356.67 -125.64 0.216 0.076 0.246 0.079 22.34 7.19 22.81 22.81 622 622 1.17 1.17 160.88 0.019 0.020 8.93 10.74 222 120 0.11 -334.95 0.202 0.229 20.78 21.49 422 220 1.10 GRADUATION THESIS Fl oo r Axis 4–3 3–2 2–1 4–3 3–2 2–1 4–3 3–2 2–1 4–3 M (kN.m/m) SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP PAGE 53 INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ -212.68 0.129 0.138 12.55 182.81 0.022 0.022 -270.18 -211.25 0.163 0.128 196.99 Choose %μ ch 13.62 225 122 0.70 10.16 11.40 322 0.12 0.179 0.137 16.31 12.46 17.42 17.42 225 222 225 222 0.89 0.89 0.024 0.024 10.96 11.40 322 0.12 -368.10 -133.49 0.223 0.081 0.255 0.084 23.18 7.66 24.54 24.54 525 525 1.26 1.26 164.43 0.020 0.020 9.13 11.40 322 0.12 -330.54 -202.78 0.200 0.123 0.225 0.131 20.47 11.92 22.33 13.62 325 222 225 122 1.15 0.70 185.53 0.022 0.023 10.31 11.40 322 0.12 -294.26 -210.00 0.178 0.127 0.197 0.136 17.94 12.38 19.63 19.63 425 425 1.01 1.01 196.53 0.024 0.024 10.93 11.40 322 0.12 -373.85 -147.44 0.226 0.101 0.260 0.107 23.61 12.36 24.54 24.54 525 525 1.26 0.99 156.53 0.039 0.040 12.68 15.21 422 0.23 -285.15 -216.83 0.196 0.033 0.220 0.033 25.44 10.50 27.24 13.62 425 222 225 122 1.10 0.20 282.10 0.026 0.026 13.61 15.21 422 0.14 -547.35 -212.98 0.083 0.129 0.087 0.138 27.24 12.57 27.24 27.24 425 222 425 222 0.40 1.40 197.47 0.024 0.024 10.98 11.40 322 0.12 -352.47 -153.11 0.213 0.093 0.242 0.097 22.04 8.84 22.33 22.33 325 222 325 222 1.15 1.15 168.50 0.020 0.021 9.35 11.40 322 0.12 -314.30 -180.33 0.190 0.109 0.213 0.116 19.32 10.52 19.63 10.74 425 222 120 1.01 0.55 GRADUATION THESIS Fl oo r Axis 3–2 2–1 4–3 3–2 2–1 4–3 3–2 2–1 4–3 M (kN.m/m) Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa n SP SP Spa PAGE 54 INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ 184.33 0.022 0.023 10.24 -306.25 -196.61 0.185 0.119 0.206 0.127 194.49 0.024 -350.53 -149.30 Choose %μ ch 10.74 222 120 0.11 18.76 11.53 19.01 19.01 522 522 0.97 0.97 0.024 10.81 10.74 222 120 0.11 0.212 0.090 0.241 0.095 21.90 8.61 22.81 22.81 622 622 1.17 1.17 165.88 0.020 0.020 9.21 10.74 222 120 0.11 -311.10 -180.07 0.188 0.109 0.210 0.116 19.10 10.50 19.01 10.74 522 222 120 0.97 0.55 182.94 0.022 0.022 10.17 10.74 222 120 0.11 -304.42 -197.73 0.184 0.120 0.205 0.128 18.64 11.61 19.01 19.01 522 522 0.97 0.97 193.51 0.023 0.024 10.76 11.40 322 0.12 -348.89 -151.12 0.211 0.091 0.240 0.096 21.78 8.72 22.81 22.81 622 622 1.17 1.17 168.33 0.020 0.021 9.34 10.74 222 120 0.11 -312.87 -172.12 0.189 0.104 0.212 0.110 19.22 10.01 21.49 10.74 422 220 222 120 1.10 0.55 183.88 0.022 0.022 10.22 10.74 222 120 0.11 -297.66 -196.90 0.180 0.119 0.200 0.127 18.17 11.55 19.01 19.01 522 522 0.97 0.97 194.43 0.024 0.024 10.81 11.40 322 0.12 -329.79 -156.13 0.199 0.094 0.225 0.099 20.41 9.03 21.49 21.49 422 220 422 220 1.10 1.10 169.34 0.020 0.021 9.40 10.74 222 120 0.11 -290.83 -169.82 195.50 0.176 0.103 0.024 0.195 0.109 0.024 17.65 9.87 10.87 17.69 10.74 11.40 322 220 222 120 322 0.91 0.55 0.12 GRADUATION THESIS Fl oo r M (kN.m/m) Axis 3–2 2–1 PAGE 55 n SP SP Spa n SP SP Spa n SP INSTRUCTOR A stt A sch (cm2) (cm2) αm ξ -273.98 -201.72 0.166 0.122 0.182 0.130 16.56 11.86 198.02 0.024 0.024 -290.14 -166.78 0.175 0.101 174.49 -248.29 Choose %μ ch 17.69 17.69 322 220 322 220 0.91 0.91 11.01 11.40 322 0.12 0.194 0.107 17.66 9.68 17.69 17.69 322 220 322 220 0.91 0.91 0.021 0.021 9.69 10.74 222 120 0.11 0.150 0.163 14.86 15.21 422 0.78 Table 5.21 Beam’s reinforcements at axis frame D 1.6.2 Stirrup Beam at 3-4 axis floor (300x700) mm has Qmax = 322.1 kN at support �82 d sw mm A w 50.27 mm We choose b2 2, f 0, n 2, b 0.9 Calculation for space of stirrups: s tt R sw n..d sw b2 n b R bt bh 02 Q 2max 175 �2 � �82 �2 �0.9 �1.05 �300 �650 322.1�10 162 mm Maximum space: s max b4 n b R bt b.h 02 1.5 �0.9 �1.05 �300 �650 558 mm Q max 322.1 �103 Component stirrup: ( h = 700 mm > 450 mm) According to “Task 8.7.6 TCVN 5574-2012”, for beams have h 450mm �h � s ct � ;150mm � 150mm �3 for the space near the support (1/4 span) We have GRADUATION THESIS PAGE 56 s �min sct ,s tt ,s max 150;162;558 INSTRUCTOR for the space near the support Choose : 8a150 at ( ¼ span ) Compressive resistance of concrete Q �0,3.w1.b1.R b b.h o E s 21.104 7 E b �104 , w nAsw � �82 0.002 bs �300 �150 w1 5 w �7 �0.002 1.07 1.3 b1 R b 0.01 �14.5 0.86 Q 322.1 (kN) 0.3w1b1 b R b bh o 0.3 �1.07 �0.86 �0.9 �14.5 �300 �650 �10 3 703 (kN) Eligible , no need to increase beam’s section Shear force resistance of beam and stirrup ( destroy at 45 angle ) Q Q b Qsw b2 (1 f n )R bt bh h0 Asw R sw s For rectangle section f , structure does’nt have vertical force n q sw R sw A sw 175 �2 � �82 117 (KN) s �150 h0 A sw R sw s �1.05 �300 �650 650 �117 �10 3 486 kN Q b2 (1 f n )R bt bh � Q max 322.1 (kN) Q 486 (kN) = >Concrete and stirrup have enough shear force resistance, no need to arrange slant stirrup Calculation reinforcement for concrete and stirrup at mid span Q = 186 (kN.m) Compressive resistance of concrete Q0 b3 (1 n )R bt �b �h 0.6 �1.05 �300 �650 �10 3 123 (kN) Q max 186 kN � Shear force resistance of concrete is not enough so we have calculate stirrup Calculation for space of stirrups : R sw n..d sw b2 n b R bt bh 02 s tt Q 2max 175 �2 � �82 �2 �0.9 �1.05 �300 �6502 186 �103 487 mm GRADUATION THESIS PAGE 57 INSTRUCTOR Maximum space: s max b4 n b R bt b.h 02 1.5 �0.9 �1.05 �300 �650 966 mm Q max 186 �103 Component stirrup: ( h = 700 mm > 450 mm) According to “Task 8.7.6 TCVN 5574-2012”, for beams have h 450mm �3h � s ct � ;500mm � 500mm �4 at 1/4 span We have s �min sct ,s tt ,s max 500;487;966 near the support Choose : 8a300 at 1/2 span So we arrange 8a150 at 1/4 span of beams near the support and 8a300 at ½ span of beams for all the beams at axis frame D 1.6.3 Intersection reinforcement The intersection between secondary beam ( 200x600) mm and and main beam – axis floor ( 300x700) mm has highest shear force,is shown in Fig 5.22, Fig 5.23 Fig 5.22 Shear force of intersection between secondary beam and main beam (Left-kN) GRADUATION THESIS PAGE 58 INSTRUCTOR Fig5.23 Shear force of intersection between secondary beam and main beam(Right-kN) We have F = 74.69 + 53.2 = 127.89 (kN) We have formulation: � hs � F� ���R sw Asw �2A s,inc R s,inc sin � h0 � h0 = hdc – a = 700 – 50 = 650 mm hs = h0 – hdp = 650 – 600 = 50 mm We use stirrup has : n = branch, choose Ø8, asw = 50.27 mm2 We have: � hs � � 0.05 � F� 1 � 127.89 � 1 � h0 � 0.65 � � � m� 5.59 nR sw a sw �175 �103 �50.27 �10 6 Choose m = 6, the number of stirrups for each side is So we arrange stirrup 8a50 for every intersections of secondary beam and main beam at axis frame D Web reinforcement calculation: For the beams has h > 700 mm we arrange web reinforcement at the middle of beam We choose component reinforcement 212 Check the requirement for beam ( 300x700)mm: according to “Taks 8.6.6 TCVN 5574 – 2012” b 30 A sch 2.26 cm A s h a �0.001 70 �5 � �0.001 0.9 cm 2 GRADUATION THESIS = > Eligible PAGE 59 INSTRUCTOR GRADUATION THESIS PAGE 60 INSTRUCTOR ... tank Roof 15 14 13 12 11 10 Floor heigL L (m) HeigL L (m) K Bx (m) By (m) Wx (kN) Wy (kN) 58.5 1.07 7.5 11.19 10.44 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 55.1 51.7 48 .3 44.9 41.5 38 .1 34 .7 31 .3. .. 30 .5 30 .5 30 .5 30 .5 30 .5 30 .5 30 .5 22 .3 22 .3 22 .3 22 .3 22 .3 22 .3 22 .3 83. 52 80 .35 78.24 75.06 71.89 68.72 61 .38 114. 23 109.90 107.00 102.67 98 .33 93. 99 83. 95 Table 5.6 – Static wind load (kN)... 138 .82 134 .48 130 .14 125.80 122.91 118.57 GRADUATION THESIS PAGE 23 INSTRUCTOR Floor Floor heigL L (m) HeigL L (m) K Bx (m) By (m) Wx (kN) Wy (kN) 3. 4 3. 4 3. 4 3. 4 3. 4 3. 4 24.5 21.1 17.7 14.3