Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 44 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
44
Dung lượng
613,92 KB
Nội dung
ĐẠI HỌC FPT CẦN THƠ Chapter Systems of Linear Equations Dr Tran Quoc Duy Email: duytq4@fpt.edu.vn Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Contents Solutions and Elementary Operations Gaussian Elimination Homogeneous Equations Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Objectives ⚫ ⚫ ⚫ Using Gaussian elimination to solve system of linear equations Using series of elementary row operations to carry a matrix to row – echelon form, find the rank of a matrix Condition for a homogeneous system to have nontrivial solution Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 1.1 Solutions and Elementary Operations coefficients variables a1x1+a2x2+…+anxn=b is called a linear equation ( phương trình tuyến tính ) ⚫ A solution ( nghiệm) to the equation is a sequence s1,s2,…,sn such that a1s1+a2s2+…+ansn=b ⚫ s1,s2,…,sn is called a solution to a system of linear equations if s1,s2,…,sn is a solution to every equation of the system ⚫ A system may have no solution, may have unique solution (nghiệm nhất), or may have an infinite family of solutions (vô số nghiệm) ⚫ Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ ⚫ ⚫ A system that has no solution is called inconsistent (khơng tương thích) A system that has at least one solution is called consistent (tương thích) Inconsistent (khơng tương thích) No solutions ( vơ nghiệm) Dr Tran Quoc Duy Consistent (tương thích) Unique solution (nghiệm nhất) Infinitely many solutions (vô số nghiệm) Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Example ⚫ x + y = x + y = x + y − z = x + y + z = no solution (0,2,1), (2,0,1) (t,2-t,1) Inconsistent Consistent (infinitely many solutions) (t,2-t,1) is called a general solution and given in parametric form , t is parameter ( t is arbitrary) Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Algebraic Method −1 0 constant matrix (ma trận cột tự do) −1 −1 augmented matrix (ma trận mở rộng) Dr Tran Quoc Duy coefficients matrix ( ma trận hệ số) Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Elementary Operations (biến đổi sơ cấp) Difficult Equivalent Easy Two systems are said to be equivalent if the have the same set of solutions Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Elementary Operations (phép biến đổi sơ cấp) ⚫ Interchange two equations (I) ⚫ Multiply one equation by a nonzero number (II) ⚫ Add a multiple of one equation to a different equation (III) Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Example Consider the system augmented matrix Dr Tran Quoc Duy x − y = x + y = −2 −1 1 −2 Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Gauss-Jordan Elimination (for solving a system of linear equations) Step Using elementary row 1 −10 x + y − 10 z = operations, augmented → 0 x + y + z = matrix→reduced row-echelon 0 0 0 x + y + z = matrix reduced row echelon matrix Step If a row [0 0…0 1] occurs, the system is inconsistent 1 −10 1x + y − 10 z = Step Otherwise, assign the nonleading variables as parameters, 0 0 → 0 x + 1y + 3z = 0 0 0 x + y + z = solve for the leading variables in terms of parameters z=t (parameter) Dr Tran Quoc Duy z is nonleading variable Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 1 −10 x + y − 10 z = → 0 x + y + z = 0 0 0 x + y + z = reduced row echelon matrix Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 1 10 1 10 1 10 −4 −1 → 0 −34 −16 → 0 −34 −16 0 −34 −19 0 0 row echelon matrix inconsistent Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ leading one 1 −2 −1 1 −2 −1 1 1 −2 −1 − → 0 − → 0 − 1 −2 −3 0 −6 3 0 0 0 x2,x4 are nonleading variables, so we set x2=t and x4=s (parameters) and then compute x1, x3 Dr Tran Quoc Duy row echelon matrix Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Example Which condition on the numbers a,b,c is the system 3x + y − z = a x − y + 2z = b 5 x + y − z = c consistent ? unique solution? Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ The rank of a matrix ⚫ The reduced row-echelon form of a matrix A is uniquely determined by A, but the row-echelon form of A is not unique ⚫ The number r of leading 1’s is the same in each of the different row-echelon matrices ⚫ As r depends only on A and not on the row-echelon forms, it is called the rank of the matrix A, and written r=rankA Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ The rank of a matrix ⚫ If the a matrix A has the row-echelon matrix is 0 0 0 0 0 * * * * * 0 * * * 0 * * 0 0 1 0 0 0 then rankA=4 Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Theorem Suppose a system of m equations in n variables has a solution If the rank of the augment matrix is r then the set of solutions involves exactly n-r parameters leading one 1 −2 −1 1 −2 −1 1 1 −2 −1 − → 0 − → 0 − 1 −2 −3 0 −6 3 0 0 0 4(number of variables)- 2(rankA) =2 (two parameters : x2=t, x4=s) Dr Tran Quoc Duy rankA=2 Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ 1.3.Homogeneous Equations (phương trình nhất) ⚫ The system is called homogeneous (thuần nhất) if the constant matrix has all the entry are zeros ⚫ Note that every homogeneous system has at least one solution (0,0,…,0), called trivial solution (nghiệm tầm thường) ⚫ If a homogeneous system of linear equations has nontrivial solution (nghiệm không tầm thường) then it has infinite family of solutions (vô số nghiệm) Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Theorem If a homogeneous system of linear equations has more variables than equations, then it has nontrivial solution (in fact, infinitely many) Note that the converse of theorem is not true Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Summary System of Inconsistent ( no solutions) Consistent Unique solution (exactly one solution) Infinitely many solutions linear equations yes yes yes linear equations that has more variables than equations yes no yes homogeneous linear equations no yes yes homogeneous linear equations that has more variables than equations no no yes Dr Tran Quoc Duy Mathematics for Engineering ĐẠI HỌC FPT CẦN THƠ Dr Tran Quoc Duy Mathematics for Engineering ... THƠ −2 r 1 2−3r r++r r 1 1 −2 −3 11 → −2 −3 11 → 0 11 11 0 −3 1 1 1 −2 r + r → 0 → 0 −3 r2 2 3 1 1 − r 1 1 0 0 →... −3 ( II ) → 1 1 1 ( III ) → 0 1 Solution (0, -1) Theorem Suppose an elementary operation is performed on a system of linear equations Then the resulting system has the same set of solutions... variables a1x1+a2x2+…+anxn=b is called a linear equation ( phương trình tuyến tính ) ⚫ A solution ( nghiệm) to the equation is a sequence s1,s2,…,sn such that a1s1+a2s2+…+ansn=b ⚫ s1,s2,…,sn is