1. Trang chủ
  2. » Kinh Doanh - Tiếp Thị

Solution manual intermediate accounting 15th kiesoch06

16 71 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 16
Dung lượng 41,24 KB

Nội dung

CHAPTER 6 SOLUTIONS TO B EXERCISES E6­1B (5–10 minutes) Rate of Interest Number of Periods a b c 8% 4% 5%   8 40 20 a b c 8% 6% 4% 25 30 28 E6­2B (5–10 minutes) (a) Simple interest of $800 per year X 10 Principal Total withdrawn (b) Interest compounded annually—Future value of 1 @ 8% for 10 periods Total withdrawn (c) Interest compounded semiannually—Future value of 1 @ 4% for 20 periods Total withdrawn $  8,000    10,000 $18,000 2.15892  X        $10,000 $21,589.20 2.19112  X        $10,000 $21,911.20                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­1 E6­3B (10–15 minutes) (a) $14,000 X 1.33823 = $18,735.22 (b) $14,000 X .46651 = $6,531.14 (c) $14,000 X 27.15211 = $380,129.54 (d) $14,000 X 7.46944 = $104,572.16 E6­4B (15–20 minutes) (a) (b) (c) (d) Future value of an ordinary    annuity of $12,000 a period    for 20 periods at 6% Factor (1 + .06) Future value of an annuity    due of $12,000 a period at 6% Present value of an ordinary    annuity of $7,500 for 30     periods at 8% Factor (1 + .08) Present value of annuity    due of $7,500 for 30 periods    at 8% Future value of an ordinary    annuity of $6,000 a period    for 15 periods at 8% Factor (1 + .08) Future value of an annuity    due of $6,000 a period    for 15 periods at 8% Present value of an ordinary    annuity of $3,000 for 6    periods at 10% Factor (1 + .10) Present value of an annuity    date of $3,000 for 6 periods $441,427.08 ($12,000 X 36.78559) X          1.06 $467,912.70 $84,433.35 ($7,500 X 11.25778) X        1.08 $91,188.02 (Or see Table 6­5 which  gives $91,188.08) $162,912.66 ($6,000 X 27.15211) X          1.08 $175,945.66 $13,065.78 ($3,000 X 4.35526) X        1.10                                                                                                                                                                                      6­2 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only)    at 10% E6­5B (10–15 minutes) $14,372.36 (Or see Table 6­5) (a) $50,000 X 5.33493 = $266,746.50 (b) $50,000 X 8.85137 = $442,568.50 (c) ($50,000 X 3.16986 X .56447 = $89,464.54 or (6.14457 – 4.35526) X $50,000 = $89,465.50 (difference of $0.96 due to rounding) E6­6B (15–20 minutes) (a) Future value of $20,000 @ 5% for 20 years    ($20,000 X 2.65330) =  $       53,066.00 (b) Future value of an ordinary annuity of     $2,000,000 at 6% for 10 years    ($2,000,000 X 13.18079) Deficiency ($30,000,000 – $26,361,580) $26,361,580.00 $  3,638,420.00 (c) $80,000 discounted at 6% for 10 years:    $80,000 X 0.55839 =  Accept the cash bonus of $50,000 $       44,671.20                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­3 E6­7B (12–17 minutes) (a) $500,000 X .21455 = $107,275.00 + $50,000 X 9.81815 =   490,907.50 $598,182.50 (b) $500,000 X .14864 = $  74,320.00 + $50,000 X 8.51356 =   425,678.00 $499,998.00 The answer should be $500,000; the above computation is off by $2 due to rounding (c) $500,000 X .10367 = $  51,835.00 + $50,000 X 7.46944 =   373,472.00 $425,307.00 E6­8B (10–15 minutes) (a) Present value of an ordinary annuity of 1    for 4 periods @ 10% Annual withdrawal Required fund balance on June 30, 2017 (b) Fund balance at June 30, 2017 $190,191.60 = $40,980.74 Future amount of ordinary annuity at 10% 4.64100    for 4 years 3.16986  X      $60,000 $190,191.60 Amount of each of four contributions is $40,980.74                                                                                                                                                                                      6­4 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) E6­9B (10 minutes) The rate of interest is determined by dividing the future value by the present value and then find the factor in the FVF table with n = 2 that approximate that number: $246,420 = $200,000 (FVF2, i%) $246,420 ÷ $200,000 = (FVF2, i%)      1.2321 = (FVF2, i%)—reading across the n = 2 row reveals that i = 11% E6­10B (10–15 minutes) (a) The number of interest periods is calculated by first dividing the future value of $2,000,000 by $184,592, which is 10.83471—the value $1 would accumulate to at 10% for the unknown number of interest periods. The factor 10.83471 or its approximate is then located in the “Future value of 1” table by reading down the 10% column to the 25­period line; thus, 25 is the unknown number of years Jafri must wait to for his two million (b) The unknown interest rate is calculated by first dividing the future value of $2,000,000 by the present investment of $365,392, which is 5.47357— the amount $1 would accumulate to in 15 years at an unknown interest rate. The factor or its approximate is then located in the “Future value of 1” table by reading across the 15­period line to the 12% column; thus, 12% is the interest rate Jones must earn for her investment to gow to two million                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­5 E6­11B (10–15 minutes) (a) Total payments – Amount owed today = Total interest $488,235.90 (10 X $48,823.59) – $300,000 = $188,235.90 (b) Loh should borrow from the bank, since the 9% rate is lower than the manufacturer’s 10% rate determined below PV – OA10, i% = $300,000 ÷ $48,823.59 = 6.14557—Inspection  of the 10­period  row reveals a rate   of 10% E6­12B (10–15 minutes) Building A—PV = $1,500,000 Building B— Rent X (PV of annuity due of 25 periods at 8%) = PV $125,000 X 11.52876 = PV $1,441,095.00 = PV Building C— Rent X (PV of ordinary annuity of 25 periods at 8%) = PV $21,000 X 10.67478 = PV $224,170.38 = PV Cash purchase price PV of rental income      Net present value $1,750,000.00 –   224,170.38 $1,525,829.62 Answer:   Lease   Building   B   since   the   present   value   of   its   net   cost   is   the smallest                                                                                                                                                                                      6­6 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) E6­13B (15–20 minutes) Time diagram: PV = ? PV – OA = ? Loyd Inc    i = 4% $275,000    $275,000   $275,000  Principal $5,000,000   Interest $275,000   $275,000   $275,000          0            1            2            3                        28          29          30 n = 30 Formula for the interest payments: PV – OA = R (PVF – OAn, i) PV – OA = $275,000 (PVF – OA30, 4%) PV – OA = $275,000 (17.29203) PV – OA = $4,755,308.25 Formula for the principal: PV = FV (PVFn, i) PV = $5,000,000 (PVF30, 4%) PV = $5,000,000 (0.30832) PV = $1,541,600 The selling price of the bonds = $4,755,308.25 + $1,541,600 = $6,296,908.25                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­7 E6­14B (15–20 minutes) Time diagram: i = 8%       R =       $2,800,000            $2,800,000   $2,800,000     PV – OA = ?          0           1           2                        15         16                       24         25    n = 15                              n = 10 Formula: PV – OA = R (PVF – OAn, i ) PV – OA = $2,800,000 (PVF – OA25–15, 8%) PV – OA = $2,800,000 (10.67478 – 8.55948) PV – OA = $2,800,000 (2.11530) PV – OA = $5,922,840 OR Time diagram:     PV – OA = ? i = 8%        R =       $2,800,000            $2,800,000   $2,800,000          0           1           2                        15         16                       24         25       FV(PVn, i)                      (PV – OAn, i )                                                                                                                                                                                      6­8 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) E6­14B (Continued) (i) Present value of the expected annual pension payments at the end of the 15th year: PV – OA = R (PVF – OAn, i) PV – OA = $2,800,000 (PVF – OA10, 8%) PV – OA = $2,800,000 (6.71008) PV – OA = $18,788,224 (ii) Present value of the expected annual pension payments at the beginning of the current year: PV = FV (PVF – OAn, i) PV = $18,788,224 (PVF – OA15,8%) PV = $18,788,224 (0.31524) PV = $5,922,800* *$40 difference due to rounding The company’s pension obligation (liability) is $5,922,800                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­9 E6­15B (15–20 minutes) (a) PV = $525,000     i = 4% FV = $1,000,000                               0            1            2                                            n = ? FVF(n, 4%) = $1,000,000 ÷ $525,000 = 1.9048 reading   down   the   4%   column,   1.9048   corresponds   to   approximately   16 ½ years (b) By setting aside $200,000 now, Lee can gradually build the fund to an amount to establish the foundation PV = $200,000          FV = ?                      0            1            2                                 5            6 FV = $200,000 (FVF6, 4%) = $200,000 (1.26532) = $253,064—Thus, the amount needed from the annuity:       $1,000,000 – $253,064 = $746,936       $?          $?                              $?   FV = $746,936 01256 Payments =FVữ(FVOA6,4%) =$746,936ữ6.63298 =$112,609.41 6ư10 Copyrightâ2014JohnWiley&Sons,Inc.Kieso,IntermediateAccounting,15/e,ExerciseBSolutions(ForInstructorUseOnly) E6ư16B(1015minutes) AmounttoberepaidonMarch1,2023: Time diagram: i = 5% per 6 months PV = $200,000      FV = ? 3/1/13           3/1/14              3/1/15             3/1/21              3/1/21             3/1/23 n = 20 6­month periods Formula: FV = PV (FVFn, i) FV = $200,000 (FVF20, 5%) FV = $200,000 (2.65330) FV = $530,660 Amount of annual contribution to retirement fund: Time diagram: i = 8%                            R            R           R            R           R    FV – AD =                         R = ?         ?            ?            ?           ?      $530,660                         3/1/18   3/1/19     3/1/20    3/1/21   3/1/22    3/1/23 Future value of ordinary annuity of 1 for 5 periods at 8% Factor (1 + .08) Future value of an annuity due of 1 for 5 periods at 8% Periodic rent ($530,660 ÷ 6.33593) 5.86660  X        1.08000 6.33593 $83,754.08                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­11 E6­17B (10–15 minutes) Time diagram: i = 10%                                                R                        R          R                   PV – OA = $250,000  ?                         ?           ?                                   0           1                       24         25 n = 25 Formula:    PV – OA = R (PV – OAn, i) $250,000 = R (PVF – OA25, 10%) $250,000 = R (9.07704)     R = $250,000 ÷ 9.07704     R = $27,542.02 E6­18B (10–15 minutes) Time diagram: i = 6%                           PV – OA = ?   $200,000   $200,000                  $200,000   $200,000   $200,000                             0            1            2                         8            9           10 n = 10 Formula: PV – OA = R (PVF – OAn, i%) PV – OA = $200,000 (PVF – OA10, 6%) PV – OA = $200,000 (7.36009) R = $1,472,018                                                                                                                                                                                      6­12 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) The recommended method of payment would be the 10 annual payments of $200,000, since the present value of those payments ($1,472,018) is less than the alternative immediate cash payment of $1,500,000                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­13 E6­19B (10–15 minutes) Time diagram: i = 6%                  PV – AD = ?                        R =                   $200,000   $200,000  $200,000                   $200,000   $200,000                        0            1            2                         8            9          10 n = 10 Formula: Using Table 6­4 Using Table 6­5 PV – AD = R (PVF – OAn, i) PV – AD = R (PVF – ADn, i) PV – AD = $200,000 (7.36009 X 1.06) PV – AD = $200,000(PVF – AD10, 6%) PV – AD = $200,000 (7.80169) PV – AD = $200,000 (7.80169) PV – AD = $1,560,338 PV – AD = $1,560,338 The recommended method of payment would be the immediate cash payment of   $1,500,000,   since   that   amount   is   less   than   the   present   value   of   the   10 annual payments of $200,000 ($1,560,338)                                                                                                                                                                                      6­14 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) E6­20B (5–10 minutes)  (a) Estimated Cash  Probability       Expected  Outflow   X        Assessment  = Cash Flow $2,800 30% $   840   6,400 40% 2,560   8,500 30% 2,550 $3,950 (b) Estimated Cash  Probability       Expected  Outflow   X        Assessment  = Cash Flow $3,400 40% $1,360   7,100 50% 3,550   7,400 10%   740 $5,650 (c) Estimated Cash  Probability       Expected  Outflow   X        Assessment  = Cash Flow $(1,000) 20% $  (200) 3,000 70% 2,100 4,000 10%   400 $2,300                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) 6­15 E6­21B (10–15 minutes) Estimated Cash  Probability       Expected    Outflow   X                Assessment  = Cash Flow $ 500 10% $ 50 1,200 25% 300 2,000 50% 1,000 2,500 15%    375      X PV Factor, n = 4, i = 4%  $ 1,725 X0.85480 Present Value $1,474.53 E6­22B (15–20 minutes) (a) This   exercise   determines   the  present   value   of   an   ordinary   annuity   or expected cash flows as a fair value estimate Cash flow  Probability     Expected  Estimate    X        Assessment  = Cash Flow $1,000,000 30% $ 300,000 1,600,000 50% 800,000 2,100,000 20% 420,000 X PV Factor, n = 6, I = 4% Present Value  $  1,520,000 X 5.24214  $ 7,968,053 The fair value estimate of the trade name is less than the carrying value; thus, an impairment is recorded (b) This fair value is based on unobservable inputs—Houston’s own data on the expected future cash flows associated with the trade name. This fair value estimate is considered Level 3                                                                                                                                                                                      6­16 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting, 15/e, Exercise B Solutions   (For Instructor Use Only) ... Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting,  15/e, Exercise B Solutions   (For Instructor Use Only) E6­14B (Continued) (i) Present value of the expected annual pension payments at the end of the 15th year:...                                                                                                                                                                                      Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting,  15/e, Exercise B Solutions   (For Instructor Use Only) 6­3 E6­7B (12–17 minutes) (a) $500,000 X .21455...                                                                                                                                                                                      6­4 Copyright © 2014 John Wiley & Sons, Inc.   Kieso, Intermediate Accounting,  15/e, Exercise B Solutions   (For Instructor Use Only) E6­9B (10 minutes) The rate of interest is determined by dividing the future value by the present

Ngày đăng: 22/08/2019, 14:15

TỪ KHÓA LIÊN QUAN

w