1. Trang chủ
  2. » Giáo án - Bài giảng

Tai lieu 12- laze-spin

158 353 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 158
Dung lượng 5,21 MB

Nội dung

Laser Bách khoa toàn thư mở Wikipedia Bước tới: menu, tìm ki ế m Laser He-Ne Laser là tên viết tắt của cụm từ Light Amplification by Stimulated Emission of Radiation trong tiếng Anh, và có nghĩa là "khuếch đại ánh sáng bằng phát xạ kích thích". Electron tồn tại ở các mức năng lượng riêng biệt trong một nguyên tử. Các mức năng lượng có thể hiểu là tương ứng với các quỹ đạo riêng biệt của electron xung quanh hạt nhân. Electron ở bên ngoài sẽ có mức năng lượng cao hơn những electron ở phía trong. Khi có sự tác động vật lý hay hóa học từ bên ngoài, các hạt electron này cũng có thể nhảy từ mức năng lượng thấp lên mức năng lượng cao hay ngược lại. Các quá trình này có thể sinh ra hay hấp thụ các tia sáng (photon) theo giả thuyết của Albert Einstein. Bước sóng (do đó màu sắc) của tia sáng phụ thuộc vào sự chênh lệch năng lượng giữa các mức. Có nhiều loại laser khác nhau, có thể ở dạng hỗn hợp khí, ví dụ He-Ne, hay dạng chất lỏng, song có độ bức xạ lớn nhất vẫn là tia laser tạo bởi các thành phần từ trạng thái chất rắn. Lịch sử Laser được phỏng theo maser, một thiết bị có cơ chế tương tự nhưng tạo ra tia vi sóng hơn là các bức xạ ánh sáng. Maser đầu tiên được tạo ra bởi Charles H. Towne s và sinh viên tốt nghiệp J.P. Gordon và H.J. Zeiger vào năm 1953. Maser đầu tiên đó không tạo ra tia sóng một cách liên tục. Nikolay Gennadiyevich Basov và Aleksandr Mikhailovich Prokhorov của Liên bang Xô viết đã làm việc độc lập trên lĩnh vực lượng tử dao động và tạo ra hệ thống phóng tia liên tục bằng cách dùng nhiều hơn 2 mức năng lượng. Hệ thống đó có thể phóng ra tia liên tục mà không cho các hạt xuống mức năng lượng bình thường, vì thế vẫn giữ tần suất. Năm 1964, Charles Townes, Nikolai Basov và Aleksandr Prokhorov cùng nhận giải thưởng Nobel vật lý về nền tảng cho lĩnh vực điện tử lượng tử, dẫn đến việc tạo ra máy dao động và phóng đại dựa trên thuyết maser-laser. Laser hồng ngọc, một laser chất rắn, được tạo ra lần đầu tiên vào năm 1960, bởi nhà vật lý Theodore Maiman tại phòng thí nghiệm Hughes Laboratory ở Malibu, California. Hồng ngọc là ôxít nhôm pha lẫn crôm. Crôm hấp thụ tia sáng màu xanh lá cây và xanh lục, để lại duy nhất tia sáng màu hồng phát ra. Robert N. Hall phát triển laser bán dẫn đầu tiên, hay laser diod, năm 1962. Thiết bị của Hall xây dựng trên hệ thống vật liệu gali-aseni và tạo ra tia có bước sóng 850 nanômét, gần vùng quang phổ tia hồng ngoại. Laser bán dẫn đầu tiên với tia phát ra có thể thấy được được trưng bày đầu tiên cùng năm đó. Năm 1970, Zhores Ivanovich Alferov của Liên Xô và Hayashi và Panish của Phòng thí nghiệm Bell đã độc lập phát triển laser diode hoạt động liên tục ở nhiệt độ trong phòng, sử dụng cấu trúc đa kết nối. Cấu tạo Cấu tạo cơ bản v cà ơ chế hoạt động của laser. 1) Buồng cộng hưởng (vùng bị kích thích) 2) Nguồn nuôi (năng lượng bơm v o vùng bà ị kích thích) 3) g ươ ng ph ả n x ạ to n phà ần 4) g ươ ng b án m ạ 5) tia laser • Nguyên lý cấu tạo chung của một máy laser gồm có: buồng cộng hưởng chứa hoạt chất laser, nguồn nuôi v hà ệ thống dẫn quang. Trong đó buồng cộng hưởng với hoạt chất laser l bà ộ phận chủ yếu. • Buồng cộng hưởng chứa hoạt chất laser, đó l mà ột chất đặc biệt có khả năng khuyếch đại ánh sáng bằng phát xạ cưỡng bức để tạo ra laser. Khi 1 photon tới va chạm v o hoà ạt chất n y thì kéo theo à đó l à 1 photon khác bật ra bay theo cùng hướng với photon tới. mặt khác buồng công hưởng có 2 mặt chắn ở hai đầu, một mặt phản xạ to n à phần các photon khi bay tới, mặt kia cho một phần photon qua một phần phản xạ lại l m cho các hà ạt photon va chạm liên tục v o hoà ạt chất laser nhiều lần tạo mật độ photon lớn. Vì thế cường độ chùm laser được khuếc đại lên nhiều lần. Tính chất của laser phụ thuộc v o hoà ạt chất đó, do đó người ta căn cứ v o hoà ạt chất để phân loại laser. Cơ chế Một ví dụ về cơ chế hoạt động của laser có thể được miêu tả cho laser thạch anh. • Dưới sự tác động của hiệu điện thế cao, các electron của thạch anh di chuyển từ mức năng lượng thấp lên mức năng lương cao tạo nên trạng thái đảo nghịch mật độ của electron. • Ở mức năng lượng cao, một số electron sẽ rơi ngẫu nhiên xuống mức năng lượng thấp, giải phóng hạt ánh sáng được gọi là photon. • Các hạt photon n y sà ẽ toả ra nhiều hướng khác nhau từ một nguyên tử, va phải các nguyên tử khác, kích thích eletron ở các nguyên tử n y rà ơi xuống tiếp, sinh thêm các photon cùng t ầ n s ố , cùng pha v à cùng hướng bay, tạo nên một phản ứng dây chuyền khuyếch đại dòng ánh sáng. • Các hạt photon bị phản xạ qua lại nhiều lần trong vật liệu, nhờ các gương để tăng hiệu suất khuếch đại ánh sáng. • Một số photon ra ngo i nhà ờ có g ươ ng bán m ạ tại một đầu của vật liệu. Tia sáng đi ra chính l tia laser.à Phân loại Laser chất rắn Có khoảng 200 chất rắn có khả năng dùng làm môi trường hoạt chất laser. Một số loại laser chất rắn thông dụng: • YAG-Neodym: hoạt chất l Yttrium Aluminium Garnet (YAG) cà ộng thêm 2-5% Neodym, có bước sóng 1060nm thuộc phổ hồng ngoại gần. Có thể phát liên tục tới 100W hoặc phát xung với tần số 1000- 10000Hz. • Hồng ngọc (Rubi): hoạt chất l tinh thà ể Alluminium có gắn những ion chrom, có bước sóng 694,3nm thuộc vùng đỏ của ánh sáng trắng. • Bán dẫn: loại thông dụng nhất l diot Gallium Arsen có bà ước sóng 890nm thuộc phổ hồng ngoại gần. Laser chất khí • He-Ne: hoạt chất l khí Heli v Neon, có bà à ước sóng 632,8nm thuộc phổ ánh sáng đỏ trong vùng nhìn thấy, công suất nhỏ từ một đến v i à chục mW. • Argon: hoạt chất l khà í argon, bước sóng 488 v 514,5nm.à • CO2: bước sóng 10.600nm thuộc phổ hồng ngoại xa, công suất phát xạ có thể tới megawatt (MW). Trong y học ứng dụng l m dao mà ổ. LASER chất lỏng Môi trường hoạt chất là chất lỏng, thông dụng nhất là laser màu. Tính chất • Độ định hướng cao: tia laser phát ra hầu như l chùm song song do à đó khả năng chiếu xa h ng nghìn km m không bà à ị phân tán. • Tính đơn sắc rất cao: chùm sáng chỉ có một m u (hay mà ột bước sóng) duy nhất. Do vậy chùm laser không bị tán xạ khi đi qua mặt phân cách của hai môi trường có chiết suất khác nhau. Đây l tính à chất đặc biệt nhất m không nguà ồn sáng n o có.à • Tính đồng bộ của các photon trong chùm tia laser. • Có khả năng phát xung cực ngắn: cỡ mili giây (ms), nano giây, pico giây, cho phép tập trung năng lượng tia laser cực lớn trong thời gian cực ngắn. Các chế độ hoạt động Laser có thể được cấu tạo để hoạt động ở trạng thái bức xạ sóng liên tục (hay CW - continuous wave) hay bức xạ xung (pulsed operation). Điều này dẫn đến những khác biệt cơ bản khi xây dựng hệ laser cho những ứng dụng khác nhau. Chế độ phát liên tục Trong chế độ phát liên tục, công suất của một laser tương đối không đổi so với thời gian. Sự đảo nghịch mật độ (electron) cần thiết cho hoạt động laser được duy trì liên tục bởi nguồn bơm năng lượng đều đặn. Chế độ phát xung Trong chế độ phát xung, công suất laser luôn thay đổi so với thời gian, với đặc trưng là các giai đoạn “đóng” và “ngắt” cho phép tập trung năng lượng cao nhất có thể trong một thời gian ngắn nhất có thể. Các dao laser là một ví dụ, với năng lượng đủ để cung cấp một nhiệt lượng cần thiết, chúng có thể làm bốc hơi một lượng nhỏ vật chất trên bề mặt mẫu vật trong thời gian rất ngắn. Tuy nhiên, nếu cùng năng lượng như vậy nhưng tiếp xúc với mẫu vật trong thời gian dài hơn thì nhiệt lượng sẽ có thời gian để xuyên sâu vào trong mẫu vật do đó phần vật chất bị bốc hơi sẽ ít hơn. Có rất nhiều phương pháp để đạt được điều này, như: • Ph ươ ng pháp chuy ể n m ạ ch Q (Q-switching) • Ph ươ ng pháp ki ể u khoá (modelocking) • Ph ươ ng pháp b ơ m xung (pulsed pumping) An toàn Laser với cường độ thấp, chỉ là vài miliwatt, cũng có thể nguy hiểm với mắt người. Tại bước sóng mà giác mạc mắt và thủy tinh thể có thể tập trung tốt, nhờ tính đồng nhất và sự định hướng cao của laser, một công suất năng lượng lớn có thể tập trung vào một điểm cực nhỏ trên võng mắt. Kết quả là một vết cháy tập trung phá hủy các tế bào mắt vĩnh viễn trong vài giây, thậm chí có thể nhanh hơn. Độ an toàn của laser được xếp từ I đến IV. Với độ I, tia laser tương đối an toàn. Với độ IV, thậm chí chùm tia phân kỳ có thể làm hỏng mắt hay bỏng da. Các sản phẩm laser cho đồ dân dụng như máy chơi CD và bút laser dùng trong lớp học được xếp hạng an toàn từ I, II, hay III. (Xem thêm an toàn laser) Ứng dụng của laser Laser ứng dụng trong điều trị bệnh da li ễ u . Vào thời điểm được phát minh năm 1960, laser được gọi là "giải pháp để tìm kiếm các ứng dụng". Từ đó, chúng trở nên phổ biến, tìm thấy hàng ngàn tiện ích trong các ứng dụng khác nhau trên mọi lĩnh vực của xã hội hiện đại, như phẫu thuật mắt, hướng dẫn phương tiện trong tàu không gian, trong các phản ứng hợp nhất hạt nhân . Laser được cho là một trong những phát minh ảnh hưởng nhất trong thế kỉ 20. Ích lợi của laser đối với các ứng dụng trong khoa học, công nghiệp, kinh doanh nằm ở tính đồng pha, đồng màu cao, khả năng đạt được cường độ sáng cực kì cao, hay sự hợp nhất của các yếu tố trên. Ví dụ, sự đồng pha của tia laser cho phép nó hội tụ tại một điểm có kích thước nhỏ nhất cho phép bởi giới hạn nhiễu xạ, chỉ rộng vài nanômét đối với laser dùng ánh sáng. Tính chất này cho phép laser có thể lưu trữ vài gigabyte thông tin trên các rãnh của DVD. Cũng là điều kiện cho phép laser với công suất nhỏ vẫn có thể tập trung cường độ sáng cao và dùng để cắt, đốt và có thể làm bốc hơi vật liệu trong kỹ thuật cắt bằng laser. Ví dụ, một laser Nd:YAG, sau quá trình nhân đôi tần số, phóng ra tia sáng xanh tại bước sóng 523 nm với công suất 10 W có khả năng, trên lý thuyết, đạt đến cường độ sáng hàng triệu W trên một cm vuông. Trong thực tế, thì sự tập trung hoàn toàn của tia laser trong giới hạn nhiễu xạ là rất khó. Xem thêm ứng dụng của laser để thêm chi tiết. Tia sáng laser với cường độ cao có thể cắt thép và các kim loại khác. Tia từ laser thường có độ phân kì rất nhỏ, (độ chuẩn trực cao). Độ chuẩn trực tuyệt đối là không thể tạo ra, bởi giới hạn nhiễu xạ. Tuy nhiên, tia laser có độ phân kỳ nhỏ hơn so với các nguồn sáng. Một tia laser được tạo từ laser He-Ne, nếu chiếu từ Trái Đất lên Mặt Trăng, sẽ tạo nên một hình tròn đường kính khoảng 1 dặm (1,6 kilômét). Một vài laser, đặc biệt là với laser bán dẫn, có với kích thước nhỏ dẫn đến hiệu ứng nhiễu xạ mạnh với độ phân kỳ cao. Tuy nhiên, các tia phân kỳ đó có thể chuyển đổi về tia chuẩn trục bằng các thấu kính hội tụ. Trái lại, ánh sáng không phải từ laser không thể làm cho chuẩn trực bằng các thiết bị quang học dễ dàng, vì chiều dài đồng pha ngắn hơn rất nhiều tia laser. Định luật nhiễu xạ không áp dụng khi laser được truyền trong các thiết bị dẫn sóng như sợi thủy tinh. Laser cường độ cao cũng tạo nên các hiệu ứng thú vị trong quang học phi tuyến tính. Các sai lầm Sự hiện diện của laser trong trong các tác phẩm khoa học viễn tưởng, hay phim hành động, cũng như lời bình phẩm nói chung dẫn đến các suy nghĩ sai lầm. Ví dụ, trái với những gì xuất hiện trên phim như Star Wars, tia laser không bao giờ nhìn thấy trong chân không, do chân không không có tán xạ ánh sáng. Trong không khí, tia laser có thể va chạm với bụi hay vật cản trên đường và bị tán xạ, tạo ra các tia lóe sáng; tương tự như ánh nắng mặt trời tỏa sáng trong môi trường bụi. Kĩ xảo này ứng dụng cho tia laser có thể nhìn thấy, như trong mục đích chụp ảnh, bằng cách tăng số lượng các hạt trong không khí, như là dùng bình xịt thơm. Tia laser với cường độ cao có thể nhìn thấy trong không khí nhờ vào tán xạ Rayleigh hay tán xạ Raman. Với các tia có cường độ cao hơn, tập trung tại một điểm nhỏ, không khí có thể bị nung lên đến trạng thái plasma, do đó laser có thể được thấy nhờ bức xạ từ plasma này. Tuy nhiên sự tăng áp suất đột ngột khi không khí bị nóng nhanh có thể tạo ra tiếng nổ lớn, và tạo ra sự phản hồi của tia laser làm hư thiết bị (tùy vào thiết kế của laser). Trong phim khoa học viễn tưởng, các hiệu ứng đặc biệt thường miêu tả các vũ khí laser truyền đi vài mét trong một giây, trái với thực tế là tia laser di chuyển với vận tốc ánh sáng, nhanh đến mức không thể thấy sự di chuyển của tia laser. Một vài cảnh phim miêu tả hệ thống an toàn sử dụng laser đỏ, có thể được vô hiệu hóa bởi các nhân vật bằng việc là sử dụng gương, khi người này nhìn thấy tia laser bằng cách rải các bụi trắng vào không khí. Thực tế thì hệ thống an toàn có thể dùng tia laser hồng ngoại hơn là tia laser thấy được. Cấu trúc hệ thống laser Bách khoa toàn thư mở Wikipedia Bước tới: menu, tìm ki ế m Cấu trúc hệ thống laser phần lớn gồm 3 phần: • Nguồn năng lượng (thường gọi l nguà ồn bơm); • Môi trường kích thích, hay môi trường laser; • Gương hay hệ thống gương, tạo nên hệ thống khuyếch đại quang học Nguồn bơm là phần cung cấp năng lượng cho hệ thống laser. Ví dụ bao gồm cực phóng điện, đèn nháy, đèn hồ quang, ánh sáng từ laser khác. Việc lựa chọn loại nguồn bơm nào để sử dụng dựa chủ yếu vào môi trường kích thích là loại gì, và điều này là yếu tố chủ chốt quyết định làm sao mà năng lượng truyền vào trong môi trường. Laser He-Ne dùng cực phóng điện trong hỗn hợp khí Hêli Neon. Laser Nd:YAG dùng ánh sáng hội tụ từ đèn nháy Xenon. Laser từ đôi nguyên tử có Heli dùng phản ứng hóa học để nạp năng lượng. Môi trường kích thích là yếu tố chính quyết định bước sóng, và các tính chất khác của tia laser. Có hàng trăm môi trường kích thích có thể làm được. Môi trường kích thích bị kích thích bằng nguồn bơm tạo ra sự kích thích đồng đều giữa các electron, cần thiết cho sự phát xạ kích thích các hạt photon, dẫn đến hiện tượng khuyếch đại ánh sáng. Ví dụ về các loại laser: • Dạng lỏng, như laser sử dụng chất nhuộm. Sử dụng các dung môi như metan, etan,, thêm v o chà ất nhuộm hữu cơ chiết xuất từ thực vật(coumarin, rhomadine và florescen) Cấu trúc của chất nhuộm quyết định bước sóng hoạt động của laser • Dạng khí, dùng argon, CO2, kryton, v hà ổn hợp Heli-Neon. các loại n y sà ử dụng nguồn bơm l à ắc quy. • Dạng rắn, như tinh thể v gà ương. Chất rắn chủ đạo pha thêm các tạp chất như crôm, neodymium hay titan. Chất rắn chính thường l à YAG(Ytri, nhôm và Garnet)YLF(Ytri, Liti, flo), sapphia(oxit nhôm), gương silica). Ví dụ : Nd:YAG, Ti:sapphia, Cr:sapphia(gọi l hông à ngọc), Cr:LiSAF, Er:YLF v Nd: glass. Sà ử dụng đèn nhát hay ánh sáng từ laser khác l m nguà ồn kích thích. • Laser bán dẫn, trong đó sự chuyển động của hạt electron giữa vật chất với tầng điện tích khác nhau tạo ra hiệu ứng laser. Laser bán dẫn thường l gà ọn nhẹ, l m các thià ết bị dùng cho đĩa hát. Xem thêm laser diod. Các máy khuyếch tán ánh sáng, có 2 gương song song đặt xung quang gương. Ánh sáng từ trong môi trường, tạo ra từ sự kích thích, phản xạ bởi gương trở lại trong môi trường, vì thế các photon này tích tụ càng nhiều đến khi hàng trăm lần trước khi thoát ra ngoài. Trong các laser phức tạp, có từ 4 trở lên gương được tạo nên. Thiết kế và sắp xếp của gương là quyết định bước sóng và các ảnh hưởng khác đến hệ thống laser Danh sách các loại laser Bách khoa toàn thư mở Wikipedia Bước tới: menu, tìm ki ế m Sau đây là danh sách các loại laser, bước sóng và ứng dụng: Laser khí Môi trường kích thích v loà ại B ướ c sóng Nguồn kích thích Ứng dụng v ghi chà ú Laser khí He-Ne 632.8 nm (543.5 nm, 593.9 nm, 611.8 nm, 1.1523 mμ , 1.52 m, μ 3.3913 m)μ Cực phóng điện Giao thoa k ế , holograph, quang ph ổ h ọ c , đọc mã v ạ ch , cân chỉnh, miêu tả quang học. Laser khí ion Argon 488.0 nm, 514.5 nm, (351 nm, 465.8 nm, 472.7 nm, 528.7 nm) Cực phóng điện Chữa trị võng m ạ c bằng ánh sáng (cho người b ệ nh ti ể u đườ ng ), in th ạ ch b ả n , l nguà ồn kích thích các laser khác. Laser khí Ion Kryton 416 nm, 530.9 nm, 568.2 nm, 647.1 nm, 676.4 nm, 752.5 nm, 799.3 nm Cực phóng điện Nghiên cứu khoa học, trình diễn ánh sáng. Laser khí ion Xenon Nhiều vạch từ c ự c tím đến h ồ ng ngo ạ i . Cực phóng điện Nghiên cứu khoa học. Laser khí Nit ơ 337.1 nm Cực phóng điện L nguà ồn kích thích cho laser m u, à đo độ ô nhiễm, nghiên cứu khoa học, Laser nitơ có khả năng hoạt động ở cường độ yếu. Laser H-F 2.7 đến 2.9 m μ (H-F) 3.6 đến 4.2 m (μ D-F) Phản ứng cháy ethylene v à N F 3 Dùng cho nghiên cứu vũ khí laser, dùng sóng phát ra liên tục v có tính côngà phá lớn. Laser (cuộn) hóa học Ôxy-I ố t 1.315 mμ Phản ứng hóa học trong giữa Ô-xy v à I- ố t , V ũ khí laser , nghiên cứu vật liệu v khoa hà ọc. Laser thán khí th ể khí 10.6 m, (9.4μ m)μ Phóng điện ngang (công suất cao) hay dọc (công suất thấp) Gia công vật liệu (c ắ t , h nà ), ph ẫ u thu ậ t . Laser khí CO 2.6 đến 4 m, 4.8μ đến 8.3 μm Cực phóng điện Gia công vật liệu (ch ạ m kh ắ c , h nà ), ph ổ h ọ c quang-âm. Excimer laser 193 nm (ArF), 248 nm (KrF), 308 nm (XeCl), 353 nm (XeF) Excimer tái hợp nhờ phóng điện Quang th ạ ch b ả n c ự c tím cho chế tạo link kiện bán d ẫ n , ph ẫ u thu ậ t laser, LASIK. B i n y còn à à s ơ khai trong lĩnh vực V ậ t lý . Chúng ta đang có những nỗ lực để ho n thià ện b ià n y.à Nếu bạn biết về vấn đề n y, bà ạn có thể giúp đỡ bằng cách vi ế t b ổ sung (tr ợ giúp). Lấy từ “http://vi.wikipedia.org/wiki/Danh_s%C3%A1ch_c%C3%A1c_lo %E1%BA%A1i_laser” Th ể lo ạ i : S ơ th ả o v ậ t lý | Laser | Danh sách Silic Bách khoa toàn thư mở Wikipedia Bước tới: menu, tìm ki ế m Silic là tên một nguyên tố hóa học trong bảng tuần hoàn nguyên tố có ký hiệu Si và số nguyên tử bằng 14. Nó là nguyên tố phổ biến sau ôxy trong vỏ Trái Đất (25,7 %), cứng, có màu xám sẫm - ánh xanh kim loại, là á kim có hóa trị +4. 14 nhôm ← silic → ph ố tpho C

Ngày đăng: 06/09/2013, 05:10

TỪ KHÓA LIÊN QUAN

w