1. Trang chủ
  2. » Giáo Dục - Đào Tạo

ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối: B

1 299 0
Tài liệu đã được kiểm tra trùng lặp

Đang tải... (xem toàn văn)

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 1
Dung lượng 220,85 KB

Nội dung

Tài liệu tham khảo và tuyển tập đề thi ,đáp án đề thi đại học, cao đẳng môn toán giúp các bạn ôn thi tốt và đạt kết quả cao trong kỳ thi tốt nghiệp trung học phổ thông và tuyển sinh cao đẳng, đại học . Chúc các bạn thi tốt!

BỘ GIÁO DỤC VÀ ĐÀO TẠO ĐỀ CHÍNH THỨC ĐỀ THI TUYỂN SINH ĐẠI HỌC NĂM 2009 Môn: TOÁN; Khối: B Thời gian làm bài: 180 phút, không kể thời gian phát đề PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2,0 điểm) Cho hàm số (1). 4 24yx x=− 2 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Với các giá trị nào của phương trình ,m 22 |2|x xm− = có đúng 6 nghiệm thực phân biệt ? Câu II (2,0 điểm) 1. Giải phương trình 3 sin cos sin 2 3cos3 2(cos4 sin ).x xx x x x++=+ 2. Giải hệ phương trình 22 2 17 (, ). 113 xy x y xy xy xy y ++= ⎧ ∈ ⎨ ++= ⎩ \ Câu III (1,0 điểm) Tính tích phân 3 2 1 3ln . (1) x Id x + = + ∫ x Câu IV (1,0 điểm) Cho hình lăng trụ tam giác .'''ABC A B C có ',BBa= góc giữa đường thẳng 'BB và mặt phẳng bằng tam giác (ABC) 60 ; D ABC vuông tại và C n BAC = 60 . D Hình chiếu vuông góc của điểm 'B lên mặt phẳng ()ABC trùng với trọng tâm của tam giác .ABC Tính thể tích khối tứ diện 'A ABC theo .a Câu V (1,0 điểm) Cho các số thực ,x y thay đổi và thoả mãn () 3 42.xy xy+≥ Tìm giá trị nhỏ nhất của biểu thức + 4422 22 3( ) 2( ) 1Axyxy xy =++ −++ . PHẦN RIÊNG (3,0 điểm) Thí sinh chỉ được làm một trong hai phần (phần A hoặc B) A. Theo chương trình Chuẩn Câu VI.a (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho đường tròn ,Oxy 22 4 ():( 2) 5 Cx y − += và hai đường thẳng 1 :0xy ,Δ −= Xác định toạ độ tâm 2 :70xyΔ−=. K và tính bán kính của đường tròn ( biết đường tròn tiếp xúc với các đường thẳng và tâm 1 );C 1 ()C 12 ,ΔΔ K thuộc đường tròn ().C 2. Trong không gian với hệ toạ độ cho tứ diện ,Oxyz ABCD có các đỉnh và Viết phương trình mặt phẳng đi qua sao cho khoảng cách từ đến bằng khoảng cách từ đến ( (1;2;1), ( 2;1;3), (2; 1;1)AB C−− (0;3;1).D ()P ,AB C ()P D ).P Câu VII.a (1,0 điểm) Tìm số phức thoả mãn: z (2 ) 10zi−+= và . 25.zz= B. Theo chương trình Nâng cao Câu VI.b (2,0 điểm) 1. Trong mặt phẳng với hệ toạ độ cho tam giác ,Oxy ABC cân tại A có đỉnh và các đỉnh (1;4)A − ,B C thuộc đường thẳng Xác định toạ độ các điểm :4xyΔ−−=0. B và biết diện tích tam giác ,C ABC bằng 18. 2. Trong không gian với hệ toạ độ cho mặt phẳng ,Oxyz (): 2 2 5 0Px y z− +−= và hai điểm (3;0;1),A − Trong các đường thẳng đi qua (1; 1; 3).B − A và song song với hãy viết phương trình đường thẳng mà khoảng cách từ (),P B đến đường thẳng đó là nhỏ nhất. Câu VII.b (1,0 điểm) Tìm các giá trị của tham số để đường thẳng m yxm = −+ cắt đồ thị hàm số 2 1x y x − = tại hai điểm phân biệt sao cho ,AB 4.AB = ---------- Hết ---------- Thí sinh không được sử dụng tài liệu. Cán bộ coi thi không giải thích gì thêm. Họ và tên thí sinh: .; Số báo danh: . .'''ABC A B C có ',BBa= góc giữa đường thẳng 'BB và mặt phẳng b ng tam giác (ABC) 60 ; D ABC vuông tại và C n BAC = 60 . D Hình. giác ,Oxy ABC cân tại A có đỉnh và các đỉnh (1;4)A − ,B C thuộc đường thẳng Xác định toạ độ các điểm :4xyΔ−−=0. B và biết diện tích tam giác ,C ABC b ng 18.

Ngày đăng: 04/09/2013, 09:51

TỪ KHÓA LIÊN QUAN