1. Trang chủ
  2. » Luận Văn - Báo Cáo

Mô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kết (Luận văn thạc sĩ)

46 86 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 46
Dung lượng 0,95 MB

Nội dung

Mô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kếtMô hình Bose – Hubbard của các nguyên tử siêu lạnh trong gần đúng tách liên kết

BỘ GIÁO DỤC VIỆN HÀN LÂM KHOA HỌC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Họ tên: Hồng Thị Xn Diệu TÊN ĐỀ TÀI: HÌNH BOSE HUBBARD CỦA CÁC NGUYÊN TỬ SIÊU LẠNH TRONG GẦN ĐÚNG TÁCH LIÊN KẾT LUẬN VĂN THẠC SĨ: VẬT LÝ Hà Nội, 04 - 2019 BỘ GIÁO DỤC VIỆN HÀN LÂM KHOA HỌC VÀ ĐÀO TẠO VÀ CÔNG NGHỆ VIỆT NAM HỌC VIỆN KHOA HỌC VÀ CÔNG NGHỆ - Họ tên: Hoàng Thị Xuân Diệu TÊN ĐỀ TÀI: HÌNH BOSE HUBBARD CỦA CÁC NGUYÊN TỬ SIÊU LẠNH TRONG GẦN ĐÚNG TÁCH LIÊN KẾT Chuyên ngành: Vật lý lý thuyết vật lý toán Mã số: 8440103 LUẬN VĂN THẠC SĨ : VẬT LÝ NGƢỜI HƢỚNG DẪN KHOA HỌC : GS.TS NGUYỄN TOÀN THẮNG Hà Nội, 04 - 2019 Lời cam đoan Tôi xin cam đoan cơng trình nghiên cứu hƣớng dẫn giáo viên hƣớng dẫn Luận văn khơng có chép tài liệu, cơng trình nghiên cứu ngƣời khác mà khơng rõ mục tài liệu tham khảo Những kết số liệu khóa luận chƣa đƣợc cơng bố dƣới hình thức Tơi hồn tồn chịu trách nhiệm trƣớc nhà trƣờng cam đoan Hà Nội, 04- 2019 Học viên Hoàng Thị Xuân Diệu Lời cảm ơn Trong trình học tập làm việc Viện Vật lý, dƣới hƣớng dẫn GS.TS Nguyễn Tồn Thắng, tơi học hỏi đƣợc nhiều kiến thức Vật lý, Tốn học Để hồn thành đƣợc Luận văn Thạc sĩ để trở thành ngƣời có khả độc lập nghiên cứu Khoa học, xin gửi đến ngƣời thầy hƣớng dẫn trực tiếp lời cảm ơn sâu sắc với tất tình cảm yêu quý nhƣ lòng kính trọng Một lần tơi xin cảm ơn thầy GS.TS Nguyễn Toàn Thắng giúp đỡ tơi hồn thành nội dung luận văn Thạc sĩ Tôi xin chân thành cảm ơn Viện Vật lý tạo điều kiện thuận lợi cho tơi học tập nghiên cứu Viện, phòng sau đại học hỗ trợ tơi hồn thành thủ tục bảo vệ luận văn Cuối cùng, xin đƣợc dành tất thành học tập dâng tặng ngƣời thân gia đình mà ngày dõi theo bƣớc chân Hà Nội, 04- 2019 Học viên Hoàng Thị Xuân Diệu Danh mục hình vẽ, đồ thị Hình 1.1 Bức tranh lƣợng hai nút Hình 1.2: Do kể tới nhảy nút điện tử (hình bên trái) mà mức lƣợng nhòe trở thành vùng lƣợng với bề rộng tỉ lệ với tích phân nhảy nút (hình bên phải) [14] Hình 1.3: Mật độ trạng thái điện tử dẫn với giá trị khác U tả chuyển pha kim loại điện môi Mott: trạng thái điện môi (a), trạng thái kim loại (c) chuyển pha kim loại- điện môi Mott (b) [15] Hình 1.4.: Động hình Bose- Hubbard [5] 15 Hình 1.5: Năng lƣợng hai nút khơng đổi ngun tử nhảy từ j sang i số lấp đầy không nguyên 16 Hình 2.1: Giản đồ Feynman cho Hamiltonian HU=0 23 Hình 3.1: Giản đồ pha hình Bose- Einstein gần nhiễu loạn bậc [20] 35 MỤC LỤC MỞ ĐẦU 1 Lí chọn đề tài Đối tƣợng nghiên cứu Mục đích phƣơng pháp nghiên cứu Cấu trúc luận văn CHƢƠNG 1: HÌNH BOSE- HUBBARD 1.1 HÌNH HUBBARD CHO HỆ ĐIỆN TỬ TƢƠNG QUAN MẠNH 1.1.1 Chuyển pha kim loại điện môi Mott 1.2 HÌNH BOSE- HUBBARD 1.2.1 Mạng quang học hình Bose-Hubbard 1.2.2 Ngƣng tụ Bose Einstein, siêu chảy pha tinh thể mạng quang học.11 1.2.3 Chuyển pha siêu chảy- điện mơi Mott hình Bose-Hubbard 15 CHƢƠNG 2: LIÊN KẾT MẠNH TRONG LÍ THUYẾT NHIỄU LOẠN “NGÂY THƠ” 17 2.1 ĐỊNH LÝ WICK CHO HAMILTONIAN KHÔNG NHIỄU LOẠN BẬC [22] 17 2.2: LÝ THUYẾT NHIỄU LOẠN “ NGÂY THƠ” CHO HÌNH BOSEHUBBARD TRONG GẦN ĐÚNG LIÊN KẾT MẠNH 20 CHƢƠNG 3: GẦN ĐÚNG TÁCH KẾT CẶP ÁP DỤNG CHO HỆ NGUYÊN TỬ SIÊU LẠNH 29 3.1 GẦN ĐÚNG TÁCH KẾT CẶP 29 3.2 LÝ THUYẾT CHUYỂN PHA HIỆN TƢỢNG LUẬN LANDAU [2,5,11] 31 3.3 BỔ CHÍNH BẬC HAI THEO SỐ HẠNG TÁCH KẾT CẶP [5,20] 32 KẾT LUẬN 37 TÀI LIỆU THAM KHẢO 38 MỞ ĐẦU Lí chọn đề tài Trong thời gian gần đây, hệ nguyên tử siêu lạnh trở thành hƣớng nghiên cứu nóng, thu hút quan tâm nhà nghiên cứu nhiều lĩnh vực, đặc biệt nhà vật lý [1,2,3,4,5] Sự phát thực nghiệm tƣợng ngƣng tụ Bose-Einstein [6,7,8,9] năm 1995 nhà khoa học E.A.Cornell, C.E.Wieman, W.Keterle mà sau đƣợc giải thƣởng Nobel vào năm 2001 đƣợc nhiều nhà khoa học coi nhƣ mở kỷ nguyên vật lý lƣợng tử, với liên quan nhiều hƣớng vật lý khác nhau: vật lý nguyên tử, phân tử, quang học, quang lƣợng tử vật lý hệ đông đặc [10] Ngày hệ nguyên tử siêu lạnh trở thành lĩnh vực tiên phong vật lý lƣợng tử đại cho phép hiểu sâu chất vật lý hệ nhiều hạt Về mặt thực tiễn, ngƣời ta tin hệ nguyên tử siêu lạnh có tiềm to lớn lĩnh vực thông tin lƣợng tử, đo đạc lƣợng tử hình hố lƣợng tử Về mặt vật lý, ngồi tƣợng BEC bẫy, có nhiều hiệu ứng thú vị liên quan tới hệ nguyên tử trung hòa mạng quang học, tức hệ mà nguyên tử phân bổ nút mạng Do cấu trúc tuần hồn ngun tử vừa nhảy từ nút sang nút nhƣ giả hạt Bloch Đồng thời tƣơng tác nút, chúng định xứ Nhƣ vậy, hệ nguyên tử siêu lạnh mạng quang học pha siêu chảy chúng linh động, nhƣng pha định xứ, tƣơng tự nhƣ electron pha kim loại, pha điện môi Mott vật liệu đất hay kim loại chuyển tiếp [11,12,13] Hệ điện tử nhƣ đƣợc gọi hệ điện tử tƣơng quan mạnh đƣợc tả hình Hubbard [11,12,14] Trong mạng quang học, ngun tử trung hòa đƣợc tả Hamiltonian Bose-Hubbard thay chuyển pha kim loại điện môi-Mott [15] chuyển pha siêu chảy- điện môi Mott [16,17,18] (Thực siêu chảy- định xứ, nhƣng để tƣơng ứng với electron ngƣời ta gọi điện mơi Mott cho dù pha siêu chảy hệ ngun tử trung hòa điện mơi) Với mục đích tìm hiểu vấn đề lý thú này, tơi chọn đề tài luận văn : hình Bose-Hubbard gần tách liên kết nguyên tử siêu lạnh 2 Đối tƣợng nghiên cứu Đối tƣợng nghiên cứu hệ nguyên tử siêu lạnh mạng quang học đƣợc tả hình Bose-Hubbard Nghiên cứu tƣợng chuyển pha siêu chảy-điện môi Mott lý thuyết nhiễu loạn “ ngây thơ” tách kết cặp gần liên kết mạnh Mục đích phƣơng pháp nghiên cứu Đề tài đặt mục tiêu sau cho tôi: Thu thập lọc lựa tài liệu hình Hubbard chuyển pha kim loại- điện môi Mott, chuyển pha siêu chảy- điện mơi Mott Thực số tính tốn giải tích nghiên cứu chuyển pha kim loại điện môi Mott phƣơng pháp nhiễu loạn “ngây thơ” phƣơng pháp tách kết cặp Phƣơng pháp tính tốn sử dụng phƣơng pháp lý thuyết trƣờng lƣợng tử áp dụng cho hệ nhiều hạt Qua việc hoàn thành đề tài luận văn, đƣợc rèn luyện kỹ tiếp cận vấn đề mới, mở rộng tầm hiểu biết vấn đề đại, học số phƣơng pháp tiếp cận đại vật lý lý thuyết áp dụng toán cụ thể Cấu trúc luận văn Ngoài phần Mở đầu, kết luận tài liệu tham khảo, cấu trúc luận văn nhƣ sau: Chƣơng 1: hình Bose- Hubbard Chƣơng 2: Liên kết mạnh lý thuyết nhiễu loạn “ngây thơ” Chƣơng 3: Gần tách kết cặp áp dụng cho hệ nguyên tử siêu lạnh CHƢƠNG 1: HÌNH BOSE- HUBBARD 1.1 HÌNH HUBBARD CHO HỆ ĐIỆN TỬ TƢƠNG QUAN MẠNH Trong số vật liệu tƣơng tác Coulomb hạt tải nhỏ nhiều so với động chúng nhiều trƣờng hợp đƣợc coi hệ hạt tải tự với khối lƣợng đƣợc tái chuẩn hoá (khối lƣợng hiệu dụng) Trong vật liệu họ kim loại chuyển tiếp kim loại đất điện tử có độ lớn bậc với động Hệ điện tử nhƣ đƣợc gọi hệ điện tử tƣơng quan mạnh hình đơn giản tả hệ điện tử tƣơng quan mạnh hình Hubbard đƣợc đề xuất năm 1963 với Hamiltonian có dạng sau [11,12,14]: ∑ 〈 Trong ∑ ∑ (1.1) 〉 tốn tử sinh (huỷ) điện tử nút i (nút j) : toán tử số hạt nút i Tƣơng tác Coulomb nút ký hiệu U Tích phân nhảy nút ký hiệu t tả tính chất linh động điện tử Vì độ lớn tích phân nhảy nút phụ thuộc phủ hai hàm sóng Wannier hai nút i, j nên tỷ lệ nghịch với khoảng cách hai nút Vì ngƣời ta thƣờng giới hạn gần hai nút lân cận gần Nhƣ số hạng tả động hệ số hạng thứ hai liên quan tới hạt Nếu đóng góp hai số hạng bậc ta có Hamiltonian cho hệ điện tử tƣơng quan mạnh Cần lƣu ý giá trị cụ thể t U tính chất nội vật liệu khó thay đổi điều kiện bên ngồi, thí dụ thƣờng thay đổi áp xuất bên Đây điều khác biệt lớn so sánh với hình Bose- Hubbard siêu mạng trình bày dƣới t U dễ dàng thay đổi cƣờng độ chùm laser Ngoài tham số nhảy nút tƣơng tác nút, Hamiltonian Hubbard đặc trƣng số lấp đầy cấu trúc mạng tinh thể Số lấp đầy n trung bình số hạt nút ∑ 〈 〉 Vì nguyên lý Pauli nên nút khơng thể có hai electron Trƣờng hợp đặc biệt quan trọng n=1, đƣợc gọi lấp đầy nửa hình Hubbard có dạng đơn giản nhƣng đƣợc áp dụng rộng rãi Có thể kể số trƣờng hợp cụ thể áp dụng hình Hubbard nhƣ sau: • Nghiên cứu tính chất điện từ tinh thể với vùng lƣợng hẹp (kim loại chuyển tiếp) • Nghiên cứu tính chất từ hạt tải linh động (band magnetism) (Fe, Co, Ni, ) • Siêu dẫn nhiệt độ cao vật liệu siêu dẫn • Nghiên cứu phƣơng pháp tiếp cận ý tƣởng vật lí thống kê Đặc biệt, hình Hubbard đƣợc sử dụng rộng rãi nghiên cứu chuyển pha kim loại- điện môi Mott mà ta xem xét chi tiết dƣới 1.1.1 Chuyển pha kim loại điện môi Mott Chuyển pha thay đổi trạng thái hệ thay đổi nhiệt độ (chuyển pha nhiệt động học) thay đổi tham số nội hệ nhiệt độ T=0K(chuyển pha lƣợng tử)[15] Thí dụ chuyển pha nhiệt động học nhƣ chuyển pha khí-lỏng-rắn nhiệt độ giảm dần, chuyển pha lƣợng tử nhƣ: chuyển pha kim loại- điện mơi Mott Để đặc trƣng cho tính dẫn điện vật liệu ngƣời ta xét tensor dẫn điện tĩnh gần sóng dài giới hạn nhiệt độ tiến tới không Nếu tensor dẫn điện khác khơng kim loại, tensor dẫn điện khơng điện mơi Ngƣời ta phân biệt loại điện môi sau: - Điện môi vùng cấu trúc vùng lƣợng mà xuất khe lƣợng vùng lấp đầy cao hạt tải với vùng trống thấp Nguyên nhân tồn khe giải toán chuyển động electron 26 Sử dụng biểu diễn hàm Heaviside: ∫ ∫ ∫ (2.38) ∫ Đặt , , ∫ [ ] (2.39) Thay (2.33) vào (2.39) (2.40) Vì hệ nút đơn lẻ nên đƣơng nhiên định xứ khơng có nhảy nút Phƣơng trình hàm Green hình Bose- Hubbard lý thuyết nhiễu loạn “ngây thơ” có dạng: ̃(⃗ ̃ (⃗ ) ̃(⃗ ) ) (2.41) 27 Phổ lƣợng hệ đƣợc cho cực hàm Green ̃ ( ⃗ ): Thay (2,40) vào (2.42), bỏ i0 (vì ta khơng quan tâm đến nhòe mức lƣợng) ta đƣợc: [ (2.43) ] Khi ta thu đƣợc phƣơng trình bậc hai theo giải phƣơng trình theo , để tìm lƣợng hệ, ta thu đƣợc: [ ] √ (2.44) Khoảng cách lƣợng : √ Bây ta lí luận tƣơng tự nhƣ xét hình Hubbard điện tử Ta không xét tham số trật tự pha siêu chảy mà ta suy luận có khe lƣợng khác không, hệ điện môi (nghĩa nguyên tử định xứ), khe lƣợng khơng hệ siêu chảy (ta mặc định hệ boson linh động T= 0K siêu chảy Điều mặc định thực khơng chặt chẽ muốn xác ta phải xét tham số trât tự pha siêu chảy) Nhƣ chuyển pha (Uc, dt) đƣợc cho phƣơng trình: 28 (2.46) Hay (2.47) Xét mạng lập phƣơng d chiều, Uc lớn đạt giá trị cực tiểu khi: (2.48) Thay (2 48) vào (2 47) ta có: [ √ ] (2.49) Cả hai nghiệm dƣơng nên ta phải chọn Muốn ta so sánh lý thuyết khác kết (2.49) từ lý thuyết “ngây thơ” nên phải định hƣớng theo lý thuyết xác So sánh với lý thuyết nghiêm túc đơn giản lý thuyết trƣờng trung bình [24] ngƣời ta chọn [ √ ] [25] Vì vậy: (2.50) Ta tính cho trƣờng hợp mạng lập phƣơng d=3 với hệ số lấp đầy n=1 ( nguyên tử nút): ( √ ) (2.51) So sánh với kết Monte Carlo [25] Ta thấy phƣơng pháp nhiễu loạn “ngây thơ” cho kết không kém, kết giải tích thu đƣợc với tính tốn không phức tạp 29 CHƢƠNG 3: GẦN ĐÚNG TÁCH KẾT CẶP ÁP DỤNG CHO HỆ NGUYÊN TỬ SIÊU LẠNH Ở chƣơng 2, ta dùng lý thuyết nhiễu loạn “ngây thơ” theo tham số nhảy nút t để khảo sát chuyển pha siêu chảy điện môi Mott Trong chƣơng ta xét phƣơng án lý thuyết trƣờng trung bình, gần tách kết cặp để xét chuyển pha [20] 3.1 GẦN ĐÚNG TÁCH KẾT CẶP Ta xét lại Hamiltonian hình Bose- Hubbard: ̂ ̂ ∑̂ ̂ (3.1) 〈 〉 Trong H0 tƣơng tác nút ̂ ∑̂ ̂ ̂ ̂ ̂ (3.2) Ta đƣa vào tham số trật tự siêu chảy (giả thiết thực) √ 〈̂ 〉 〈̂ 〉 (3.3) Nội dung gần tách kết cặp tách tích hai tốn tử số hạng nhảy nút theo kiểu gần Hartree (Trong lý thuyết trƣờng trung bình đồng mật độ hạt siêu chảy với mật độ hạt ngƣng tụ [5,21] ) ̂ ̂ 〈̂ 〉̂ 〈̂ 〉̂ 〈 ̂ 〉〈 ̂ 〉 (̂ ̂) (3.4) Thay (3.4) vào (3.1) ta thu đƣợc Hamiltonian trƣờng trung bình tự phù hợp 30 ̂ ∑ ̂ ̂ ∑̂ ̂ ̂ ̂ ∑̂ ̂ (3.5) Tự phù hợp có nghĩa trung bình tốn tử phải lấy theo Hamiltonian, Heff (3.5), Hamiltonian tự phù hợp chéo theo số nút mạng i, ta cần xét Hamiltonian nút bỏ qua số i, để tiện tính tốn ta đƣa vào tham số khơng đơn vị: ̅ ̅ Ta có: ̂ ̅̂ ̂ ̅̂ ̂ ̂ (3.6) Từ cơng thức (3.6) khảo sát chuyển pha siêu chảy điện môi Mott cách tính số nhƣ sau [15,23,24] Tính yếu tố ma trận 〈 〉 hệ véc tơ sở không gian Fock số nguyên tử nút i{ ⟩} với nmax chọn trƣớc Chỉ có ba loại yếu tố ma trận khác không là: 〈 〉;〈 Chéo hóa ma trận 〈 〉;〈 | | 〉 〉 với nmax chọn tìm lƣợng trạng thái Eg Tăng dần nmax đến Eg hội tụ với độ xác chọn Cực tiểu hóa Eg theo với giá trị khác để tìm giản đồ pha, đâu pha điện mơi, đâu pha siêu chảy Các tính tốn số nhƣ đƣợc nhiều tác giả thực [23,24] 31 Kết tính số cho thấy số lấp đầy không nguyên ln siêu chảy, hệ số lấp đầy ngun có chuyển pha siêu chảy- điện môi Mott Giá trị chuyển pha Uc giá trị U nhỏ ứng với số lấp đầy Dƣới ta khảo sát chuyển pha siêu chảy- điện môi Mott cách kết hợp lý thuyết tƣợng luận Landau lý thuyết nhiễu loạn 3.2 LÝ THUYẾT CHUYỂN PHA HIỆN TƢỢNG LUẬN LANDAU [2,5,11] Chuyển pha hệ nhiều hạt thay đổi trạng thái hệ thay đổi hay vài đại lƣợng gắn liền với hệ Nếu đại lƣợng gây chuyển pha nhiệt độ chuyển pha gọi chuyển pha nhiệt động học, thí dụ: chuyển pha khí- lỏng- rắn; sắt từ- thuận từ; kim loại- siêu dẫn Nếu chuyển pha xảy nhiệt độ 0K thay đổi tham số nội hệ gọi chuyển pha lƣợng tử, thí dụ: chuyển pha kim loạiđiện môi Mott vật liệu đất hiếm; siêu dẫn- điện môi vật liệu siêu dẫn hạt, siêu chảy- điện môi Mott hệ nguyên tử siêu lạnh mạng quang học Chuyển pha thƣờng đƣợc gắn với đại lƣợng gọi tham số trật tự, pha, tham số trật tự khác khơng, chuyển sang pha tham số trật tự khơng, thí dụ: chuyển pha từ tham số trật tự độ từ hóa Nếu điểm chuyển pha tham số trật tự thay đổi gián đoạn chuyển pha đƣợc gọi chuyển pha gián đoạn hay chuyển pha bậc 1, thay đổi tham số trật tự liên tục chuyển pha liên tục hay chuyển pha bậc hai Landau đề xuất chuyển pha nhiệt động lực học phiếm hàm lƣợng tự Landau FL[m] đa thức tham số trật tự m [5] [ ̅] (3.7) Nếu hệ bất biến với đối xứng nghịch đảo tọa độ khơng có số hạng lũy thừa bậc lẻ, ta xét trƣờng hợp Trạng thái cân hệ FL[m] đạt cực tiểu theo m Trƣớc hết ta xét trƣờng hợp hệ số khai triển cao bậc dƣơng Lúc ) dƣơng cực tiểu FL[m] 32 m= 0, nhƣng ) trở thành âm cực tiểu dịch chuyển cách liên tục phía m hữu hạn, tƣơng ứng với chuyển pha loại hai Nhƣ vậy, lân cận nhiệt độ chuyển pha, hệ số trƣớc số hạng loại đổi dấu (3.8) Để xét chuyển pha loại 1, ngƣời ta xét tới số hạng bậc 6, nhƣng không quan tâm trƣờng hợp Điều quan trọng theo (3.8) nhiệt độ chuyển pha tìm đƣợc giải phƣơng trình ) = Ý tƣởng đƣợc số tác giả [15,20] mở rộng cho chuyển pha lƣợng tử Gọi biến số điều khiển chuyển pha lƣợng tử t, giá trị tới hạn tc đƣợc tìm từ phƣơng trình )= Ngồi ra, chuyển pha lƣợng tử xảy T= 0K nên thay tính lƣợng tự ta cần tính lƣợng hệ qua bậc hai tham số trật tự lý thuyết nhiễu loạn 3.3 BỔ CHÍNH BẬC HAI THEO SỐ HẠNG TÁCH KẾT CẶP [5,20] Ta viết lại (3.6): ̂ ̂ ̂ (3.9) Trong đó: ̂ { ̅̂ ̂ ̂ (3.10) ̂ ̂ ̂ ̂ ̂ ̂ ̅̂ có lời giải xác số nguyên tử n nút mạng với lƣợng: ̅ ̅ (3.11) 33 Nếu nút có xác n hạt, ta lƣu ý số hạt n lại đƣợc điều chỉnh hóa học ̅ , tùy theo ̅ mà ta tìm đƣợc mức lƣợng thấp gọi lƣợng trạng thái bản, kí hiệu Eg(0) So sánh hai mức liên tiếp: En(0) En+1(0) ta suy ra: số nguyên tử nút để lƣợng thấp số nguyên ̅ ̅ ̅ ( ) ̅ ̅ ( ̅) xác định nhƣ sau: ̅ ̅ ̅ ̅ (3.12) ̅ ̅ { Tƣơng ứng ta có lƣợng trạng thái bản: ̅ { ̅ ̅ ̅ ̅ ̅ (3.13) Sau có lƣợng trạng thái (3.13), bổ bậc hai theo ̂ đƣợc cho cơng thức: ∑ Vì: { nên tổng ̂ ̂ ⟩ ⟩ |⟨ | ̂ | ⟩| √ √ ⟩ ⟩ (3.14) (3.15) số hạng n= g+1 n= g-1 tính tƣờng minh đƣợc theo (3.15) nhƣ sau: 34 [ ̅ ̅ ] ̅ ̅ (3.16) Nhƣ vậy, lƣợng trạng thái tính đến bậc hai theo tham số trật tự là: ̅ ̅ ̅ ̅ (3.17) ̅ ̅ đƣợc cho (3.13) đó: ̅ ̅ Còn: Cực tiểu hóa theo (3.18) ta thấy rằng: Điều có nghĩa là: ̅ ̅ ̅ ̅ , ̅ ̅ hai pha siêu chảy cho ta đƣờng biên ̅ ̅ điện môi Mott phân cách Dạng đƣờng biên lời giải phƣơng trình sau: ̅ ̅ ̅ (3.19) ̅ Giải (3.19) ta có nghiệm: ̅ ̅ √̅ ̅ (3.20) 35 50 40 g =3 30 𝜇̅ 20 g =2 10 g =1 0 10 15 ̅ 𝑈 Hình 3.1: Giản đồ pha hình Bose- Hubbard gần nhiễu loạn bậc [20] Bên nửa hình oval pha điện môi định xứ ứng với số lấp đầy g= 1,2,3 Bên ngồi nửa hình oval pha siêu chảy Đƣờng chấm chấm gần bậc (luôn siêu chảy) ̅ mặt phẳng ̅ ̅ (hình 3.1) ta thấy ̅ Nếu vẽ đồ thị ̅ giao U0 xác định bởi: ̅ ̅ ̅ ̅ (3.21) √ (3.22) Suy ̅ Khi tăng ̅ ̅ ngày hai đƣờng tách Khảo sát hàm ̅ ̅ với g nguyên dƣơng xác định ta thấy bên hình giới hạn ̅ ̅ ̅ ̅ tức vùng điện mơi Mott, 36 ̅ ̅ ngồi hình vẽ , tức vùng siêu chảy Nhƣ U0 giá trị nhỏ tƣơng tác nút mạng để bắt đầu có pha điện mơi Mott Ta suy tới hạn Uc=U0 ̅ √ (3.23) Thay vào g=1 từ (3.23) ta có trƣờng hợp lấp đầy hạt: (3.24) Cho trƣờng hợp ba chiều z=2d=6 ta thu đƣợc: (3.25) Đáng ngạc nhiên kết phƣơng pháp gần tách kết cặp với lý thuyết nhiễu loạn bậc hai không cho kết tốt lý thuyết nhiễu loạn “ngây thơ” trình bày chƣơng Vì số tác giả tính tiếp đến số hạng nhiễu loạn bậc [20] Trong luận văn khơng nhắc lại kết Phƣơng pháp tính kết cặp sau đƣợc nhiều nhóm tác giả phát triển cách hệ thống phƣơng pháp tích phân phiếm hàm Khác với trƣờng hợp fermion hay trƣờng hợp hệ spin dùng biến đổi HubbardStratonovich để biến số hạng cặp thành số hạng cặp đơi lý thuyết tách kết cặp hệ Bose-Hubbard ngƣời ta lại dùng biến đổi HubbardStratonovich để đƣa số hạng nhảy nút số hạng tuyến tính Bằng cách này, ngƣời ta xây dựng đƣợc quy tắc giản đồ Feynman để tính nhiễu loạn theo tham số nhảy nút [5] Phƣơng pháp tích phân phiếm hàm cho phép tính cách có hệ thống ảnh hƣởng thăng giáng [5] 37 KẾT LUẬN Trong luận văn hồn thành cơng việc sau đây: Tôi đọc tổng quan tài liệu hình Bose- Hubbard số phƣơng pháp áp dụng cho hệ nguyên tử siêu lạnh chuyển pha siêu chảyđiện môi Mott Tôi tập trung vào hai phƣơng pháp chủ yếu là: Lý thuyết nhiễu loạn “ngây thơ” gần tách kết cặp cho hệ ngun tử siêu lạnh Thực tính tốn thu đƣợc kết giải tích (cho tỷ số Uc/t) nghiên cứu hệ nguyên tử siêu lạnh mạng quang học đƣợc tả hình Bose- Hubbard lý thuyết nhiễu loạn “ ngây thơ” Từ so sánh kết thu đƣợc với phƣơng pháp lý thuyết khác Thực tính tốn thu đƣợc kết giải tích tính lƣợng trạng thái (tính đến bậc hai tham số trật tự) hệ nguyên tử siêu lạnh mạng quang học đƣợc tả hình Bose- Hubbard phƣơng pháp tách kết cặp gần liên kết mạnh Từ so sánh với kết thu đƣợc phƣơng pháp lý thuyết nhiễu loạn “ ngây thơ” Vì trình độ thời gian tơi hạn chế nên tơi chƣa áp dụng đƣợc hai phƣơng pháp gần học đƣợc cho toán cụ thể Vấn đề tìm hiểu thêm: Các thầy Viện Vật lý trƣờng Đại học Sƣ phạm Hà Nội nghiên cứu thu đƣợc nhiều kết có giá trị khoa học cho hệ điện tử tƣơng quan mạnh đƣợc tả hình Hubbard giản lƣợc (mơ hình Falikov-Kimbal) hình Hubbard mở rộng phát triển phƣơng pháp tính toán Với quan tâm giúp đỡ thầy, áp dụng cơng cụ mở rộng hình Hubbard cho electron sang tốn cho hình Bose-Hubbard để nghiên cứu chuyển pha siêu chảy-điện môi Mott, pha siêu tinh thể… 38 TÀI LIỆU THAM KHẢO A Griffin, D Snoke, S Stringari, S (eds.) (1995), Bose-Einstein Condensation, pp 355–392 Cambridge University L.P Pitaevskii, S Stringari (2016), Bose Einstein Condensation and superfluidity, Oxford Science C.J Pethick and H Smith, (2001), Bose– Einstein Condensation in Dilute Gases Cambridge University Press A.J Leggett (2006), Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed Matter Systems Oxford University Press Henk T.C Stoof , Koos B Gubbels , Dennis B.M Dickerscheid (2009),Ultracold Quantum Fields, Springer M H Anderson, J R Ensher, M R Matthews, C E Wieman, and E A Cornell (1995), Observation of Bose-Einstein Condensation in a Dilute Atomic Vapor, Science 269, 198 M R Andrews, M.-O Mewes, N J van Druten, D S Durfee, D M Kurn, and W Ketterle, (1996), Direct Nondestructive Observation of a Bose Condensate, Science 273, 84 C C Bradley, C A Sackett, J J Tollett, and R G Hulet (1995), Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys Rev Lett 75, 1687 K B Davis, M.-O Mewes, M R Andrews, N J van Druten, D S Durfee, D M Kurn, and W Ketterle (1995), Bose-Einstein Condensation in a Gas of Sodium Atoms, Phys Rev Lett 75, 3969 10 M Lewenstein, A Sanpera, and V Ahufinger (2012), Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems, Oxford University Press 11 Lê Đức Ánh, Hoàng Anh Tuấn, Nguyễn Tồn Thắng, Giáo trình Vật lý hệ nhiều hạt I II (bản thảo) 39 12 Trần Minh Tiến, 2017, “Cơ sở vật lý hệ nhiều hạt”, NXB Khoa học Công nghệ, VHLKH&CN Việt Nam 13 Nguyễn Toàn Thắng, Bài giảng “ Vật lý hệ nguyên tử siêu lạnh” 14 F Gebhard (1997), The Mott Metal-insulator Transition: Models and Methods, Springer 15 S Sachdev (1999), Quantum Phase Transitions, Cambridge University Press 16 M Greiner, O Mandel, T Esslinger, T W Hansch, and I Bloch (2002) Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39 17 W Zwerger (2003) Mott-Hubbard transition of cold atoms in optical lattices J Opt B Quantum Semiclass 5, 18 D Jaksch, C Bruder, J Cirac, C Gardiner and P Zoller (1998), Cold bosonic atoms in optical lattices Phys Rev Lett 81, 3108 19 R Grimm, M Weidemu ller, and Y B Ovchinnikov (2000), Optical dipole traps for neutral atoms Molecular and Optical Physics, 42, 95 20 D van Oosten, P van der Stratenand H Stoof, Quantum phases in an optical lattice, Phys Rev A 63, 53601 (2001) 21 V.I Yukalov (2009), Cold bosons in Optical Lattices Laser Phys 19, 22 V.I Yukalov (2013), Theory of cold atoms: Basics of quantum statistics, Laser Phys 23, 062001 23 K Sengupta and N Dupuis (2005), Mott insulator to superfluid transition in the Bose-Hubbard model: a strong coupling approach, Phys Rev A71, 033629 24 K Sheshadri et al (1993), Superfluid and insulating phases in an 40 interacting-boson model: mean field theory and the RPA, Europhys Lett 22, 257 25 F.S Nogueira (2010), Introduction to the field theory of classical and quan tum phase transitions, Lecture notes ... “ NGÂY THƠ” CHO MƠ HÌNH BOSEHUBBARD TRONG GẦN ĐÚNG LIÊN KẾT MẠNH 20 CHƢƠNG 3: GẦN ĐÚNG TÁCH KẾT CẶP ÁP DỤNG CHO HỆ NGUYÊN TỬ SIÊU LẠNH 29 3.1 GẦN ĐÚNG TÁCH KẾT CẶP ... luận văn : Mơ hình Bose- Hubbard gần tách liên kết nguyên tử siêu lạnh 2 Đối tƣợng nghiên cứu Đối tƣợng nghiên cứu hệ nguyên tử siêu lạnh mạng quang học đƣợc mô tả mô hình Bose- Hubbard Nghiên... Xn Diệu TÊN ĐỀ TÀI: MƠ HÌNH BOSE – HUBBARD CỦA CÁC NGUYÊN TỬ SIÊU LẠNH TRONG GẦN ĐÚNG TÁCH LIÊN KẾT Chuyên ngành: Vật lý lý thuyết vật lý toán Mã số: 8440103 LUẬN VĂN THẠC SĨ : VẬT LÝ NGƢỜI HƢỚNG

Ngày đăng: 11/06/2019, 07:26

Nguồn tham khảo

Tài liệu tham khảo Loại Chi tiết
1. A. Griffin, D. Snoke, S. Stringari, S. (eds.) (1995), Bose-Einstein Condensation, pp. 355–392. Cambridge University Sách, tạp chí
Tiêu đề: Bose-Einstein Condensation
Tác giả: A. Griffin, D. Snoke, S. Stringari, S. (eds.)
Năm: 1995
2. L.P. Pitaevskii, S. Stringari (2016), Bose Einstein Condensation and superfluidity, Oxford Science Sách, tạp chí
Tiêu đề: Bose Einstein Condensation and superfluidit
Tác giả: L.P. Pitaevskii, S. Stringari
Năm: 2016
3. C.J. Pethick and H. Smith, (2001), Bose– Einstein Condensation in Dilute Gases. Cambridge University Press Sách, tạp chí
Tiêu đề: Bose– Einstein Condensation in Dilute Gases
Tác giả: C.J. Pethick and H. Smith
Năm: 2001
4. A.J. Leggett (2006), Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed Matter Systems. Oxford University Press Sách, tạp chí
Tiêu đề: Quantum Liquids: Bose Condensation and Cooper Pairing in Condensed Matter Systems
Tác giả: A.J. Leggett
Năm: 2006
5. Henk T.C. Stoof , Koos B. Gubbels , Dennis B.M. Dickerscheid (2009),Ultracold Quantum Fields, Springer Sách, tạp chí
Tiêu đề: ),Ultracold Quantum Fields
Tác giả: Henk T.C. Stoof , Koos B. Gubbels , Dennis B.M. Dickerscheid
Năm: 2009
8. C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet (1995), Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions, Phys. Rev. Lett. 75, 1687 Sách, tạp chí
Tiêu đề: Evidence of Bose-Einstein Condensation in an Atomic Gas with Attractive Interactions
Tác giả: C. C. Bradley, C. A. Sackett, J. J. Tollett, and R. G. Hulet
Năm: 1995
10. M. Lewenstein, A. Sanpera, and V. Ahufinger (2012), Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems, OxfordUniversity Press Sách, tạp chí
Tiêu đề: Ultracold Atoms in Optical Lattices: Simulating Quantum Many-body Systems
Tác giả: M. Lewenstein, A. Sanpera, and V. Ahufinger
Năm: 2012
11. Lê Đức Ánh, Hoàng Anh Tuấn, Nguyễn Toàn Thắng, Giáo trình Vật lý hệ nhiều hạt I và II (bản thảo) Sách, tạp chí
Tiêu đề: Giáo trình Vật lý hệ nhiều hạt
12. Trần Minh Tiến, 2017, “Cơ sở vật lý hệ nhiều hạt”, NXB Khoa học và Công nghệ, VHLKH&CN Việt Nam Sách, tạp chí
Tiêu đề: Cơ sở vật lý hệ nhiều hạt
Nhà XB: NXB Khoa học và Công nghệ
13. Nguyễn Toàn Thắng, Bài giảng “ Vật lý hệ các nguyên tử siêu lạnh” Sách, tạp chí
Tiêu đề: Vật lý hệ các nguyên tử siêu lạnh
14. F. Gebhard (1997), The Mott Metal-insulator Transition: Models and Methods, Springer Sách, tạp chí
Tiêu đề: The Mott Metal-insulator Transition: Models and Methods
Tác giả: F. Gebhard
Năm: 1997
15. S. Sachdev (1999), Quantum Phase Transitions, Cambridge University Press Sách, tạp chí
Tiêu đề: Quantum Phase Transitions
Tác giả: S. Sachdev
Năm: 1999
16. M. Greiner, O. Mandel, T. Esslinger, T. W. Hansch, and I. Bloch (2002)Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms, Nature 415, 39 Sách, tạp chí
Tiêu đề: Quantum phase transition from a superfluid to a Mott insulator in a gas of ultracold atoms
17. W. Zwerger (2003) Mott-Hubbard transition of cold atoms in optical lattices. J Opt B Quantum Semiclass 5, 9 Sách, tạp chí
Tiêu đề: Mott-Hubbard transition of cold atoms in optical lattices
18. D. Jaksch, C. Bruder, J. Cirac, C. Gardiner and P. Zoller (1998), Cold bosonic atoms in optical lattices Phys. Rev. Lett 81, 3108 Sách, tạp chí
Tiêu đề: Cold bosonic atoms in optical lattices
Tác giả: D. Jaksch, C. Bruder, J. Cirac, C. Gardiner and P. Zoller
Năm: 1998
19. R. Grimm, M. Weidemu ller, and Y. B. Ovchinnikov (2000), Optical dipole traps for neutral atoms. Molecular and Optical Physics, 42, 95 Sách, tạp chí
Tiêu đề: Optical dipole traps for neutral atoms
Tác giả: R. Grimm, M. Weidemu ller, and Y. B. Ovchinnikov
Năm: 2000
20. D. van Oosten, P. van der Stratenand H. Stoof, Quantum phases in an optical lattice, Phys. Rev. A 63, 53601 (2001) Sách, tạp chí
Tiêu đề: Quantum phases in an optical lattice
21. V.I. Yukalov (2009), Cold bosons in Optical Lattices Laser Phys. 19, 1 Sách, tạp chí
Tiêu đề: Cold bosons in Optical Lattices
Tác giả: V.I. Yukalov
Năm: 2009
22. V.I. Yukalov (2013), Theory of cold atoms: Basics of quantum statistics, Laser Phys. 23, 062001 Sách, tạp chí
Tiêu đề: Theory of cold atoms: Basics of quantum statistics
Tác giả: V.I. Yukalov
Năm: 2013
23. K. Sengupta and N. Dupuis (2005), Mott insulator to superfluid transition in the Bose-Hubbard model: a strong coupling approach, Phys.Rev. A71, 033629 Sách, tạp chí
Tiêu đề: Mott insulator to superfluid transition in the Bose-Hubbard model: a strong coupling approach
Tác giả: K. Sengupta and N. Dupuis
Năm: 2005

TÀI LIỆU CÙNG NGƯỜI DÙNG

TÀI LIỆU LIÊN QUAN