1. Trang chủ
  2. » Khoa Học Tự Nhiên

Molecular to global photosynthesis m archer (worldsci, 2004)

785 89 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 785
Dung lượng 42,67 MB

Nội dung

MOLECULAR TO GLOBAL PHOTOSYNTHESIS SERIES ON PHOTOCONVERSION OF SOLAR ENERGY Series Editor: Mary D Archer (Cambridge, UK) Vol 1: Clean Electricity from Photovoltaics eds Mary D Archer & Robert Hill Vol 2: Molecular to Global Photosynthesis eds Mary D Archer & Jim Barber Forthcoming Photochemical and Photoelectrochemical Approaches to Solar Energy Conversion eds Mary D Archer &Arthur J Nozik From Solar Photons to Electrons and Molecules by Mary D Archer Series on Photoconversion of Solar Energy -Vol MOLECULAR TO GLOBAL PHOTOSYNTHESIS Editors Mary D Archer Imperial College, UK James Barber Imperial College, UK Imperial College Press Published by Imperial College Press 57 Shelton Street Covent Garden London WC2H 9HE Distributed by World Scientific Publishng Co Pte Ltd Toh Tuck Link, Singapore 596224 USA office: Suite 202, 1060 Main Street, River Edge, NJ 07661 UKoffice: 57 Shelton Street, Covent Garden, London WC2H 9HE Library of Congress Cataloging-in-PublicationData Archer, Mary D Molecular to global photosynthesisI editors, Mary D Archer, James Barber p cm - (Series on photoconversion of solar energy; v.2) Includes bibliographical references and index ISBN 1-86094-256-3 Photosynthesis Energy crops Archer, Mary D 11 Barber, J (James), 1940111 Title IV Series QK882 M84 2004 662’.8 dc22 200404401 British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library Copyright 2004 by Imperial College Press All rights reserved This book, or parts thereoj may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permissionfrom the Publisher For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA In this case permission to photocopy is not required from the publisher Desk Editor: Tan Rok Ting Artist: Lionel Seow This book is printed on acid-free paper Printed in Singapore by Mainland Press This volume is dedicated to George Porter The Rt Hon The Lord Porter of Luddenham OM FRS Nobel Laureate 1920- 2002 a fine man and a great scientist This page intentionally left blank CONTENTS xi About the authors xix Preface Photosynthesis and photoconversion J Barber and M D Archer 1.1 1.2 1.3 1.4 1.5 Introduction Evolution and progress of ideas The 'blue print' of the photosynthetic apparatus Energy-storage efficiency of photosynthesis Energy and chemicals from biomass 12 18 28 34 Light absorption and harvesting A Holzwarth 43 2.1 Introduction 2.2 Theoretical aspects of energy transfer in photosynthetic antennae 2.3 General principles of organisation of light-harvesting antennae 2.4 Structural and functional basis for light absorption and harvesting 2.5 Concluding remarks Electron transfer in photosynthesis W Leibl and P Mathis 3.1 3.2 3.3 3.4 43 47 51 53 81 117 Biological electron transfer Electron transfer in anoxygenic photosynthesis Electron transfer in oxygenic photosynthesis Photosynthetic electron transfer: importance of kinetics 119 123 141 163 Photosynthetic carbon assimilation G E Edwards and D A Walker 189 4.1 Environmental and metabolic role 4.2 Chloroplast and cell 4.3 C3 photosynthesis in its relation to the photochemistry vii 189 191 192 Contents Vlll 4.4 4.5 4.6 4.7 4.8 The Calvin cycle Autocatalysis: adding to the triose phosphate pool Photorespiration C02-concentrating mechanisms Survival and efficiencies of photosynthesis 194 203 204 209 216 Regulation of photosynthesis in higher plants D Godde and J F Bornman 221 5.1 Anatomy, morphology and genetic basis of photosynthesis in higher plants 5.2 Adaptation of photosynthetic electron transport to excess irradiance 5.3 Regulation of photosynthetic electron transport by COz and oxygen 5.4 Feedback regulation of photosynthesis 5.5 Factors limiting plant growth 5.6 Possible plant responses to future climate changes 5.7 Improving plant biomass The role of aquatic photosynthesis in solar energy conversion: a geoevolutionary perspective P G Falkowski, R Geider and J A Raven 6.1 Introduction 6.2 From the origin of life to the evolution of oxygenic photosynthesis 6.3 Photophysiological adaptations to aquatic environments 6.4 Quantum yields of photosynthesis in the ocean 6.5 Net primary production in the contemporary ocean 6.6 Biogeochemical controls and consequences 7.1 7.2 7.3 7.4 222 226 238 239 242 250 25 287 287 288 29 306 307 311 Useful products from algal photosynthesis R Martinez and Z Dubinsky 323 Introduction Microalgae Macroalgae Concluding remarks 323 326 353 366 Contents Hydrogen production by photosynthetic microorganisms V A Boichenko, E Greenbaum and M Seibert 8.1 Photobiological hydrogen production-a useful evolutionary oddity 8.2 Distribution and activity of H2 photoproducers 8.3 Structure and mechanism of the enzymes catalysing Hz production 8.4 Metabolic versatility and conditions for hydrogen evolution 8.5 Quantum and energetic efficiencies of hydrogen photoproduction Hydrogen production biotechnology 8.6 8.7 Future prospects Photoconversion and energy crops M J Bullard Introduction Why grow energy crops? The nature of biomass Physiological and agronomic basis of energy capture and the selection of appropriate energy crop species 9.5 Conclusions 9.1 9.2 9.3 9.4 10 The production of biofuels by thermal chemical processing of biomass A V Bridgwater and K Maniatis Introduction Thermal conversion processes Gasification Pyrolysis Co-processing Economics of thermal conversion systems for electricity production 10.7 Barriers 10.8 Conclusions 10.1 10.2 10.3 10.4 10.5 10.6 1x 397 397 400 410 418 422 425 432 453 453 455 475 484 504 521 522 527 529 64 59 599 602 604 750 role in Photosystem 11,68-70 S2 state, 68 structure, 11 carrageenans, 358,360 catalytic cracking and reforming, 553 Catharanthus roseus, 690 cellulose, 29 Ceramium isogonum, 362 Certified Emission Reductions, 637 char, 577-578,585 charcoal, 35 chemoautotrophs, 1, 14, 289, 290 Chlamydomonas, 330,338,416417,421,426,429 Chlamydomonas reinhardtii, 57, 60,409,416,417,422,429 Chlamydomonas sp MGA161, 426 genome project, 347 Chlorella, 194, 326, 330, 333, 334 Chlorella fusca, 416,417 Chlorella vulgaris, 332 chlorine contaminants, 557 Chlorobiaceae, 80 chlorosome structure in, 77 Chlorobium tepidum, 79, 81 Chlorococcum littorale, 416 Chloroflexaceae,76 chlorosome structure, 76-80 chlorophyllide a, 77 chlorophylls, 17,51-52 structure, 10 chlorophyll a-water aggregates, 77 Chlorophyta, 296 chloroplast, 7, 190, 191,223 stroma, 192 Index thylakoid, 192 ultrastructure of, 226 chlororespiration,430 chlorosis, 233, 241, 242, 249 stress-induced, 236-238 chlorosomes, 52,76-80,79, 80 baseplate structure, 79 BChl aggregation, 77 energy-transfer efficiency, 80 exciton coherence length, 79 optical properties, 78 outer lipid monolayer, 78 chromatophore membranes, 22 Chroococcidiopsis thermalis, 406, 420 chymosin, 650 circulating fluid bed reactors biomass gasification, 535-536 biomass pyrolysis, 568-570 citric acid cycle, 29 Clean Development Mechanism, 637,639,643 climate change, 617 plant responses, 25 Clostridium pasteurianum, 10, 412,414,415,417 C02 See also carbon dioxide avoided emissions, 634-635 C02-concentrating mechanisms, 21 1,212 fertilisation of photosynthesis, 6, 621-622 combined heat and power (CHP), 527 Conchocelis, 364 conifers, 245 Copaifera lungsdorfi, 475 Index CP24, CP26 and CP29 peripheral light-harvestingcomplexes, 65 CP43 core antenna protein, 72,248 CP47 core antenna protein, 72 Crambe abysinicca, 475 Creosote spp., 475 crops stress tolerance, 260 non-food crops, 662-663 novel crops, 715-717 photosynthetic efficiency, 33 yields, 260 water use efficiency, 497 cryoprotection (in plants), 243 Cryptomonads, Cryptophyta, 296 Cucurbita foetidissima, 462 Cyanidium calderium, 14 cyanobacteria, 76, 21 1, 293-295, 346,404-408 evolution of, 19-20 hydrogenases, 405,408,4 18 nitrogenases, 399,401,404,408, 418,421,422 cytochrome b559,72 cytochrome bc, 27 cytochrome bcl, 119, 123 cytochrome b f , 24, 135, 144, 146, 147, 159,257 cytochrome c , 120, 123, 125, 134 cytochrome c6,20 D1 protein, 61,235, 238, 248 degradation, 232,254 effect of W-B, 259 synthesis, 233, 234,238, 242 turnover, 231-232,245,248,249 75 D2 protein, 1,72 desaturase protein, 691 Desulfovibrio desulfuricans, 10, 414 Desulfovibrio gigas, 410,412,414 Desulfovibrio vulgaris, 410 Dexter exchange mechanism, 69 diaphorase, 415 Dinophyta, 296 DNA-fingerprinting,65 1,664,719 dolomite, 553, 556,557 downdraft fixed bed reactor, 531 Dunaliella, 303, 304, 305, 327, 333,335,334-335,337,352,408 Ecklonia maxima, 357 electricity generation from biomass, 599-602 using power turbines, 558-559 electron transfer blockage, 134 inhibition of, 131 kinetic considerations, 163-173 Marcus theory, 164-171 nonadiabatic kinetics, 119 primary charge separation, 126127,171-173 in cytochrome bc,, 119, 123 in cytochrome c, 120, 123, 125, 134 in PSI, I17 in PSII, 117, 119, 123 endocytosis, 295 endomembranes, 295 energy crops, 3, 35 See also BECs definition, 454 direct energy crops, 454,484 752 energy balance and ratios, 480, 503-505 environmental impact of, 502 harvesting, 503 ideal energy crops, 486 indirect energy crops, 454,484 land availability, 462 nutrient and soil requirements, 500-501 pests and pathogens, 49 photosynthetic capacity, 485 planting, 502 strengths and weaknesses, 506 policies, 469 potential sites, 501 production programmes Brazil, 473-474 European Union, 457-460 Sweden, 474 UK, 470-472 USA, 472-474 radiation interception, 488 energy transfer coherent exciton motion, 49-51 compartment models, 54 Dexter exchange mechanism, 69 Forster exchange mechanism, 47 in PSI core complexes, 54 transfer-to-trap-limitedmodel, 55,63 trap-limited model, 55 entrained bed reactors, 537-539 entrained flow pyrolysis, 572 EPR in study of metalloenzymes, 150 ethyl t-butyl ether (ETBE), 524 ethanol See bioethanol Index Eucalyptus globules, 494 Euglena rubida, 338 Euglenophyta, 296 eukaryotes, 15 European Union, 460 evolution of oxygenic photosynthesis, 292-293 of photosynthetic reaction centres, 291 phylogenetic tree, 289 exciton motion, 49-5 exciton states, 50 Face-Profafor forestry project, 642 fast pyrolysis of biomass ablative pyrolysis, 570-572 char and ash separation, 585 comminution, 585 entrained flow, 572 feed drying, 585 liquids collection, 585 reactor configuration, 585 reception and storage, 585 rotating cone, 572-574 storage and transport, 585 vacuum pyrolysis, 574-575 fdu gene, 418 fermentation, 399,409,426,427, 523,649 ferredoxin, 398-404,409,411, 415419,413,422 filamentous green bacteria, Fischer-Tropsch synthesis, 561 flash pyrolysis See fast pyrolysis flavoprotein ferredoxin-NADP reductase, 159 Index fluorescence induction in PSII, 155 FMO complex, 1,79,80-81 food production, 656-658 irradiation, 727 forests as carbon sinks, 723 carbon storage potential, 630 management for carbon conservation, 633-634 Forster energy transfer, , distance dependence, 48 overlap integral, 47 rate constant expression, 47 fossil fuels, Franck-Condon factor, 122, 165, 166,169 fucoidan, 361 fucoxanthin, 11 fuelwood ‘root fuels’, 462 scarcity of for cooking, 461-462 gasification of biomass, 478 bubbling fluid bed reactors, 533535 circulating fluid bed reactors, 535-536 contaminant clean up, 552-557 downdraft fixed bed reactors, 531-532 efficiency, 547-548 entrained bed reactors, 537-539 fuel gas quality, 549-551 gas clean up, 55 1-552 generated products, 558-561 IGCC, 542-547 753 main chemical reactions, 530 oxygen gasification, 542 pressurised gasification, 54054 twin fluid bed reactors, 536-537 updraft fixed bed reactors, 533 gasoline formation, 560 Gelidium, 358, 359 gene transfer, 652 genes fdx, 18 hos, 418 hox, 415,418 hyd, 417 n$411,418 psbA, 233 pet, 418 phog, 684 regulatory genes, 684-686 genomes crop genomes, 705 plant genomes, 685 tree genomes, 665 genome synteny in plants, 685 genomics, 665,684686,721 global warming, 622-623 glucose, 29 glufosinate, 667 glutamine synthetase, 239 glycerol, 345 glycogen, 29 glyphosate, 667 GMOs, 65 GMO-free crops, 709 input trait manipulation, 65 1, 663,666 oil crops, 675-679 754 output trait manipulation, 672683 golden rice, 682,714 Gracilaria, 356, 359, 363 green gliding bacteria, 52, 76-8 Green Revolution, 686 green sulphur bacteria, 23,51,52, 76-81, 136-141 chlorophyll species in, 138 chlorosomal antennae of, 52 Fe-S-type reaction centres, 36141 FMO complex, 80 greenhouse gas abatement by agriculture, 635-636 by land use and forestry, 640 greenhouse gases from land use activities, 630 gross primary production (GPP), 462,618 Grypanea, 295 h6h gene, 690 Haematococcus pluvialis, 338 Haptophyta, 296, 298 harvesting of biomass storage, 503 techniques, 503 harvestable dry matter, 484 health foods, 333-335 heat-shock proteins (HSPs), 246 Heliobacteria, 136- 141 chlorophyll species in, 137 Fe-S-type reaction centres, 136141 heterocysts, 294,404,405,418, 431.432 Index Heterokontophyta, 296, 297 heterotrophic respiration, 618 heterotrophs, Hevea spp., 475 hos gene,4 18 hox gene, 415,418 human population growth, 655 hyd gene, 17 hydrogen, 398 biological production programmes EU programme, 427,428 German programme, 427 Italian programme, 428 Japanese programme, 426427 US Hydrogen Program, 428429 merchant value, 425 microbial production, 400-410 energy conversion efficiency, 422425,426,427 mechanism, 399,410-417 net energy yield, 422-425 photobioreactors, 43 1,432 quantum yield, 422-425 rate of hydrogen production, 401-406,409-411,416, 419,422,428,430 systems, 425-432 photobiological production, 18 production by sulphur-deprived algae, 429-430 theoretical potential, 430 hydrogenases, 18, 398,401,402, 404,405,408-418,421,424, 427-430 Index CpI, 415,417 F-cluster, 414 Fe hydrogenases, 413-417,430 FeS hydrogenases, 410,412, 414-417 H-cluster, 412,414,417 hydAl (hydl or hydA) gene, 417 hydA2 gene, 17 NiFe hydrogenases, 410,412418,429 oxygen sensitivity, 408,416, 418,421,429 oxygen-insensitive,418 reversible (bidirectional), 405, 408,410,411,413,415,416, 18,422,430 uptake, 398,401,404,405,408, 410,413-415,418,421,428 IGCC (Integrated Gasification Combined Cycle), 599 definition, 542 pressurisation, 54 biomass projects ARBRE, 545-547 Viirnamo, 544-545 inorganic phosphate, 241 Intergovernmental Panel on Climate Change, 455,469 iron in oceans, 60,300,302,312 ocean fertilisation with, 13 irradiation of food, 727 IsiA protein, 60 Zsochrysis galbana, 330, 341 kombu, 354,355,356 755 Kyoto Protocol, 470, 636-639, 643 Laminaria, 356, 364 land use and climate change management, 639-640 land use recovery, 622 laver, 354 leaf area index, 490,492 leaf form, 247 leaves cold hardening, 244 sugar storage, 242, 252 LHCI, 54,59,60 LHCII, 63, 226,228, 238, 252 LHI, 44,51,73,74,75,79 B875 LHI pigment complex, 75 LHII, 51,73,74,75, 79 B850 pigment complex, 75 LHIII, 74 light-harvestingcomplexes, 159 pigment molecules, 21 lignin, 700-701 linola, 653 Linum spp., 475 lumen, lutein, 11,64 maize, 245, 665,673,680,684, 688, 696,705,710-711,715, 718 male sterility in crops, 671-672 Marcus theory, 164-1 inverted region, 166 reorganisation energy, 122, 164166, 168-169 marker genes, 653 756 marker-assisted selection, 659, 664-665 Mehler-peroxidasereaction ascorbate, 205 superoxide dismutase, 207 menaquinone, 19 metallothioneins,689 methanol from syngas, 560 microalgae, 702-703 midpoint potential definition, 120-122 values, 129, 132, 136, 137, 144, 148,162 milkweed, 475 Miscanthus, 35 Miscanthus saccharijlorus, 494 Miscanthus x giganteus, 477,488, 494 Mn cluster in PSII, 156-157 structure, 173-174 Mobil MTG process, 560 MOGD (Methanol to Olefins, Gas and Diesel), 560 Monochrysis lutheri, 330 Monsanto changed company policy, 721 'Roundup', 667 terminator technology, 67 Mount Pinatubo eruption, 617 mRNA, 258 mutagenesis, 653 NAD', 23,27 NADH, 23,27,118,119 NADP', 24,27 NADPH, 24,27, 118,119 Nannochloropsis sp., 330 Index nematodes, 670-67 Neospongiococcum, 337 net biome production (NBP), 619 net ecosystem production (NEP), 618-619 net primary production (NPP) , 310,618-619 in oceans, 307,308 nifgene, 411,418 nitrogenases, 399,401,403,404, 408,410-413,418,419,421423,426-428 Fe nitrogenases, 411,413,418 FeV nitrogenases, 413,418 MoFe nitrogenases, 41 1-413 oxygen sensitivity, 404,4 18 P-cluster, 411,412 Nitzschia frustulum, 34 Noel Kempff Mercado forestry project, 642 Non-Fossil Fuel Obligation (NFFO), 470 nori, 353,354,355, 366 Nostoc flagelliforme, 14 Nostoc sp., 428 nuclear power, 726 nutraceuticals, 683 oceans iron deficiency, 60 nutrients, 298 penetration of light, 303 water leaving radiance, 308 oil palm, 653,658, 665, 680,716 oleosin, 699 Opuntiaficus-indica, 252 origin of life, 288-289 lndex Oscillatoria limnetica, 405 oxygen measurement of atmospheric concentration, 617 oxygen-evolving organisms antenna systems, 43 oxygenic photosynthesis, 3,7, 117 evolution, 292 natural occurrence, 141 phosphate deficiency, 241 photosynthetic pathways, 486488 quantum yield of oxygen evolution, radiation interception, 488 radiation use efficiency, 492 reaction centres definition, 117 heterodimeric, 140 homodimeric, 140 position, 118-1 19 special pair, 118, 125, 149 structure, 122, 124 survival strategies, 219 S-state cycle, 24, 150 water oxidation, 149-150, 173-174 Z-scheme, 17, 141, 398,421, 422 oxy-hydrogen (Knallgas) reaction, 421,425 oxyphotobacteria, 22 P680, 12, 13,23, 144,148-149 midpoint potential, 24 P680+, 12,229,240 P700, 12, 13,23,230 757 P840,23,24 P870, 12, 13,23,24 paclitaxel See tax010 Padina, 357 PAR (Photosynthetically Active Radiation), 32 PAR range, 33 PAR utilisation, 33 Parietochloris incisa, 341 Parthenium argentatum, 475 PCR (polymerase chain reaction), 652,654 penicillin, 707 Pennisetum purpureum, 474 pet gene, 18 petrochemicals, 659,661,719 petroleum reserves, 659-661 Phaeodactylum tricornutum, 341, 343,349,350 Phalaris arundinacea, 474,498 pharmaceuticals, 650, 659, 663, 677,690,691,693,704,711, 714 pharming, 693-699 phenylalanine, 258 pheophytin a , 144 phog gene, 684 phosphate deficiency in photosynthesis, 240-24 phosphate translocator, 190, 198, 204 phosphoenol-pyruvate,487 phosphoglyceric acid, 486,487 photoautotrophs, photobioreactors, 43 for algal culture, 348-350 photoinhibition, 230 758 photophosphorylation,244 photorespiration, 206,239 glycolate pathway, 196, 209 via Mehler-peroxidasereaction, 205 via RuBP oxygenase, 206-209 photosynthesis, 1-3 and atmospheric oxygen, 3-4, 15 anoxygenic See anoxygenic photosynthesis assimilate transport, 241 at high temperatures, 245 at low temperatures, 242-244 canopy structure and duration, 490 carbon cycle and, 4-6,613 COZfertilisation, 25 1, 620 ‘dark’ reactions, 27-28, 191 efficiency in use of solar energy, 216-217 energy-storage efficiency, 28-34 evolution of, 12 gross primary production (GPP), 5,462,618 in different light levels, 224-225 in drought conditions, 246-248 in stressed conditions, 222 light-driven reactions, 27 mineral deficiencies and, 248249 net primary production (NPP), 33,307,308,310,618 oxygenic See oxygenic photosynthesis photosynthetic assimilation, 18 photosynthetic bacteria, 8, 14,401 eukaryotic Index anoxygenic, 123-141 definition, 117 oxygenic, 141-163 filamentous green bacteria, green sulphur bacteria, 9, 22,25 light-harvesting complexes of, 73 prokaryotic, 117 purple photosynthetic bacteria, 9,22,51,73-75,123-134 photosynthetic capacity, 500 photosynthetic carbon assimilation, 189,193 photosynthetic electron transport, 227,241,252 effect of UV-B, 258 photosynthetic pathways, 216-217, 486-488 photosynthetic unit (PSU) , , 17, 21,43 Photosystem I (PSI), 9, 13,23, 24, 53-61,223,226 acceptor chlorophyll, 161 antenna, 54 carotenoids, 60 chlorophyll arrangement, 54 core antenna, 53 function, 159 in cyanobacteria, 60 in higher plants, 59 inhibition of, 230 light-harvesting complexes, 54, 59,60, 159 peripheral antenna complexes, 60 psaA unit, 53 psaB unit, 53 Index reaction centres, 159-163 reaction centre dynamics, 57 ‘red chlorophylls’, 54,551,57 structure, 159-161 terminal electron acceptors (FeS centres), 162-163 Photosystem I1 (PSII), 9, 13, 23, 24,223,226 carotenoids, 68-70 core antenna complex, 61, 62 CP24, CP26 and CP29 complexes, 63,65,72 CP43 subunit, 61 CP47 subunit, 61 D1 subunit, 61 D2 subunit, 61 degradation, 25,238 down-regulation, 227-228 effect of UV-B, 257 electron transfer in, 144, 146159 fluorescence induction, 155 inactivation, 229-230 Mn cluster, 156-157, 173-174 photodamage, 157-159 photoinactivation, 244 primary acceptor, 144 primary donor, 144,148-149 primary processes, 154-156 proteins, 145 proton release, 153 reaction centres, 123, 143-144, 159 redox cofactors, 119 recovery from photoinhibition, 235 repair, 23 759 S states, 150 structure, 143 supercomplexes, 72 synthetic models, 153 trap-limited model, 155 water oxidation, 149-150, 174 zeaxanthin quenching, 70 phycobiliproteins,22, 52, 339-340 phycobilisomes, 21, 159,293,339 phycocyanin, 340 phycocyanobilin, 11 phycoerythrins, 339, 362 phycoerythrobilin, 11 phylloquinone, 19 phylogenetic tree, 289 Phytophthora infestans, 670 phytoplankton, 287, 299, 300, 301, 302,303,305,308 picoplankton, 301 Pinus taeda L., 495 plants breeding, 33 effect of tropospheric ozone, 253 effect of enhanced W - B , 254260 improvement of biomass yield, 258-260 tetraploid plants, 701 plant-water relations moisture content at harvest, 498 physiology of, 497 plastocyanin, 20 plastoquinone, 19, 146 polyhydroxyalkanoates (PHAs), 679 polylactides (PLAs), 680 760 polysaccharides, 336,343, 357358,362 poplar, 495 Populus trichocarpa, 494 Porphyra, 354, 363 Porphyridium cruentum, 340,' 341, 342 primary charge separation general considerations, 126-127, 171-173 temperature dependence, 127 primary production definition, gross primary production, net primary production, ProAlcool programme, 36, 469, 473, 479 Prochlorococcus, 15,60,294,301, 304 Prochloron, 15 Prochlorophytes, 15, 22, 23, 294, 296 Prochlorothrix hollundica, 15 producer gas, 478 Prosthecochloris aestuarii, protein engineering, 691-693 proteomics, 683,708,721,722 psbA gene, 233 Pseudomonas spp., 332 PSI See Photosystem I (PSI) PSII See Photosystem I1 (PSII) PSI-IsiA supercomplex, 60 Polyunsaturated fatty acids (PUFA), 327,340-343,356 purple photosynthetic bacteria, 9, 22,51,73-75, 123-134 bcl complex, 135 Index electron transfer in, 123 LHI complex, 44,5 1,73 LHII complex, 1, 75 LHIII complex, 74 L, M and H reaction centre subunits, 124 photosynthetic unit of, 75 Rb sphaeroides, 124 Rps viridis, 124 site-directed mutagenesis, 130 pyrolysis, 478-479 See also fast pyrolysis of biomass bio-oil formation, 565, 579-58 , 585 bubbling fluid bed reactors, 566568 by-products, 578 char removal, 577-578 circulating fluid bed reactors, 568-570 heat transfer, 575-577 liquid collection, 578 transported bed reactor systems, 568-570 qE-quenching, 70 quantum yield aquatic photosynthesis, 306-307 hydrogen from microbes, 422-425 oxygenic photosynthesis, 31 radiation interception, 488 and canopy structure, 490 radiation use efficiency (RUE), 487,492 Rulstoniu eutropha, 418,679 Index rape methyl ester (RME), 36,525 rapeseed, 665,667,677,679,685, 689,698,706,709,716,718, 724 rbcS gene, 234,242,248,254 reaction centre, 9, 398, 399 absorption cross section, 45 algal, 418,419 bacterial, 401,419 cofactors, 125 DUD2 proteins, 72 turnover rate, 45 iron-sulphur, 398 pheophytin-quinone, 398 position, 118-1 19 PSI, 117, 159,398,399,401, 404,408410,418,421,422 PSII, 117, 119, 123, 146-159, 398, 399,401,404,408,409, 420-422,430 purple photosynthetic bacteria, 124-125 specialised complexes, 123 Type I and Type 11,9,19,25 ‘red pigments’, 54,55,59 Redfield theory, 66 redox potential definition, 120 midpoint potential, 120-122 Nernst equation, 120 reforestation, 63 reorganisation energy, 122, 164166, 168-169 respiration, 3, , 191, 207,404, 430 autotrophic, 618 dark respiration, 76 effect of temperature, 622 photorespiration, restriction-modification enzymes, 344 revegetation, 637 Rhodobacter sphaeroides, 73,428 Rhodopseudomonas acidophila, 73 LHI complex, 74 LHII complex, 74 Rhodophyta, 296 Rhodopseudomonas sulfidaphilum FERM P-15320,426 Rhodopseudomonas viridis, 18, 27, 73 Rhodospirillum molischianum, 73, 74 Rhodospirillum rubrum, 400 ribulose bisphosphate (RUBP), 486 ribulose- 1,5-bisphosphate carboxylase See rubisco, 196 ribulose- 1,5-bisphosphate carboxylase-oxygenase See rubisco, 196 rice, 665, 670, 673,684, 686, 715 RME See rape methyl ester root culture, 691 rotating cone reactors, 572-574 rubisco, 196, 223,239, 242,246, 248,252,291,303,486 activation , 197 carboxylase and oxygenase activity in, 208, 217 C02 fixation and O2reaction, 211,215 role in CAM plants, 13 ‘rust event’ 15 762 S states, 150 Sabah reduced impact logging scheme, 640 Salix viminalis, 494 Sargassum, 357 saxitoxin, 345 Scenedesmus obliguus, 400,416418,420 Scenedesmus, 331-332,351,409, 416,418 Scolel T t agroforestry project, 642 seaweeds, 324 antibiotic activity, 361 culture, 363-365 edible, 353-356 use in agriculture, 357 shift reaction, 560 Skeletonema costatum, 330 SMART-canola, 667 soybean, 685,715,716-718 special pair, 9, 118, 125, 149 Spirulina, 15,324,331, 333,334, 340, 344 Spirulina platensis, 55 ‘red pigments’, 55 Staphylococcus aureus, 344 starch, 29,661,662,672-674,724 synthesis, 190, 198,204 STARLINK maize, 10-7 11 STIG cycle, 559 stomata, 224 stress hormones, 243 stromatolites, 292 Suaeda salsa, 249 sucrose, 672 synthesis, 190, 192, 199, 241 sugarcane bagasse, 453 Index sunflower, 709,716,718 supercomplexes, 72 sushi, 355 sweet sorghum, 35 Synechococcus elongatus, 53,55, 61 ‘redpigments’, 58 Synechococcus, 14,294,340,429 Synechocystis, 14,55,57,245 syngas synthesis, 560-561 tar destruction, 549,552-554 thermal cracking, 553-554 removal, 554-555 taxol8,7 18 terpenoids, 704 tetraploid plants, 701 Tetraselmis suecica, 34 Thalassiosira weisflogii, 303 thermohaline circulation, 299 Thiocapsa roseoersicina, 429 thioredoxin, 233,235,418 threshold wavelength hydrogen production by algae, 424 oxygenic photosynthesis, 424 thylakoid membrane, 7, 190,223 tissue culture, 651,653, 662,663, 665,690,701 tomatoes, 68 1-682, 685 Toyota tetraploidy projects, 701 transgenic crops, 666 bioplastics from, 679-680 carbohydrate yields, 672-674 environmental stress tolerance, 686-689 763 Index food crops, 665 fungus resistance, 670 gene pyramiding, 669 growing season, 686 identity preservation, 71 1-712 insect resistance, 668,670 management and segregation, 709-7 12 manipulation of growth habit, 719 molecular pharming, 693-699 oil yields, 675-679 protein yields, 674-675 public concerns, 12-7 15 sterile-seed technologies, 67 1672 virus resistance, 669 transgenic mammals, 695 transgenic plants, 653 manipulation of growth habit, 683-68 pleiotropic effect, 705-707 secondary products, 690-691 transgene expression, 707-709 vaccine production, 695 transgenic trees, 665, 699-701 transported bed reactor systems, 568-570 triacylglycerols, 677,704 Trichodesmium, 294 triose phosphate, 190, 191, 198 Triticurn aestivum, 49 tryptophan, 258 turbines gas turbines, 541-549,559,560 steam turbines, 559 twin fluid bed reactors, 536437 tyrosine, 258 ubiquinone, 19, 123 Ulva lactuca, 356 Undaria pinnatijida, 355 United Kingdom electricity and gas costs, 460 energy cropping, W updraft fixed bed reactors, 428429,533 UV-B radiation and COz assimilation, 257-258 effect on Photosystem 11, 257 effect on plants, 253-254 vacuum pyrolysis, 574-575 variable fluorescence, 307, 308 Verticillium dahliae, 670 violaxanthin, 70, 228 viruses, 669 wakame, 354,355 wastewater purification by algae, 331-332 water oxidation, 149-150, 173-174 welwistatine, 344 welwitindolinones, 344 wheat, 665,673,674,705,715,717 wind energy projects, 471 winter cereals, 245 xanthophyll, 11 xanthophyll cycle, 70, 228 xenoproteins, 669,693, 698 zeaxanthin, 70,228 zeolite cracking, 583 764 zeolite ZSMJ catalyst, 560 Zonaria subarticulata, 361 Z-scheme, 17, 141,398,421,4222 Index ... From Solar Photons to Electrons and Molecules by Mary D Archer Series on Photoconversion of Solar Energy -Vol MOLECULAR TO GLOBAL PHOTOSYNTHESIS Editors Mary D Archer Imperial College, UK James... Hill Vol 2: Molecular to Global Photosynthesis eds Mary D Archer & Jim Barber Forthcoming Photochemical and Photoelectrochemical Approaches to Solar Energy Conversion eds Mary D Archer &Arthur.. .MOLECULAR TO GLOBAL PHOTOSYNTHESIS SERIES ON PHOTOCONVERSION OF SOLAR ENERGY Series Editor: Mary D Archer (Cambridge, UK) Vol 1: Clean Electricity from Photovoltaics eds Mary D Archer

Ngày đăng: 01/06/2019, 09:43

TỪ KHÓA LIÊN QUAN