ÐỀ THI TUYỂN SINH ĐẠI HỌC KHỐI B NĂM 2009 Môn thi : TOÁN PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = 2x 4 – 4x 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của hàm số (1). 2. Với các giá trị nào của m, phương trình 2 2 x x 2 m− = có đúng 6 nghiệm thực phân biệt? Câu II (2 điểm) 1. Giải phương trình 3 sin x cos x sin 2x 3 cos3x 2(cos4x sin x)+ + = + 2. Giải hệ phương trình 2 2 2 xy x 1 7y (x,y ) x y xy 1 13y + + = ∈ + + = ¡ Câu III (1 điểm) Tính tích phân 3 2 1 3 ln x I dx (x 1) + = + ∫ Câu IV (1 điểm) Cho hình lăng trụ tam giác ABC.A’B’C’ có BB’ = a, góc giữa đường thẳng BB’ và mặt phẳng (ABC) bằng 60 0 ; tam giác ABC vuông tại C và · BAC = 60 0 . Hình chiếu vuông góc của điểm B’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Tính thể tích khối tứ diện A’ABC theo a. Câu V (1 điểm) Cho các số thực x, y thay đổi và thoả mãn (x + y) 3 + 4xy ≥ 2. Tìm giá trị nhỏ nhất của biểu thức A = 3(x 4 + y 4 + x 2 y 2 ) – 2(x 2 + y 2 ) + 1 PHẦN RIÊNG (3 điểm) Thí sinh chỉ được làm 1 trong 2 phần (phần A hoặc B) A. Theo chương trình chuẩn Câu VI.a. (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho đường tròn (C) : 2 2 4 (x 2) y 5 − + = và hai đường thẳng ∆ 1 : x – y = 0, ∆ 2 : x – 7y = 0. Xác định toạ độ tâm K và tính bán kính của đường tròn (C 1 ); biết đường tròn (C 1 ) tiếp xúc với các đường thẳng ∆ 1 , ∆ 2 và tâm K thuộc đường tròn (C) 2. Trong không gian với hệ toạ độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(-2;1;3), C(2;-1;1) và D(0;3;1). Viết phương trình mặt phẳng (P) đi qua A, B sao cho khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) Câu VII.a (1 điểm) Tìm số phức z thoả mãn : z (2 i) 10 và z.z 25− + = = B. Theo chương trình Nâng cao Câu VI.b (2 điểm) 1. Trong mặt phẳng với hệ toạ độ Oxy, cho tam giác ABC cân tại A có đỉnh A(- 1;4) và các đỉnh B, C thuộc đường thẳng ∆ : x – y – 4 = 0. Xác định toạ độ các điểm B và C , biết diện tích tam giác ABC bằng 18. 2. Trong không gian với hệ toạ độ Oxyz, cho mặt phẳng (P): x – 2y + 2z – 5 = 0 và hai điểm A(-3;0;1), B(1;-1;3). Trong các đường thẳng đi qua A và song song với (P), hãy viết phương trình đường thẳng mà khoảng cách từ B đến đường thẳng đó là nhỏ nhất. Câu VII.b (1 điểm) Tìm các giá trị của tham số m để đường thẳng y = - x + m cắt đồ thị hàm số 2 x 1 y x − = tại 2 điểm phân biệt A, B sao cho AB = 4. BÀI GIẢI GỢI Ý Câu I. 1. y = 2x 4 – 4x 2 . TXĐ : D = R y’ = 8x 3 – 8x; y’ = 0 ⇔ x = 0 ∨ x = ±1; x lim →±∞ = +∞ x −∞ −1 0 1 +∞ y' − 0 + 0 − 0 + y +∞ 0 +∞ −2 CĐ −2 CT CT y đồng biến trên (-1; 0); (1; +∞) y nghịch biến trên (-∞; -1); (0; 1) y đạt cực đại bằng 0 tại x = 0 y đạt cực tiểu bằng -2 tại x = ±1 Giao điểm của đồ thị với trục tung là (0; 0) Giao điểm của đồ thị với trục hoành là (0; 0); (± 2 ;0) 2. x 2 x 2 – 2 = m ⇔ 2x 2 x 2 – 2 = 2m (*) (*) là phương trình hoành độ giao điểm của (C’) : y = 2x 2 x 2 – 2 và (d): y = 2m Ta có (C’) ≡ (C); nếu x ≤ - 2 hay x ≥ 2 (C’) đđối xứng với (C) qua trục hoành nếu - 2 < x < 2 Theo đồ thị ta thấy ycbt ⇔ 0 < 2m < 2 ⇔ 0 < m < 1 Câu II. 1. sinx+cosxsin2x+ 3 3 cos3x 2(cos4x si n x)= + 3 1 3sin x sin 3x sin x sin 3x 3cos3x 2cos4x 2 2 2 sin3x 3cos3x 2cos4x 1 3 sin3x cos3x cos4x 2 2 sin sin3x cos cos3x cos4x 6 6 cos4x cos 3x 6 4x 3x k2 x k2 6 6 2 4x 3x k2 x k 6 42 7 − ⇔ + + = + ⇔ + = ⇔ + = π π ⇔ + = π ⇔ = − ÷ π π = − + + π = − + π ⇔ ⇔ π π π = − + π = + 2 x y −1 1 0 − 2 (C’) −2 x y −1 1 0 − 2 (C) 2. { 2 2 2 xy x 1 7y x y xy 1 13y + + = + + = y = 0 hệ vô nghiệm y ≠ 0 hệ ⇔ 2 2 x 1 x 7 y y x 1 x 13 y y + + = + + = Đặt a = 1 x y + ; b = x y ⇒ 2 2 2 1 x a x 2 y y = + + ⇒ 2 2 2 1 x a 2b y + = − Ta có hệ là { 2 a b 7 a b 13 + = − = ⇔ { 2 a b 7 a a 20 0 + = + − = ⇔ { a 4 b 3 = = hay { a 5 b 12 = − = . Vậy 1 x 4 y x 3 y + = = hay 1 x 5 y x 12 y + = − = ⇔ { 2 x 4x 3 0 x 3y − + = = hay { 2 x 5x 12 0 x 12y + + = = (VN) ⇔ x 1 1 y 3 = = hay { x 3 y 1 = = Câu III : 3 3 3 2 2 2 1 1 1 3 3 1 2 1 1 3 2 2 1 3 ln x dx ln x I dx 3 dx (x 1) (x 1) (x 1) dx 3 3 I 3 (x 1) (x 1) 4 ln x I dx (x 1) + = = + + + + − = = = + + = + ∫ ∫ ∫ ∫ ∫ Đặt u = lnx dx du x ⇒ = 2 dx dv . (x 1) = + Chọn 1 v x 1 − = + 3 3 3 3 2 1 1 1 1 ln x dx ln3 dx dx ln3 3 I ln x 1 x(x 1) 4 x x 1 4 2 = − + = − + − = − + + + + ∫ ∫ ∫ Vậy : 3 I (1 ln3) ln 2 4 = + − Câu IV. BH= 2 a , 2 1 3 3 3 2 2 4 BH a a BN BN = ⇒ = = ; 3 ' 2 a B H = goïi CA= x, BA=2x, 3BC x= 2 2 2 2 2 2 CA BA BC BN+ = + 2 2 2 2 3 3 4 2 4 2 a x x x ⇔ + = + ÷ 2 2 9 52 a x⇔ = C A B M N H Ta có: 3 3 ' ' 2 2 a B H BB= = V= 2 3 2 1 1 3 1 9 3 9 3 3 2 2 12 52 2 208 a a a a x = = ÷ Câu V : 3 3 2 2 (x y) 4xy 2 (x y) (x y) 2 0 x y 1 (x y) 4xy 0 + + ≥ ⇒ + + + − ≥ ⇒ + ≥ + − ≥ 2 2 2 (x y) 1 x y 2 2 + ⇒ + ≥ ≥ dấu “=” xảy ra khi : 1 x y 2 = = Ta có : 2 2 2 2 2 (x y ) x y 4 + ≤ ( ) 4 4 2 2 2 2 2 2 2 2 2 2 2 A 3 x y x y 2(x y ) 1 3 (x y ) x y 2(x y ) 1 = + + − + + = + − − + + 2 2 2 2 2 2 2 2 2 2 2 2 2 (x y ) 3 (x y ) 2(x y ) 1 4 9 (x y ) 2(x y ) 1 4 + ≥ + − − + + = + − + + Đặt t = x 2 + y 2 , đk t ≥ 1 2 2 9 1 f (t) t 2t 1, t 4 2 9 1 f '(t) t 2 0 t 2 2 1 9 f (t) f ( ) 2 16 = − + ≥ = − > ∀ ≥ ⇒ ≥ = Vậy : min 9 1 A khi x y 16 2 = = = Câu VIa. 1. Phương trình 2 phân giác (∆ 1 , ∆ 2 ) : x y x 7y 2 5 2 − − = ± 1 2 5(x y) (x 7y) y 2x :d 5(x y) x 7y 1 5(x y) x 7y y x : d 2 ⇔ − = ± − = − − = − ⇔ ⇔ − = − + = Phương trình hoành độ giao điểm của d 1 và (C) : (x – 2) 2 + (– 2x) 2 = 4 5 25x 2 – 20x + 16 = 0 (vô nghiệm) Phương trình hoành độ giao điểm của d 2 và (C) : (x – 2) 2 + 2 x 4 2 5 = ÷ 2 25x 80x 64 0⇔ − + = ⇔ x = 8 5 . Vậy K 8 4 ; 5 5 ÷ R = d (K, ∆ 1 ) = 2 2 5 2. TH1 : (P) // CD. Ta có : AB ( 3; 1;2),CD ( 2;4;0)= − − = − uuur uuur (P) có PVT n ( 8; 4; 14) hay n (4;2;7) (P) :4(x 1) 2(y 2) 7(z 1) 0 4x 2y 7z 15 0 ⇒ = − − − = − + − + − = ⇔ + + − = r r TH2 : (P) qua I(1;1;1) là trung điểm CD Ta có AB ( 3; 1;2), AI (0; 1;0) (P) có PVT n (2;0;3) (P) :2(x 1) 3(z 1) 0 2x 3z 5 0 = − − = − ⇒ = − + − = ⇔ + − = uuur uur r Câu VIb. 1. 1 4 4 9 AH 2 2 1 36 36 S AH.BC 18 BC 4 2 9 2 AH 2 − − − = = = = ⇔ = = = Pt AH : 1(x + 1) + 1(y – 4) = 0 x y 4 7 1 H : H ; x y 3 2 2 − = ⇒ − ÷ + = B(m;m – 4) 2 2 2 2 2 BC 7 1 HB 8 m m 4 4 2 2 7 11 m 2 7 2 2 m 4 7 3 2 m 2 2 2 ⇒ = = = − + − + ÷ ÷ = + = ⇔ − = ⇔ ÷ = − = Vậy 1 1 2 2 11 3 3 5 3 5 11 3 B ; C ; hay B ; C ; 2 2 2 2 2 2 2 2 ∧ − − ∧ ÷ ÷ ÷ ÷ 2. P AB (4; 1;2); n (1; 2;2)= − = − uuur r Pt mặt phẳng (Q) qua A và // (P) : 1(x + 3) – 2(y – 0) + 2(z – 1) = 0 ⇔ x – 2y + 2z + 1 = 0. Gọi ∆ là đường thẳng bất kỳ qua A Gọi H là hình chiếu của B xuống mặt phẳng (Q). Ta có : d(B, ∆) ≥ BH; d (B, ∆) đạt min ⇔ ∆ qua A và H. Pt tham số x 1 t BH: y 1 2t z 3 2t = + = − − = + Tọa độ H = BH ∩ (Q) thỏa hệ phương trình : x 1 t, y 1 2t,z 3 2t x 2y 2z 1 0 = + = − − = + − + + = 10 t 9 ⇒ = − 1 11 7 H ; ; 9 9 9 ⇒ − ÷ ∆ qua A (-3; 0;1) và có 1 VTCP ( ) 1 a AH 26;11; 2 9 ∆ = = − uur uuur Pt (∆) : x 3 y 0 z 1 26 11 2 + − − = = − Câu VII.a. Đặt z = x + yi với x, y ∈ R thì z – 2 – i = x – 2 + (y – 1)i z – (2 + i)= 10 và z.z 25= ⇔ 2 2 2 2 (x 2) (y 1) 10 x y 25 − + − = + = ⇔ { 2 2 4x 2y 20 x y 25 + = + = ⇔ { 2 y 10 2x x 8x 15 0 = − − + = ⇔ { x 3 y 4 = = hay { x 5 y 0 = = Vậy z = 3 + 4i hay z = 5 Câu VII.b. Pt hoành độ giao điểm của đồ thị và đường thẳng là : 2 x 1 x m x − − + = ⇔ 2x 2 – mx – 1 = 0 (*) (vì x = 0 không là nghiệm của (*)) Vì a.c < 0 nên pt luôn có 2 nghiệm phân biệt ≠ 0 Do đó đồ thị và đường thẳng luôn có 2 giao điểm phân biệt A, B AB = 4 ⇔ (x B – x A ) 2 + [(-x B + m) – (-x A + m)] 2 = 16 ⇔ 2(x B – x A ) 2 = 16 ⇔ (x B – x A ) 2 = 8 ⇔ 2 m 8 8 4 + = ÷ ⇔ 2 m 24= ⇔ m = 2 6± TS. Nguyễn Văn Nhân (ĐH Kinh Tế TP.HCM) . NĂM 2009 Môn thi : TOÁN PHẦN CHUNG CHO TẤT CẢ THÍ SINH (7,0 điểm) Câu I (2 điểm) Cho hàm số y = 2x 4 – 4x 2 (1) 1. Khảo sát sự biến thiên và vẽ đồ thị của. tròn (C) : 2 2 4 (x 2) y 5 − + = và hai đường thẳng ∆ 1 : x – y = 0, ∆ 2 : x – 7y = 0. Xác định toạ độ tâm K và tính bán kính của đường tròn (C 1 ); biết