Bernd Markert · Stefan Fränzle Simone Wünschmann Chemical Evolution The Biological System of the Elements Chemical Evolution ThiS is a FM Blank Page Bernd Markert Stefan Fraănzle Simone Wuănschmann Chemical Evolution The Biological System of the Elements Bernd Markert Environmental Institute of Scientific Networks (EISN) Haren Germany Stefan Fraănzle International Graduate School Zittau Zittau Germany Simone Wuănschmann Environmental Institute of Scientific Networks (EISN) Haren Germany ISBN 978-3-319-14354-5 ISBN 978-3-319-14355-2 DOI 10.1007/978-3-319-14355-2 (eBook) Library of Congress Control Number: 2015933157 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2015 This work is subject to copyright All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed The use of general descriptive names, registered names, trademarks, service marks, etc in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made Cover: The cover of the book represents The Biological System of the Elements (BSE) developed by one of these authors, Prof Dr Bernd Markert, in 1994 Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) Preface Generally speaking, we are concerned with the question: Where did organicchemistry-based life come from? This volume now in your hands was motivated by the attempt to discuss and to some extent explain chemical evolution from the point of view of physiological, essential, or at least beneficial activities of chemical elements in contemporary biology From these chemical features, there may be hints to the pathway which eventually enabled biological evolution to start, using evidence from chemical evolution experiments as well as the Biological System of Elements (BSE) concerning present functions or roles of these elements Chapter deals with considerations on the formation of chemical elements in cosmic systems and cosmochemistry providing building blocks for living beings within the Solar System, going back to astrophysical element syntheses ever since Big Bang took place some 13.8 billion years ago Catalytic aspects observed in experiments on prebiotic chemistry and the presence of organics and HCN in interstellar medium, meteorites, and other celestial bodies all argue for a setting which is favorable for making chemical building blocks of biology right during aggregation of planets or large moons Later on, requirements on the presence, properties, and interaction modes of environmental compartments such as atmosphere and liquidosphere in order to form life and be sustained somewhere will be discussed Thereafter (Chap 2), chemical evolution would take place following pathways which are still much of a puzzle, but finally making living beings from organic molecules (and possibly additional components; abiogenesis) During Hadean ages (4 bio years from now), these processes preceded the evolution of organisms which are distinguished by a generally cellular organization Ever since, biological evolution produced new living beings from already existing ones (biogenesis), chemical evolution is distinguished by the spontaneous formation of structures including chiral biases of organic molecules by chemical processes such as autocatalysis in some cases For this to happen, there must be flow systems and throughflow equilibria A possible (some say: most likely) reason and site for this v vi Preface are chemical and thermal gradients which exist around hot springs at the bottom of the oceans, better known as black smokers On a molecular level, biological processes follow physicochemical laws, but the actual outcomes may yet differ from “plain” chemistry due to adaptations of all organic living beings to an aqueous milieu To start with a simple example, membrane passage dynamics of Na and K cations is the other way round than would be expected This is unlike the hydratation of ions causing Naaq+ to have a larger diameter than Kaq+ (and even Rbaq+) and thus pass through (nerve and other biological) membranes only in certain conditions while K and Rb ions could so rather easily In order to account for physiological effects of chemical elements in living beings using some Biological System of Chemical Elements (BSE), the familiar Periodic Chemical System of Elements (PSE) according to Mendeleyev and Meyer (1869) had to be completed and modified also using the Geochemical System by Railsback (2003) which offered important hints and pieces of information The Biological System of Elements goes beyond accumulating essentiality investigations which have obvious technical and analytical limitations In correlations among abundances of elements in different samples of biological origins, there are deep-rooted biochemical factors and relationships which these authors started to study and describe in more detail already in the late 1990s (Markert 1994, 1996, 1998; Fraănzle and Markert 2000) Different features of chemical elements within the BSE produce the three edges of its graphic representation These refer to the capability to form highly aggregated structures, salinity of milieu, and “organicbiochemical relatedness” of chemical species formed around this element; parameters linked to these dimensions, edges, or features accordingly have multiple implications In Chap 3, the biological role of different chemical species (elements rather than their speciation forms) is discussed in more detail Essentiality or toxicity depends on the impact on enzyme activities, far beyond coordination properties and preferences considered in bioinorganic chemistry Beyond “simple” catalysis, biological reproduction, or it being compromised by certain elements, every protein which relies on metal ions inside or gets influenced by taking them up will influence its own reproduction in terms and manners of autocatalysis Stoichiometric Network Analysis (SNA), which was introduced by Clarke in the 1970s, explicitly deals with which principal modes of dynamics may be open to such autocatalytic systems in various circumstances (Chap 4) This allows us to consider and analyze aspects of bioinorganic chemistry of metalloproteins including essentiality versus toxicity of element (speciation forms), testifying their roles as building blocks or controlling entities within or connected to autocatalytic feedback loops The SNA theorems are used to produce a system of non-equations describing the possible or unlikely autocatalytic behavior of certain metals within the framework of biology This is meant to enable detailed statements and even predictions whether a certain element may be essential or beneficial to physiology, and, if so, whether there are certain ranges of redox potential or binding forms such as complexes or biomethylation products which might enable such behavior Preface vii Returning from chemical and biological evolution to the recent demands of humans, let us consider the possible role of chemical elements to be employed in medical research or health surveillance, including pharmaceutical applications of, e.g., Cr in type II diabetes or Li in a range of mental/psychical diseases While neither element should be considered as essential for humans by now, both are obviously able to relieve severe disease symptoms in patients stricken by the mentioned illnesses Chapter deals with the roles of water, soil, and atmosphere for chemical evolution Finally, Chap offers a glimpse on features of chemical evolution investigated by means of comparative (chemical) planetology, that is, we shall have a look at space research related to it, concerning both present and planned space probe missions It is obvious that this field of research will continue to yield most exciting and informative results An extended and detailed Appendix gives relevant information on the functionality of singular chemical elements Many thanks ought to be given to all the colleagues who helped us to prepare this volume, answering numerous questions in great detail In addition, many thanks to Springer and its staff for giving us the opportunity to publish this book and who supported us in many ways Dear readers, we hope to give you an impression of what chemical evolution might have been and worked like and look forward to your criticism of any kind Haren/Erika and Zittau Autumn 2014 Bernd Markert Stefan Fraănzle Simone Wuănschmann ThiS is a FM Blank Page List of Abbreviations AAN AAs ATP B&B BAF BCF BIF BP Bq BSE DM EDTA EUV FTT GC/MS GSE ICBM INTECOL IRC ISM IUBS IUPAC KBOs KT LMCT LUCA MER MLCT MT NA Aminoacetonitrile Amino acids Adenosine Triphosphate Bioindication and Biomonitoring Technologies Biological Accumulator Factor Biological Concentration Factor Banded Iron Formations Years before the Present Becquerel The Biological System of the Elements Dry Matter Ethylenediaminetetraacetic Extreme Ultraviolet Fischer–Tropsch-Type Gas Chromatography/Mass Spectrometry Geochemical System of the Elements originally: The Earth Scientist’s Periodic Table of the Elements and their Ions’ Intercontinental Ballistic Missile International Association for Ecology Catalogue of Astronomical Infrared Sources Interstellar Medium International Union of Biological Sciences International Union of Pure and Applied Chemistry Kuiper Belt Objects Cretaceous-Tertiary Ligand-to-Metal Charge Transfer Last Universal Common Ancestor Mars Exploration Rover Metal-to-Ligand Charge Transfer Metallothionein Nucleic acid (RNA or DNA) ix References 267 Le Son H, Suwannachot Y, Bujdak J, Rode BM (1998) Salt-induced peptide formation from amino acids in the presence of clay and related catalysts Inorg Chim Acta 272:89–94 Leon C, Emons H, Ostapczuk P, Hoppstock K (1997) Simultaneous ultratrace determination of platinum and rhodium by cathodic stripping voltammetry Anal Chim Acta 356:99–104 Lepp NW, Madejon P (2007) Cadmium and zinc in vegetation and litter of a voluntary woodland that has developed on contaminated sediment-derived soil J Environ Qual 36(4):1123–1131 Lever ABP (1990) Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series Inorg Chem 29:1271–1285 Levit G (2001) Biogeochemistry, biosphere, noosphere: the growth of the theoretical system of Vladimir Ivanovich Vernadsky (1863-1945) Buchreihe: “Studien zur Theorie der Biologie” (Hrsg von Olaf Breidbach & Michael Weingarten) Berlin : VWB, Verl fuăr Wiss und Bildung, 116 S Lewis J, Prinn R (1984) Planets and their atmospheres: origin and evolution Academic, London Li HF, McGrath SP, Zhao FJ (2008) Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite New Phytol 178(1):92–102 Lide DR (ed) (1996) CRC handbook of chemistry and physics, 77th edn CRC Press, Boca Raton Lieth H (1995) Globale Verteilung der NettoprimaărproduktivitaătRio Model 1995 www.usf Uni-Osnabrueck.de/~hlieth Lieth H, Markert B (1985) Naturwissenschaften 72:322 Lieth H, Markert B (1988) Aufstellung und Auswertung oăkosystemarer Element-KonzentrationsKataster Eine Einfuăhrung Springer, Berlin Lieth H, Markert B (eds) (1990) Element concentration cadasters in ecosystems Methods of assessment and evaluation VCH-Verlagsgesellschaft mbH, Weinheim Likens GE, Bormann FH, Pierce RS, Eaton JS, Johnson NM (1977) Bio-geochemistry of a forested ecosystem Springer, Berlin Loăb W (1913) Ueber das Verhalten des Formamids unter der Wirkung der stillen Entladung Ein Beitrag zur Frage der Stickstoff-Assimilation Ber Dt Chem Ges 46:684–697 Loew GH, Chadha MS, Chang S (1972) A molecular orbital and chemical study of aminoacetonitrile: a possible prebiotic peptide precursor J Theor Biol 35:359–373 Lombi E, Donner E, Taheri S, Tavakkoli E, Jaămting , McClure S, Naidu R, Miller B, Scheckel K, Vasilev K (2013) Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge Environ Pollut 176:193–197 Loppi S, Bonini I (2000) Lichens and mosses as biomonitors of trace elements in areas with thermal springs and fumarole activity (Mt Amiata, central Italy) Chemosphere 41:1333–1336 Lund H (1957) Electroorganic preparations IV Oxidation of aromatic hydrocarbons Acta Chem Scand 11:1323–1130 Lux A, Sˇottnı´kova´ A, Opatrna´ J, Greger M (2004) Differences in structure of adventitious roots in Salix clones with contrasting characteristics of Cd accumulation and sensitivity Physiol Plant 120:537–545 MacAlester AL (1982) Die Geschichte des Lebens Geowissen kompakt, vol Enke, Stuttgart Magaritz M, Kaufmann A, Levy Y, Fink D, Meirav O, Paul M (1986) 36Cl in a halite layer from the bottom of the Dead Sea Nature 320:256–257 Majerus P (1992) Inositol phosphate biochemistry Annu Rev Biochem 61:225–250 Makosza M (2000) Phase transfer catalysis: a greener methodology for organic synthesis Pure Appl Chem 72:1439–1445 Markert B (1986) Aufstellung von Elementkonzentrationskatastern in unterschiedlichen ă sterreich und Schweden In: Stoeppler M, Pflanzenarten und Bodentypen in Deutschland, O Duărbeck HW (eds) Beitraăge zur Umweltprobenbank Juăich Spezial, 360 Markert B (1987) Interelement correlations in plants Fresenius Zeitschrift fuăr Analytische Chemie 329:462–465 Markert B (1988) Interelement correlations in different reference materials Fresenius Zeitschrift fuăr Analytische Chemie 332:630635 268 References Markert B (1991a) Instrumentelle Multielementanalyse an pflanzlichen Systemen VCH, Weinheim Markert B (1991b) Multi-element analysis in plant material In: Esser G, Overdieck D (eds) Modern ecology, basic and applied aspects Elsevier, Amsterdam, pp 275–288 Markert B (1992a) Presence and significance of naturally occuring chemical elements of the periodic system in the plant organism Vegetatio 103:1–30 Markert B (1992b) Establishing of “reference plant” for inorganic characterization of different plant species by chemical fingerprinting Water Air Soil Pollut 64:533–538 Markert B (1992c) Aspects of cleaning environmental material for multielement analysis: F.e plant samples Fresenius Zeitschrift fuăr Analytische Chemie 342:409412 Markert B (1992d) Atomabsorptionsspektrometrie, Atomemissionsspektrometrie und Atomfluoreszensspektrometrie In: DANS-LAX, Taschenbuch fuăr Chemiker und Physiker, Band I Springer, Heidelberg, pp 254–272 Markert B (1993a) Occurrence and distribution of chemical elements in plants—outlook and further research plans Toxicol Environ Chem 40:31–41 Markert B (1993b) Interelement correlations detectable in plant samples based on data from reference materials and highly accurate research samples Fresenius J Anal Chem 345:318–322 Markert B (1994a) The biological system of the elements (BSE) for terrestrial plants (glycophytes) Sci Total Environ 155:221–228 Markert B (1994b) Inorganic chemical fingerprinting of the environment; reference freshwater useful tool for comparison and harmonization of analytical data in freshwater chemistry Fresen J Anal Chem 349:697–702 Markert B (1996) Instrumental element and multielement analysis of plant samples—methods and applications Wiley, Chichester, New York, Tokyo Markert B (2003a) Monitoring with lichens—monitoring lichens In: Pier Luigi Nimis, Christoph Scheidegger, Patricia A Wolseley (eds) Dordrecht, Boston, London: Kluwer Academic Publisher (2002), 408 pp Bookreview, The Science of the Total Environment 299(1–3): 251–252 Markert B (2007) Definitions and principles for bioindication and biomonitoring of trace metals in the environment J Trace Elem Med Biol 21(1):77–82 Markert B (2008) Bioindication and biomonitoring as innovative biotechniques for controlling trace metal influences to the environment In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination, and health implications Wiley, New York, pp 743–760 Markert B (2011) Inorganic contaminants occurance and significance of chemical elements with special reference to plants In: Vanek T (ed) Phytotechnologies solutions for sustainable land management Encyclopedia of Life Support Systems, Oxford Markert B, Friese K (eds) (2000) Trace elements Their distribution and effects in the environment Elsevier, Amsterdam Markert B, Weckert V (1993) Time-and-site integrated long-term biomonitoring of chemical elements by means of mosses Toxicol Environ Chem 40:43–56 Markert B, Oehlmann J, Roth M (1997) General aspects of heavy metal monitoring by plants and animals In: Subramanian G, Iyengar V (eds) Environmental biomonitoring-exposure assessment and specimen banking, ACS Symp Ser 654 American Chemical Society, Washington, DC Markert B, Wappelhorst O, Weckert V, Herpin U, Siewers U, Friese K, Breulmann G (1999) The use of bioindicators for monitoring the heavy-metal status of the environment Radioanal Nucl Chem 240:425429 Markert B, Fraănzle S, Fomin A (2002) From the biological system of the elements to biomonitoring In: Merian E, Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment, 2nd edn Wiley-VCH, Weinheim Markert B, Breure A, Zechmeister H (eds) (2003a) Bioindicators and biomonitors Principles, concepts and applications Elsevier, Amsterdam References 269 Markert B, Breure A, Zechmeister H (2003b) General aspects and integrative approaches In: Markert B, Breure T, Zechmeister H (eds) Bioindicators and biomonitors Principles, concepts and applications Elsevier, Amsterdam, pp 339 Markert B, Fraănzle S, Fomin A (2004) From the biological system of the elements to biomonitoring In: Anke M, Ihnat M, Stoeppler M (eds) Elements and their compounds in the environment Occurrence, analysis and biological relevance Wiley-VCH, New York, pp 235254 Markert B, Wuănschmann S, Fraănzle S, Wappelhorst O, Weckert V, Breulmann G, Djingova R, Herpin U, Lieth H, Schroeder W, Siewers U, Steinnes E, Wolterbeek B, Zechmeister H (2008a) On the road from environmental biomonitoring to human health aspects: monitoring atmospheric heavy metal deposition by epiphytic/epigeic plants: present status and future needs Int J Environ Pollut 32(4):486–498 Markert B, Schroeder P, Golan-Goldhirsh A, Schwitzguebel J (2008b) Conference report: nutrient biofortification and exclusion of pollutants in food plants Environ Pollut 15(2): 172 (and in: INTECOL-e-Bulletin 2(1): 3–4) Markert B, Wuănschmann S, Herzig R, Quevauviller P (2010) Bioindicateurs et biomoniteurs: De´finitions, strate´gies et applications French Language TechIng Paris P4(170):1–16 Markert B, Wuănschmann S, Baltrenaite E (2012a) APLINKOS STEBEJIMO NAUJOVES BIOINDIKATORIAI IR BIOMONITORIAI:APIBRE˙ZˇTYS, STRATEGIJOS IR TAIKYMAS, Lithuanian Language J Environ Eng Landsc Manage 20(3):221239 Markert B, Wuănschmann S, Diatta JB, Chudzin´ska E (2012b) Innowacyjna Obserwacja S´rodowiska: Bioindykatory i Biomonitory: Definicje, Strategie i Zastosowania, Polish Language Environ Protect Nat Resour 53:115–152 Markert B, Wuănschmann S, Marcovecchio J y De Marco S (2013a) Bioindicadores y Biomonitores: Definiciones, Estrategias y Aplicaciones In: Marcovecchio J, Freije RH (eds) Procesos Quı´micos en Estuarios; Spanish Language Markert B, Wang, M, Wuănschmann S, Chen W (2013b) 究进展 (Bioindicators and Biomonitors in Environmental Quality Assessment), (Mandarin Language) Acta Ecol Sinica, Elsevier China, 33(1): 33–44 :هاوفرانرهازستØشاخص Markert B, Wuănschmann S, Ghaffari Z (2013c) ;Persian Language J Environ Manage Plan 2: 95110 Markert B, Wuănschmann S, Fraănzle S, Figueiredo AMG, Van der Meer A, Wolterbeek B (2013d) Thallium distribution in plants In: Kretsinger R, Permyakov E, Uversky V (eds) Encyclopedia of metalloproteins Springer, New York, pp 2188–2193 Markert B, Wuănschmann S, Tabors G (2014) Inovatvie vides novertejumi Bioindikatori un biomonitoringi: definı¯cijas, strate¯g¸ijas un programmas (Innovative observation of the environment: bioindicators and biomonitors: definitions, strategies and applications), Latvia Lan¯ TES RAKSTI 2013, 791 se¯j ZEMES UN VIDES guage LATVIJAS UNIVERSITA ¯ TNES, 17–49 ZINA Marmiroli N, Maestri E (2008) Health implications of trace elements in the environment and the food chain Chapter In: Prasad MNV (ed) Trace elements—nutritional benefits, environmental contamination, and health implications Wiley, New York, pp 23–54 Marquard H, Schaefer S (eds) (2004) Lehrbuch der Toxikologie Wissenschaftliche Verlagsgesellschaft mbH Stuttgart, 1348 Marschner H (1986) Mineral nutrition of higher plants Academic, London Mason SF (1991) Chemical evolution Origins of the elements, molecules and living systems Clarendon, Oxford McGrath S, Mico C, Curdy R, Zhao F (2010) Predicting molybdenum toxicity to higher plants: influence of soil properties Environ Pollut 158(10):3095–3102 McGrath S, Chambers B, Taylor M, Carlton-Smith C (2012) Biofortification of zinc in wheat grain by the application of sewage sludge Plant Soil 361(1–2):97–108 270 References McKenzie HA, Smythe LE (eds) (1988) Quantitative trace analysis of biological materials Elsevier Science Publications, Amsterdam McLendon G, Harris W, Martell AE (1976) Dioxygen complexation by cobalt amino acid and peptide complexes I Stoichiometry and equilibria J Am Chem Soc 98:8379–8386 Mench M, Vangronsveld J, Beckx C, Ruttens A (2006) Progress in assisted natural remediation of an arsenic contaminated agricultural soil Environ Pollut 144(1):51–61 Mentel M, Martin W (2010) Anaerobic animals from an ancient, anoxic ecological niche BMC Biol 8:32–37 Merian E (ed) (1991) Metals and their compounds in the environment VCH, Weinheim Mertz W (1981) The essential trace elements Science 213:1332–1338 Michalke B (2014) Anwendung der Platinspeziation zum Nachweis einer Aktivierung oder Inhibierung von Pt enthaltenden Krebsmedikamenten Perspect Med 2:79–90 Michalke B, Fernsebner K (2014) Neue Einsichten in die Toxizitaăt und die Speziation von Mangan Perspect Med 2:109–124 Michalke B, Witte H (2014) Characterization of a rapid and reliable method for iodide biomonitoring in serum and urine based on ion chromatography-ICP-mass spectrometry J Trace Elem Med Biol 29:63–68 Miller S, Urey H (1959) Organic compound synthesis on the primitive Earth Science 130:245– 252 Miller LL, Nordblom GD, Mayeda EA (1972) A simple, comprehensive correlation of organic oxidation and ionization potentials J Org Chem 37:916–918 Mizerski W (1997) Tablice chemiczne Wydawnictwo Adamantan, Warsaw Moeller T, Martin DF, Thompson LC, Ferrus R, Feistel GR, Randall WJ (1965) The coordination chemistry of yttrium and the rare earth metal ions Chem Rev 65:1–50 Monaci F, Leidi E, Dolores M, Valde´s B, Rossini S, Bargagli R (2011) Selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt J Environ Sci (China) 23(3):444–452 Moxon A, DuBois K (1939) The influence of arsenic and certain other elements on the toxicity of seleniferous grains J Nutr 18:447 Mukund S, Adams MWW (1996) Molybdenum and vanadium not replace tungsten in the catalytically active forms of the three tungstoenzymes in the hyperthermophilic archaeon Pyrococcus furiosus J Bacteriol 178:163–167 Mumma MJ, Villanueva GL, Novak RE, Hewagama T, Bonev BP, DiSanti MA, Mandell AM, Smith MD (2009) Strong release of methane on Mars in Northern Summer 2003 Science 323:1041 Murakami M, Ae N, Ishikawa S (2007) Phytoextraction of cadmium by rice (Oryza sativa L.), soybean (Glycine max (L.) Merr.), and maize (Zea mays L.) Environ Pollut 145(1):96–103 Murakami M, Ae N, Ishikawa S, Ibaraki T, Ito M (2008) Phytoextraction by a high-Cd-accumulating rice: reduction of Cd content of soybean seeds Environ Sci Technol 42(16):61676172 ă kophysik Springer, Berlin Nachtigall W, Wisser A (2006) O Nadkarni R, Morrison G (1977) Neutron activation determination of noble metals using a selective group separation scheme Radioanal Chem 38:435–444 Nedin C (1999) Anomalocaris predation on mineralized and non-mineralized trilobites Geology 27:987–990 Nierboer E, Richardson DHS (1980) A biologically and chemically significant classification of metal ions Environ Pollut B1:3–26 Nriagu JO (ed) (1998) Thallium in the environment Wiley, New York Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals Nature 333:134 Nriagu J, Pacyna J, Szefer P, Markert B, Wuănschmann S, Namiesnik J (eds) (2012) Heavy metals in the environment Maralte Books, The Netherlands Ochiai EI (1968) Catalytic functions of metal ions and their complexes Coord Chem Rev 3:4989 References 271 ă rzte, NaturOehlmann J, Markert B (1997) Humantoxikologie Eine Einfuăhrung fuăr Apotheker, A und Ingenieurwissenschaftler Wissenschaftliche Verlagsgesellschaft, Stuttgart Oparin A (1924) (Произхождение жизни М Московский рабочий) Entstehung des Lebens M Moskowski Rabotschi Oparin A (1947) Die Entstehung des Lebens auf der Erde Volk und Wissen, Berlin Orgel LE (2004) Prebiotic chemistry and the origin of the RNA world Crit Rev Biochem Mol Biol 39:99–123 Orgel LE (2008) The implausibility of metabolic cycles on the prebiotic Earth PLoS Biol 6:18–27 Otte M, Jacob D (2008) Mine area remediation In: Jørgensen SE, Fath BD (eds) Ecological engineering Encyclopedia of ecology, vol Elsevier, Oxford, pp 2397–2402 Pacheco AMG, Freitas MC, Reis MA (2003) Trace-element measurements in atmospheric biomonitors – a look at the relative performance of INAA and PIXE on olive-tree bark Nucl Instr Meth Phys Res A 505:425–429 Pacyna J (1985) The chemical composition of aerosols in Zabadani Valley, Syria The Norwegian Institute for Air Research, Oslo, NILU TR 18 Pacyna J, Sundseth K, Pacyna E, Banel A (2013) ArcRisk policy-related summary report Technical Report OR 24/2013 The Norwegian Institute for Air Research, NILU, Kjeller, Norway Pais I (1991) Criteria of essentiality, beneficiality, and toxicity What is too little and too much? In: Pais I (ed) Cycling of nutritive elements in geo- and biosphere In: Proceedings of the IGBP symposium of the Hungarian academy of sciences, Budapest, pp 59–77 Paquin R, Farley K, Santore R, Kavvadas C, Mooney K, Winfield R, Wu K, Ti Tore D (2003) Metals in aquatic systems: a review of exposure, bioaccumulation, and toxicity models Society of Environmental Toxicology and Chemistry (SETAC), Pensacola, pp 61–90 Pedersen K (1948) Metal ion catalysis of enolization and decarboxylation of oxaloacetate ion Acta Chim Scand 2:252–259 Petride H, Costan O, Draghici C, Florea C, Petride A (2005) RuO4-mediated of N-benzylated tertiary amines Regioselectivity for N, N-dimethyl- and N.N-diethylbenzylamine as substrates ARKIVOC 2005:18–32 Poros E, Horvath V, Kurin-Csorgei K, Epstein ER, Orban M (2011) Generation of pH-oscillations in closed chemical systems: method and applications J Am Chem Soc 133:7174–7179 Poschenrieder C, Allue´ J, Tolra R, Llugany M, Barcelo J (2008) Trace elements and plant secondary metabolism: quality and efficacy of herbal products Chapter In: Prasad MNV (ed) Trace elements—Nutritional benefits, environmental contamination, and health implications Wiley, New York, pp 99–120 Poschenrieder C, Cabot C, Martos S, Gallego B, Barcelo J (2013) Do toxic ions induce hormesis in plants? Plant Sci 212:1525 Postberg F, Schmidt J, Huăller J, Kempf S, Strama R (2011) A salt-water reservoir as the source of a compositionally stratified plume on Enceladus Nature 474:420–422 Pota G, Stedman G (1994) Exotic behaviour of chemical reaction systems Acta chimica Hungarica – Model Chemistry 131:229–268 Potter R, DuBois K, Moxon A (1939) A comparative study of liver glycogen values of control, selenium and selenium-arsenic rats So Dak Acad Sci 19:99 Prange A (2001) Erfassung und Beurteilung der Belastung der Elebe mit Schadstoffen BMBFForschungsvorhaben, GKSS-Forschungszentrum Geesthacht GmbH, Geesthacht Prasad MNV (ed) (2008) Trace elements as contaminants and nutrients consequences in ecosystems and human health Wiley, New York Price NM, Morel FMM (1990) Cadmium and cobalt substitution for zinc in a marine diatom Nature 344:658–660 Quevauviller P, Maier EA (1999) Interlaboratory studies and certified reference materials for environmental analysis-The BCR approach Elsevier, Amsterdam 272 References Quevauviller P, Borchers U, Thompson C, Simonart T (eds) (2008) The water framework directive Ecological and chemical status monitoring water quality measurements Wiley, New York Quiroz J, Gould T, Manji H (2004) Molecular effects of lithium Mol Interv 4(5):259–272 Quiroz J, Machado-Vieira R, Zarate C, Manji H (2010) Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects Neuropsychobiology 62(1):50–60 Railsback LB (2003) An earth scientist’s periodic table of the elements and their ions Geology 31:737–740 Rasemann W, Markert B (1998) Industrial waste dumps – sampling and analysis In: Meyers R (1998) Encyclopedia of environmental analysis and Remediation, Vol Wiley, New York, pp 23562373 Rechenberg I, Kuăppers U, Scheel A, Mattheck C, Harzheim L (1998) Evolution und Optimierung In: Nachtigall W (ed) Bionik Grundlagen und Beispiele fuăr Ingenieure und Naturwissenschaftler Springer, Heidelberg, pp 245–269 Rehder D (1992) Structure and function of vanadium compounds in living organisms BioMetals 5:3–12 Reimann C, Siewers U, Tarvainen T, Bityukova L, Eriksson J, Gilucis A, Gregorauskiene V, Lukashev V, Matinian N, Pasieczna A (2003) Agricultural soils in Northern Europe: a geochemical atlas Geol Jb Sonderheft SD 5:1–270 (Hannover) Reimann C, Arnoldussen A, Boyd R, Finne T, Nordgulen O, Volden T, Englmaier P (2006) The influence of a city on element contents of a terrestrial moss (Hylocomium splendens) Sci Total Environ 369(1–3):419–432 Reimann C, Arnoldussen A, Boyd R, Finne T, Koller F, Nordgulen O, Englmaier P (2007) Elements content in leaves of four plant species (birch, mountain ash, fern and spruce) along anthropogenic and geogenic concentration gradients Sci Total Environ 377:416–433 Reimann C, Flem B, Arnoldussen A, Englmaier P, Finne T, Koller F, Nordgulen O (2008) The biosphere: a homogeniser of Pb-isotope signals Appl Geochem 23:705–722 Rhee GY (1973) Continuous culture study of phosphate uptake, growth rate and polyphosphate in Scenedesmus spp J Phycol 9:495–506 Riedel E [ed.] (2010) Moderne Anorganische Chemie, 3rd edn De Gruyter, Berlin and New York Rocha RC, Rein FN, Toma HE (2002) Electrochemical parametrization of a series of tetra- and pentadentate EDTA complexes of ruthenium Inorg Chem Commun 5:891–896 Rodriguez J, Wannaz E, Salazar M, Pignata M, Fangmeier A, Franzaring J (2012) Accumulation of polycyclic aromatic hydrocarbons and heavy metals in the tree foliage of Eucalyptus rostrata, Pinus radiata and Populus hybridus in the vicinity of a large aluminium smelter in Argentina Atmos Environ 55:35–42 Roots EF (1992) Environmental information - a step to knowledge and understanding Environ Monitor Assess 50(4):87–94 Roots EF (1996) Environmental information - Autobahn or maze? In: Schroeder W, Fraenzle O, Keune H, Mandy P (eds) Global monitoring of terrestrial ecosystem Ernst & Sohn fuăr Architektur und technische Wissenschaften GmbH, Berlin, pp 331 Rosner G, Hertel R (1986) Gefaăhrdungspotential von Platinemissionen aus AutomobilabgasKatalysatoren Staub Reinhalt Luft 46:281–285 Rossbach M (1986) Instrumentelle Neutronenaktivierungsanalyse zur standortabhaăngigen Aufnahme und Verteilung von Spurenelementen durch die Salzmarschpflanze Aster tripolium von Marschwiesen des Scheldeestuars, Niederlande In: Stoeppler M, Duărbeck H (eds) Beitraăge zur Umweltprobenbank, Juălich, Spezial KFA Juălich, FRG Rothenberg G (2008) Catalysis Wiley/VCH, Weinheim Roy K, Sinha P, Lahiri S (2008) Immobilization of long-lived radionuclide 152,154Eu by selective bioaccumulation in Saccharomyces cerevisiae from a synthetic mixture of 152,154Eu, 137Cs and 60Co Biochem Eng J 40:363–367 Rutgers M, Van ‘t Verlaat I, Wind B, Posthuma L, Breure AM (1998) Rapid method for assessing pollution-induced community tolerance in contaminated soil Environ Toxicol Chem 17:2210 References 273 Saiki M, Chaparro CG, Vasconcellos MBA, Marcelli MP (1997) Determination of trace elements in lichens by instrumental neutron activation analysis Radioanal Nucl Chem Budapest 217 (1):111–115 Sakurai M, Yanagawa H (1984) Prebiotic synthesis of amino acids from formaldehyde and hydroxylamine in a modified sea medium Orig Life 14:171–176 Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E (2008) Synthesis and degradation of nucleic acid components by formamide and iron sulphur minerals J Am Chem Soc 130:15512–15518 Saladino R, Neri V, Crestini C, Costanzo G, Graciotti M, Di Mauro E (2010) The role of the formamide/zirconia system in the synthesis of nucleobases and biogenic carboxylic acid derivatives J Mol Evol 71:100–110 Saladino R, Crestini C, Pino S, Costanzo G, diMauro E (2012) Formamide and the origin of life Phys Life Rev 9:84–104 Salazar M, Rodriguez J, Leonardo Nieto G, Pignata (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill] J Hazard Mater 233–234:244–253 Salt D (2004) Update on plant ionomics Plant Physiol 136(1):2451–2456 Sansoni B (ed) (1985) Instrumentelle multielementanalyse VCH, Weinheim Sansoni B (1987) Multi-element analysis for environmental characterization Pure Appl Chem 59:579 Sansoni B, Iyengar V (1978) Sampling and sample preparation methods for the analysis of trace elements in biological materials Forschungszentrum Juălich, Juălich Spezial, 13 Santamaria L, Fleischmann L (1966) Photochemical synthesis of amino acids from paraformaldehyde catalysed by inorganic agents Experientia 22:430–431 Sarapu AC, Fenske RF (1975) Photoelectron spectra and electrochemical potentials of some nitrile and isocyanide complexes Inorg Chem 14:247–251 Saygin O (1984) Photochemical carbamoylphosphate formation and metal-ion catalysed transphosphorylations between carbamoylphosphate and adenine nucleotides or carboxyl groups Orig Life Evol Biosph 14:131–138 Saygin O, Ellmauerer E (1984) Caclcium-ion catalyzed non-enzymatic ATP synthesis from ATP and carbamoylphosphate Orig Life 14:139–144 Schilling CH, Palsson BO (1998) The underlying pathway structure of biochemical reaction networks Proc Natl Acad Sci 95:4193–4198 Schou M (1997) Forty years of lithium treatment Arch Gen Psychiatry 54:9–13, discussion 14–15 Schou M, Juel-Nielsen N, Stromgren E, Voldby H (1954) The treatment of manic psychoses by the administration of lithium salts J Neurol Neurosurg Psychiatry 17:250–260 Schrauzer GN (1975) Nonenzymatic simulation of nitrogenase reactions and the mechanism of biological nitrogen fixation Angew Chem Int 14:514–522 Schroeder W, Fraenzle O, Keune H, Mandy P (eds) (1996) Global monitoring of terrestrial ecosystems Ernst, Berlin Schroeder P, Navarro-Avino J, Azaizeh H, Golan-Goldhirsh A, Di Gregorio S, Komives T, Langergraber G, Lenz A, Maestri E, Memon AR, Ranalli A, Sebastiani L, Smrcek S, Vanek T, Vuilleumier S, Wissing F (2007) Using phytoremediation technologies to upgrade waste water treatment in Europe Environ Sci Pollut Res 14(7):490–497 Schroeder P, Daubner D, Maier H, Neustifter J, Debus R (2008a) Phytoremediation of organic xenobiotics – glutathione dependent detoxification in Phragmites plants from European treatment sites Bioresour Technol 99(15):7183–7197 Schroeder P, Herzig R, Bojinov B, Ruttens A, Nehnevajova E, Stamatiadis S, Memon A, Vassilev A, Caviezel M, Vangronsveld J (2008b) Bioenergy to save the world – producing novel energy plants for growth on abandoned land Environ Sci Pollut Res 15(3):196–204 Schroeder W, Hornsmann I, Pesch R, Schmidt G, Fraănzle S, Wuănschmann S, Heidenreich H, Markert B (2008) Moosmonitoring als Spiegel der Landnutzung? Stickstoff- und Metallakkuă kotox 20(1):6274 mulation zweier Regionen Mitteleuropas Z Umweltchem O 274 References Schuăuărmann G, Markert B (eds) (1998) Ecotoxicology Ecological fundamentals, chemical exposure, and biological effects Wiley, New York Schwartz AW, van der Veen M, Bisseling T, Chittenden GJF (1975) Prebiotic nucleotide synthesis – demonstration of a geologically plausible pathway Orig Life 6:163–168 Schwartz AW, Voet AB, van der Veen M (1984) Recent progress in the prebiotic chemistry of HCN Orig Life 14:91–98 Schwarz OJ, Jonas WL (1997) Bioaccumulation of xenobiotic organic chemicals by terrestrial plants In: Wang W, Gorsuch JW, Hughes J (eds) Plants for Environmental Studies, Chap 14 CRC, Boca Raton, pp 417–449 Schwitzgue´bel JP, Braillard S, Page V, Aubert S (2008) Accumulation and transformation of sulfonated aromatic compounds by higher plants – Toward the phytotreatment of wastewater from dye and textile industries Chapter 16 In: Khan NA, Singh S, Umar S (eds) Sulfur assimilation and abiotic stress in plants Springer, Heidelberg Scott GT, deVoe R (1954) The reversible replacement of potassium by rubidium in Ulva lactuca J Gen Physiol 37:249–253 Seilacher A (2008) Ediacara – Leben wie auf einem anderen Planeten In: Betz O, Koăhler H (eds) Die Evolution des Lebendigen Attempto, Tuăbingen, pp 97115 Sellentin E (2012) Marsrover Curiosity analysiert Atmosphaăre des Roten Planeten http://www sterne-und-weltraum.de/alias/planetenforschung/marsrover-curiosity-analysiert-atmosphaeredes-roten-planeten/1169720 Senanayake SD, Idriss H (2006) Photocatalysis and the origin of life: synthesis of nucleoside bases from formamide on TiO2 (001) single crystal surfaces Proc Natl Acad Sci USA 103:1094–98 Serbula S, Miljkovic D, Kovacevic R, Ilic A (2012) Assessment of airborne heavy metal pollution using plant parts and topsoil Ecotoxicol Environ Saf 76(2):209–214 Sheppard S (1991) A field and literature survey, with interpretation of elemental concentrations in blueberry (Vaccinium augustifolium) Can J Bot 69(1):63–77 Sherameti I, Varma A (eds) (2010) Soil biology: soil heavy metals Springer, Berlin, Heidelberg Siegel BZ, Siegel SM, Speitel T, Waber J, Stoecker R (1984) Brine organisms and the question of habitat-specific adaptation Orig Life 14:757770 Siewers U, Herpin U (1998) Schwermetalleintraăge in Deutschland Moos-Monitoring 1995/96 Geol Jb Sonderheft SD Hannover 2:1–200 Siewers U, Herpin U, Strassburg S (2000) Schwermetalleintraăge in Deutschland Teil 2: MoosMonitoring 1995/1996 Geol Jb Sonderheft SD, Hannover 3: 1–121 Smeets K, Ruytinx J, Van Belleghem F, Semane B, Lin D, Vangronsveld J, Cuypers A (2008) Critical evaluation and statistical validation of a hydroponic culture system for Arabidopsis thaliana Plant Physiol Biochem 46(2):212–218 Smodis B (2003) IAEA approaches to assessment of chemical elements in atmosphere In: Markert BA, Breure AM, Zechmeister HG (eds) Bioindicators and biomonitors Principles, concepts and applications Elsevier, Amsterdam, pp 875–902 Som SM, Catling DC, Harnmeijer JP, Polivka PM, Buick R (2010) Air density 2.7 billion years ago limited to less than twice modern levels by fossil raindrop imprints Nature 484:359–362 Sovago I, Kiss T, Gergely A (1993) Critical survey of the stability constants of complexes of aliphatic amino acids (technical report); IUPAC Commission on equilibrium data Pure Appl Chem 65:1029–1080 Sterner RW, Elser JJ (2002) Ecological stoichiometry The biology of elements from molecules to the biosphere Princeton University Press, Princeton Stoeppler M, Duerbeck HW, Nuernberg HW (1982) Environmental specimen banking Talanta 29:963 Strasburger E, Sitte P (1991) Lehrbuch der Botanik fuăr Hochschulen, 33rd edn Gustav Fischer, Stuttgart Strasdeit H (2001) Das erste cadmiumspezifische Enzym Angewandte Chemie 113:730732 Strecker A (1850) Justus Liebigs Ann Chem 75:2745 ă kotoxikologie VCH, Weinheim Streit B (1991) Lexikon der O References 275 Streit B, Stumm W (1993) Chemical properties of metals and the process of bioaccumulation in terrestrial plants In: Markert B (ed) Plants as Biomonitors – Indicators for Heavy Metals in the Terrestrial Environment VCH, Weinheim Suchara I, Sucharova J, Hola M (2007) Bio-Monitoring of the atmospheric deposition of elements using moss analysis in the Czech Republic Acta Pruhoniciana 87:186 Suchara I, Rulı´k P, Hu˚lka J, Pila´tova´ H (2011) Retrospective determination of 137Cs specific activity distribution in spruce bark and bark aggregated transfer factor in forests on the scale of the Czech Republic ten years after the Chernobyl accident Sci Total Environ 409(10):1927– 1934 Sucharova´ J, Suchara I (2006) Determination of 36 elements in plant reference materials with different Si contents by inductively coupled plasma mass spectrometry: comparison of microwave digestions assisted by three types of digestion mixture Anal Chim Acta 576:163–176 Sugawara N, Yasui-Furukori N, Ishii N, Iwata N, Terao T (2013) Lithium in tap water and suicide mortality in Japan Int J Environ Res Public Health 10:6044–6048 Sza´razova´ K, Fargasˇova´ A, Hiller E, Velicka´ Z, Pastierova´ J (2008) Phytotoxic effects and translocation of Cr and Ni in washing wastewaters from cutlery production line to mustard (Sinapis alba L.) seedlings Fresenius Environ Bull 17:5865 Szoări M, Jojart B, Izsak R, Szoări K, Csizmadia IG, Viskolcz B (2011) Chemical evolution of biomolecule building blocks Can thermodynamics explain the accumulation of glycine in the prebiotic ocean? Phys Chem Chem Phys 13:7449–7458 Tabors G, Brumelis G, Lapin¸a L, Pospelova G, Nikodemus O (2004) Changes in element concentrations in moss segments after cross-transplanting between a polluted and non-polluted site J Atmos Chem 49:191–197 Teanby N, Irwin P, Nixon C, Kok R, Vinatier S, Coustenis A, Sefton-Nash E, Calcutt S, Flasar M (2012) Active upper-atmosphere chemistry and dynamics from polar circulation reversal on Titan Nature 491:732–735 Terfort A, von Kiedrowski G (1992) Self-replication by condensation of 3-aminobenzamidines and 2-formylphenxyacetic acids Angew Chem Int Ed 31:654–656 Tipton KD, Ferrando AA, William BD, Wolf RR (1996) Muscle protein metabolism in female swimmers after a combination of resistance and endurance exercise J Appl Physiol 81:2034– 2038 Tjivikua T, Ballester P, Rebek J (1990) A Self-replicating system J Am Chem Soc 112:12491250 Toălg G (1989) Analytical chemistry and the quality of life Kontakte, Darmstadt Toon G, Farmer C, Schaper P, Lowes L, Norton R (1992) Composition measurements of the 1989 Arctic winter stratosphere by airborne infrared solar absorption spectroscopy J Geophys Res 97:7939–7970 Tottey S, Harvie DR, Robinson NJ (2005) Understanding how cells allocate metals using metalsensors and metallochaperones Acc Chem Res 38:775–783 Trapp S, Feificova D, Rasmussen NF, Bauer-Gottwein P (2008) Plant uptake of NaCl in relation to enzyme kinetics and toxic effects Environ Exp Bot 64(1):1–7 van der Ent A, Baker A, Reeves R, Pollard A, Schat H (2012) Hyperaccumulators of metal and metalloid trace elements: facts and fiction Plant Soil 362(1–2):319–334 Vallee BL, Williams RJP (1968) Metalloenzymes The entatic nature of their active sites Proc Natl Acad Sci USA 59:498–505 Valley J, Cavosie A, Ushikubo T, Reinhard D, Lawrence D, Larson D, Clifton P, Kelly T, Wilde S, Moser D, Spicuzza M (2014) Hadean age for a post-magma-ocean zircon confirmed by atomprobe tomography Nat Geosci 7:219–223 Verbruggen N, Hermans C, Schat H (2008) Molecular mechanisms of metal hyperaccumulation and tolerance in plants New Phytol doi:10.1111/j.1469-8137.2998.02748x Verkleij J (1993) The effects of heavy metal stress on higher plants and their use as biomonitors In: Markert B (ed) Plants as biomonitors Indicators for heavy metals in the terrestrial environment VCH, Weinheim, pp 416–424 276 References Verkleij J (2008) Mechanisms of metal hypertolerance and (hyper)accumulation in plants Agrochimica 52(3):167–188 Vernadsky V (1967) The chemical structure of the biosphere of the earth and its environment Nauka, Moscow Vijgen J, Abhilash P, Li Y, Lal R, Forter M, Torres J, Singh N, Yunus M, Tian C, Schaăffer A, Weber R (2011) Hexachlorocyclohexane (HCH) as new Stockholm Convention POPs–a global perspective on the management of Lindane and its waste isomers Environ Sci Pollut Res Int 18 (2):152–162 Vtorova V, Kholopova L, Markert B, Leffler U (2001) Multi-Elemental Composition of Tropical Plants and Bioindication of the Environmental Status In: Biogeochemistry and Geochemical Ecology Selected Presentations of the 2nd Russian School of Thought Geochemical Ecology and the Biogeochemical Study of Taxons of the Biosphere January 25-29, 1999, Moscow, 177-189 Vutchkov M (2001) Biomonitoring of air pollution in Jamaica through trace-element analysis of epiphytic plants using nuclear and related analytical techniques In: Co-ordinated research project on validation and application of plants as biomonitors of trace element atmospheric pollution, analyzed by nuclear and related techniques IAEA, NAHRES-63, Vienna Waăchtershaăuser G (2007) On the chemistry and evolution of the pioneer organism Chem Biodivers 4:584–602 Wang M, Markert B, Shen S, Chen W, Peng C, Ouyang Z (2011) Microbial biomass carbon and enzyme activities of urban soils in Beijing Environ Sci Pollut Res (ESRR) Springer 18:958– 967 Watanabe T, Broadley M, Jansen S, White P, Takada J, Satake K, Takamatsu T, Tuah S, Osaki M (2007) Evolutionary control of leaf element composition in plants New Phytol 174:516–523 Wedepohl K (1969) Handbook of geochemistry Springer, Heildelberg White P, Broadley M (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine New Phytol 182 (1):49–84 White P, Broadley M, Thompson J, McNicol J, Crawley M, Poulton P, Johnston A (2012) Testing the distinctness of shoot ionomes of angiosperm families using the Rothamsted Park Grass Continuous Hay Experiment New Phytol 196:101109 Wildt R (1932) Absorptionsspektrum und Atmosphaăren der groòen Planeten Nachr Ges Akad Wiss Goăttingen 1:8796 Williams RJP, Frausto Da Silva JJR (1996) The natural selection of the chemical elements Clarendon, Oxford Wittig R (1993) General aspects of biomonitoring heavy metals by plants In: Markert B (ed) Plants as biomonitors—indicators for heavy metals in the terrestrial environment VCH, Weinheim, pp 3–27 Witze A (2014) NASA plans Mars sample-return rover Agency to narrow down list of landing sites for 2020 mission Nature 509:272 Wolterbeek B (2002) Biomonitoring of trace element air pollution: principles, possibilities and perspectives Environ Pollut Lond 120:11–21 Wolterbeek HT, Kuik P, Verburg TG, Herpin U, Markert B, Thoăni L (1995) Moss interspecies comparisons in trace element concentrations Environ Monit Assess 35:263–286 Wolterbeek H, Sarmento S, Verburg T (2010) Is there a future for biomonitoring of elemental air pollution? A review focused on a larger-scaled health related (epidemiological) context J Radioanal Nucl Chem 286:195–210 Woolhouse HW (1983) Toxicity and tolerance in the responses of plants to metals In: Lange OL, Nobel PS, Osmond CG, Ziegler H (eds) Physiological plant ecology III Encyclopedia of plant physiology, New Series, vol 12C Springer, Heidelberg, pp 245300 Wuănschmann S, Oehlmann J, Delakowitz B, Markert B (2001) Untersuchungen zur Eignung wildlebender Wanderratten (Rattus norvegicus) als Indikatoren der Schwermetallbelastung, ă kotox 13(5):259265 Teil UWSF-Z Umweltchem O References 277 Wuănschmann S, Fraănzle S, Markert B, Zechmeister H (2008) Input and transfer of trace metals from food via mothermilk to the child – bioindicative aspects to human health In: Prasad MNV (ed) Trace elements: nutritional benefits, environmental contamination, and health implications Wiley, New York, pp 555–592 Yamagata Y (1997) Condensation of glycylglycine to oligoglycines with trimetaphosphate in aqueous solution II: catalytic effect of magnesium ion Orig Life Evol Biospheres 27(4):339– 344 Yang G, Mao X, Wang J, Lu Y, Ouyang H, Zhang Z, Chai Z (2001) A study on the relationship between iridium concentration in hen eggshell and iridium-enriched feed by NAA J Radioanal Nucl Chem 247(3):567–570 Yiu SM, Man WL, Wang X, Lam WWY, Ng SM, Kwong HK, Lau KC, Lau TC (2011) Oxygen evolution from BF3/MnO4- Chem Commun 47:4159–4161 Zechmeister HG, Dullinger S, Hohenwallner D, Riss A, Hanus-Illnar Scharf S (2007) Pilot study on road traffic emissions (PAHs, haevy metals) measured by using mosses in a tunnel experiment Austria Embv Sci Poll Res 13:398–404 Zeisler R (1988) Determination of baseline platinum levels in biological materials In: Braătter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology, vol Walter de Gruyter, Berlin, pp 297–303 Zeisler R, Greenberg R (1982) Ultratrace determination of platinum in biological materials via neutron activation and radiochemical separation Radioanal Chem 75:27–37 Zeisler R, Stone SF, Sanders RW (1988) Sequentail determination of the biological and pollutant elements Anal Chem 60:2760 Zhao F, Stroud J, Eagling T, Dunham S, McGrath S, Shewry P (2010) Accumulation, distribution, and speciation of arsenic in wheat grain Environ Sci Technol 44(14):5464–5468 Zhao F, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath S, Zhou J, Zhu Y (2013) Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice Environ Sci Technol 47(13):7147–7154 Index A Accumulation, 69, 74, 75, 79, 81, 85, 114, 115, 211, 215, 218, 220, 223, 232, 254 Aerosol, 18, 33, 38, 39, 46, 103, 162, 169, 191, 193, 231 Amino acids, 4–11, 14, 18, 30, 31, 36, 37, 43, 44, 47–49, 51, 54–57, 71, 96, 98, 107, 115, 117, 118, 125, 128, 138, 142–147, 161, 168, 180–183, 188, 189, 193, 194, 197, 199, 214, 215, 226, 230, 231, 233, 236, 240, 243–248, 253, 254 Amphibian, 116–119, 122, 139, 229, 243 Anomalocaris, 129, 130, 133, 135 Argentavis magnificens, 118 Arsenic, 81, 93, 107, 110, 150, 151, 156, 194 Asteroid, 19, 21, 41, 42, 126, 187, 218, 237, 240, 241, 248, 251, 252, 254 Astronomy, 6, 20, 239, 252 Atlantic, 119–121 Atmosphere hydro, 14, 31, 33 liquid, 12, 14, 33 Autocatalysis, 44, 48, 98–99, 114, 158–164, 166, 168, 169, 175, 179–181, 199, 237, 239, 246, 254 B Bacteria, 7, 15, 28, 29, 56, 68, 74, 88, 97, 100, 102, 103, 106, 110, 114, 123, 124, 135, 141, 142, 145, 153, 155, 156, 164, 165, 167, 179, 209, 211, 214, 216, 217, 219, 225, 226, 232, 233, 238, 250 Beneficial, 64, 88, 106–108, 150, 243 Big Bang, 2, 40, 104, 238, 243 Biocatalysis, 60, 96, 110, 149, 179, 190 Biogenesis, 3, 12, 31, 40, 41, 44, 45, 48, 61, 98, 100, 104, 124, 181, 198, 208, 237, 238, 243, 246, 251 Biogenetic law, 116, 117, 238 Biological System of the Elements (BSE), 63–104, 238 Biomass, 4, 5, 40, 69, 75, 99, 103, 110, 113, 114, 123, 125, 138, 147, 148, 150, 154, 156, 162, 163, 166, 167, 169, 170, 172, 174–176, 178, 215, 223, 224, 234 Biomethylation, 60, 110, 148–154, 156, 212, 216, 217, 226, 228, 229, 238 Biomineralization, 58, 102, 129, 133, 136, 238 Biosphere, 65, 83, 85, 103, 166, 169, 178, 186, 197 Black smoker, 59, 103, 168, 175, 183 BSE See Biological System of the Elements (BSE) Burgess Shale, 129, 131, 132, 139 C Cambrian, 126, 129–133, 135–137, 139, 140, 251 Carbon, 5, 11, 24, 28, 29, 36, 40, 41, 46, 65, 70, 81, 82, 91, 92, 94, 114, 123, 133, 137, 138, 146, 163, 164, 166, 168, 186, 188, 212, 244, 249 Cassini spacecraft, 202 Catalysis, 16, 17, 47–48, 50, 98, 125, 126, 128, 136, 139, 163, 179, 181, 183, 186, 230, 232, 239, 241, 244, 249 Catalyst, 46, 48, 57, 98, 99, 125, 142, 144–146, 158, 160, 163, 168, 181, 182, 190, 194, 223–225, 230, 234, 237, 238, 254 © Springer International Publishing Switzerland 2015 B Markert et al., Chemical Evolution, DOI 10.1007/978-3-319-14355-2 279 280 Cave, 137, 164, 165 Celestial body, 7, 8, 10, 12, 18–36, 45, 199, 240, 252 Chemofossil, 240 Chemosynthesis, 99, 123, 164, 165, 175 Comet, 7, 10, 12, 19, 197, 199, 204, 240, 254 Complexation, 16, 57, 60, 89, 114, 123, 135, 148, 176, 178, 179, 182, 183, 213, 219, 232, 255 Complex formation constants, 176–178, 182, 241, 246 Conodont, 133, 134 Cosmochemistry, 7, 13 Curiosity, 12, 22, 23, 25, 26, 58, 191, 201, 204, 243, 252 D Dinosaurs, 125, 137, 138, 246 Dust devil, 26, 27 E Earth early, 241 early super, 12, 22 Earth Scientist’s Periodic Table of the Elements and Their Ions See Geochemical System of the Elements (GSE) Ecosystem, 31, 64, 76, 77, 80, 83–85, 122, 123, 125, 129, 133, 159, 161, 163–169, 204, 242, 245, 254 Ediacaran, 129, 134, 140 Element, 1, 63–122, 160, 188, 209 Enceladus, 11, 39, 103, 197, 199, 202, 204 Enzyme, 40, 61, 81, 89, 97, 107, 125, 128, 135, 142, 144, 149, 159, 161, 162, 167, 180, 213–214, 219–221, 231 Equilibrium, 15, 16, 21, 22, 25, 99, 102, 103, 114, 123, 125, 160, 161, 168, 178, 187, 207, 209, 213, 233, 234, 239, 241, 243 Essentiality, 60, 63, 76, 81, 84, 97, 105–136, 139, 140, 147–150, 152, 153, 169, 176, 179–183, 209–234 Europa, 38, 103, 197, 202, 203, 207 Evolution biological, 58–62, 86, 123, 124, 186, 198, 242, 243 chemical, 1–62, 98, 99, 105, 122, 123, 158, 161, 175–179, 181, 182, 185–195, 197–207 mineral, 58 Exoplanet, 10–12, 14, 19, 20, 22, 32, 44, 198, 205, 207–208, 242 Extraterrestrial life, 7, 29, 162, 200 Index F Formaldehyde, 5, 6, 10, 11 Fossil, chemical fossils, 43 G Gas planet, 7, 10, 18, 20, 21, 31, 32, 36, 198, 207, 254 See also Planet Geochemical System of the Elements (GSE), 100–104 Glycine, 4, 6, 7, 12, 17, 48, 50, 54–56, 96, 100, 123, 124, 143, 182, 237, 248 Gravitation, 21, 22, 200, 245, 251 Green house effect, 13, 21, 44, 186, 212, 254 H Haikouichthys, 130, 132 Hallucigenia, 129, 132 Huygens probe, 33, 34, 206 Hydrogen, 2, 6, 17, 18, 22, 25, 32, 65, 73, 91, 92, 123, 141, 145, 161, 186–188, 212, 245, 248, 254 Hydrosphere, 18, 36, 65, 248, 249 I Identity cards, 149–156 Illumination, 6, 30, 141, 237, 251 Inorganics, 1, 13, 47, 64, 68, 76–81, 84, 96–98, 107, 126, 135, 137, 147, 150–153, 163, 165, 188, 189, 199, 204, 212, 223, 238, 255 Intelligent life, 2, 6, 253 Interstellar medium, 6–12, 123, 189, 199, 243 Invertebrates, 129, 213 Ionization, 82 Iron, 25, 42, 46, 49, 51, 57, 58, 61, 65, 66, 98, 117, 123, 141, 143, 187, 188, 191, 216, 222, 230, 237, 238, 241, 251 K Kuiper belt, 10–12, 199, 204, 206–207, 241, 245, 251 L Last universal ancestor (LUCA), 60, 61, 232, 233, 243, 246 Life, 2–7, 9, 12, 14, 15, 18, 25, 28, 29, 31, 32, 36–47, 60, 62, 69, 82, 91, 96, 97, 103, 105, 106, 114, 118, 119, 123, 124, 129, 164, 166, 175, 180, 181, 183, 186, 188– 193, 195, 198, 200, 202, 204, 207, 216, 223, 233, 237, 238, 243, 247, 251–254 Index 281 N Nectocaris, 130, 132, 135 Neptune, 20, 31, 32, 36, 39, 203, 205, 251 P Periodic Table of the Elements (PSE), 63, 67, 82, 83, 85, 93–96, 100–104, 147, 171, 248, 250 Photochemistry, 14, 21, 25, 31, 34, 36, 44–46, 103, 141, 251 Photoelectrochemistry, 31, 190 Photolysis, 13, 14, 18, 25, 46, 51, 123, 154, 186, 190, 194, 206, 207, 220 Photooxidation, 18, 39, 110, 141, 216, 251 Photosynthesis, 42, 58, 59, 97–99, 102, 103, 123, 124, 138, 141, 146, 164, 166–168, 175, 186, 212, 213, 220, 221, 239, 240, 251 Pikaia, 130, 132, 139 Planet dwarf, 31 exo, 10–12, 14, 19, 20, 22, 32, 44, 198, 205, 207–208, 242 gas, 7, 10, 18, 20, 21, 31, 32, 36, 198, 199, 207, 254 terrestrial, 18, 21, 32, 179, 189, 240, 247 Pluto, 13, 19, 20, 22, 39, 100, 204–207, 245 Polymers, 10, 18, 24, 29–31, 34, 35, 43, 47, 62, 95–97, 111, 124, 128, 168, 179, 181, 183, 186, 193, 232, 243, 245, 247, 249 Polymerization, 14, 194 Prebiotic reaction, 17, 47, 181 Pressure, 14–17, 20, 21, 31, 33, 35, 38, 45, 46, 49, 117, 140, 169, 185, 186, 191, 192, 194, 203, 207, 231, 247, 250 Protein, 5, 40, 47, 60, 61, 70, 71, 88, 90, 96, 105, 106, 109, 114, 117, 125, 128, 131, 133, 136, 139, 147, 161, 175, 178–180, 212, 222, 230, 231, 235, 246, 253 PRX See Viking, Pyrolytic Release Experiment (PRX) PSE See Periodic Table of the Elements (PSE) Pteranodon, 118 Pterosaurs, 118, 125, 138, 246 O Ontogeny, 116, 117, 122, 249 Organics, 1, 65, 110, 161, 186, 198 Oxidation, 12, 15, 18, 22, 38, 50, 54, 56, 57, 70, 91, 94, 95, 97, 98, 102, 111, 115, 119, 124, 127, 135, 136, 140, 142, 147, 149, 150, 152–156, 164–166, 193, 194, 213, 215, 222, 224, 230, 238, 247, 249 Oxygen, 18, 22, 25, 26, 61, 65, 92, 95, 102, 117, 120, 122, 137, 165, 207, 215, 241, 244, 245 R Radiation, 8, 10, 13, 17–19, 22, 25, 31, 33, 34, 37, 38, 44, 45, 47, 57, 76, 103, 114–116, 123, 139–141, 185, 186, 188–190, 198, 199, 206, 237, 239, 242, 248, 250, 251, 253 Reference plant, 64, 75–81, 85, 234, 252 Rover Curiosity, 23, 26, 191 New Horizons, 205 Opportunity, 27, 105 Spirit, 27 Viking, 12 Ligand, 59, 60, 72, 97, 125, 128, 138, 146–148, 150–152, 176–182, 230, 241, 243, 256 Ligand electrochemical parameter, 177 Liquidosphere, 13, 14, 22, 33, 45, 179, 185– 195 Loricifera, 119–123, 220 LUCA See Last universal ancestor (LUCA) M Magma, 18, 189, 195 Mars, 6–9, 12, 13, 16, 18, 20, 21, 23, 25–28, 30, 32, 34, 36–38, 40, 41, 43, 45, 46, 58, 102, 103, 123, 146, 180, 183, 185–187, 189–194, 197, 198, 200–203, 205–207, 240, 241, 244, 248, 251–254 Metabolism, 1, 28, 29, 43, 65, 70, 71, 89, 91, 92, 99, 102, 106, 108, 120, 122, 124, 126, 128, 134, 135, 137, 138, 163, 210, 211, 214, 215, 220, 222, 223, 226, 230, 231, 237, 251, 254 Metal, 2, 65, 105, 160, 186, 212 Meteorites, 6–10, 22, 29, 37, 41, 43, 46, 49, 51, 58, 187, 189, 202, 240, 248 Miller-Urey experiment, 8, 44, 45 Minerals, 3, 5, 8, 12, 14–19, 21–25, 29, 31, 37, 38, 41, 42, 44, 46, 48, 54, 55, 57, 58, 72, 86, 92, 97–99, 101–104, 111, 123, 126, 127, 129, 133, 155, 160, 162, 175, 180, 181, 185, 187, 190–192, 213, 238, 243, 245, 251 Moon, 2, 4, 7, 9, 13, 18, 32, 33, 36, 38, 40, 41, 44, 191, 198, 200, 202, 206, 207, 238, 240, 248, 252 282 S Saturn, 7, 19–21, 24, 32, 34, 36, 39, 202, 205, 251 Sediment, 13–15, 17, 22, 23, 40–42, 46, 97, 101, 119, 121, 125–127, 141, 163, 166, 180, 185, 233, 240, 252 SNA See Stoichiometric network analysis (SNA) Soil, 4, 18, 22, 24–26, 28, 30, 32, 34, 58, 71–73, 77, 83, 84, 92, 101, 102, 104, 109, 113, 122, 162, 164, 167–170, 172, 174, 175, 185–195, 205, 210, 212, 217–221, 223–226, 228, 229, 231, 233, 234, 244, 251, 254 Solar System, 2, 7, 11, 12, 20, 22, 24, 25, 35–37, 41, 42, 44, 45, 187, 199, 207, 208, 240, 251 Space probes, 6, 10, 187, 253 Spectroscopy, 6, 19, 20, 23, 31, 33, 204, 207, 241, 242, 248, 254 Spiniloricus, 119 Star, 2, 6, 8–12, 14, 19, 31, 32, 40, 41, 44, 45, 95, 123, 159, 200, 207, 237, 239, 243, 245, 248, 250, 252 Stardust, 12, 199 Stoichiometric network analysis (SNA), 84, 97, 99, 100, 152, 153, 157–183, 242, 245, 254 Stromatolith, 14, 15, 42 Sugar, 142, 143, 162, 193, 194, 211, 212, 227, 247 Sun, 2, 7, 10, 14, 18, 19, 24, 32, 38, 41, 46, 199, 239, 240 Supernova, 41, 44, 103, 123 Systems of the Elements Biological System of the Elements, 63–104, 238 Geochemical System of the Elements, 100–104 Periodic Table of the Elements, 63, 67, 82, 83, 85, 93–96, 100–104, 147, 171, 248, 250 T Telescope, 3, 19, 32, 239 Temperature, 15, 21, 24, 25, 31, 33–36, 44, 45, 76, 107, 137, 138, 146, 188, 190, 192, 198, 204, 207, 230, 233, 238, 240, 247, 248, 253 Index Terrestrial body, 2, 21, 24 planet, 18, 21, 32, 84, 87, 103, 114, 179, 189, 192, 240, 247 Thallium, 151, 155, 156, 254 Thyroxine, 107, 118, 119 Tin, 81, 82, 151, 153, 227 Titan, 6, 7, 13, 14, 18, 20–22, 24, 32–34, 36, 39, 43, 45, 100, 103, 187, 191, 197, 198, 202, 203, 205–207 Toxicity, 60, 63, 64, 69, 72, 74, 81, 107, 147–153, 179–183, 209–234, 238, 241, 247 Trace elements, 71, 83–85, 109, 168, 233 Triton, 10, 11, 13, 14, 20–22, 25, 36, 39, 100, 202–207 Troposphere, 34, 35, 136, 198, 203 U Universe, 2, 40, 103, 238, 243, 253 V Vendian, 129, 134, 140 Venus, 19–21, 32, 34, 36, 37, 46, 100, 189, 191–193, 205, 242, 251, 252, 254 Vertebrates, 4, 43, 60, 81, 107, 110, 111, 116, 118, 128–133, 136, 139, 140, 152, 210, 213, 218, 223, 224, 226, 227, 239, 247 Viking, Pyrolytic Release Experiment (PRX), 9, 28–31, 190, 251, 254 Volcano, 11, 13, 18, 24, 37, 46, 54, 59, 100, 187, 193, 194, 244, 253, 254 W Water liquid, 192 rainwater, 15–17, 138, 141 solid, 21 vapor, 22, 29, 32, 33 Window of Essentiality, 179–181 Z Zircon, 41, 103, 189 ... omissions that may have been made Cover: The cover of the book represents The Biological System of the Elements (BSE) developed by one of these authors, Prof Dr Bernd Markert, in 1994 Printed on acid-free... 93 2.5.2 The Biological System of the Elements 96 2.5.3 Geochemical System of the Elements 100 2.5.4 Link in Between the Three Systems of Chemical Elements... Existing Regularities in the Periodic System of the Elements to Explain Biological Functions of Chemical Elements 2.3.2 Criticism on the Classical Periodic System of the Elements