1. Trang chủ
  2. » Công Nghệ Thông Tin

Elliptic curves number theory and cryptography,

524 88 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 524
Dung lượng 4,02 MB

Nội dung

Elliptic Curves Number Theory and Cryptography Second Edition © 2008 by Taylor & Francis Group, LLC DISCRETE MATHEMATICS ITS APPLICATIONS !-%!. %/*- !))!/$ *.!)$  -*!'#**-*)/-* 0/%*)/** %)#$!*-4 *'#'%'",*#'#*-%/$(%*(%)/*-%.*)-/%'*- -'("(''!-+))%)#-!!.) +/%(%5/%*)-*'!( "*%&(+"*%&#+ )0(!-/%1!*(%)/*-% '*#("' *"* *1,% ) **&*" ''%+/%)  4+!-!''%+/%0-1!-4+/*#-+$4 "*%+(%(-*'' *1 #'#,2 ) **&*"*(%)/*-%' !.%#).!*)  %/%*) *,#' *#$+(''',"('122')/-* 0/%*)/*0(!-$!*-4 ,.' -*#'(#'!#('#'0#'!#' -(!.) !.*'1'! !.%#)..!. *)./-0/%*).)  3%./!)! '1 (%*!''#$-/%' ) **&*"+!!$* !- (  ((&''(+)"4(-*$ ) **&*" %.-!/!) *(+0//%*)' !*(!/-4 !*)  %/%*) (',"' *(++*(%)/*-%'!/$* 2%/$*(+0/!-++'%/%*) (',"' *(++'1%%' -+$$!*-4) /.++'%/%*).!*)  %/%*) (',"' *(++'1%%' ) **&*" -+$$!*-4 **% '$*+(' *! **#+',*("'+(')/-* 0/%*)/*)"*-(/%*) $!*-4)  /*(+-! %*)!*)  %/%*) *1% *&+#*(+%.*,2%"*%+(%(-*''("'.#,,!/2*-&!'%%'%/4 3+!-%(!)/.2%/$4(*'%'#!- )1%-*)(!)/ +%# INDEX Tate-Lichtenbaum pairing, 90, 157, 167, 168, 354, 360, 364, 374, 375 Tate-Shafarevich group, 238 Taylor, 436, 437 Th´eriault, 424 torsion, 88, 302, 479 torsion points, 77, 79 torsion subgroup, 206, 208, 223 torus, 257, 267, 283, 285 transcendence degree, 485 tripartite Diffie-Hellman, 172 Tunnell, 462 twist, 47, 75, 108, 141, 334 twisted homomorphisms, 245 uniformizer, 340 universal deformation, 468 unramified representation, 453 upper half plane, 273, 276, 436 V´elu, 392 van Duin, 178 Vandiver, 446 Wan, 136 Wang, 178 Waterhouse, 98 weak Mordell-Weil theorem, 214 Weierstrass ℘-function, 262, 303, 341, 386 Weierstrass equation, Weierstrass equation, generalized, 10, 15, 48 Weil, 215, 423, 431, 436, 437 Weil conjectures, 431 Weil pairing, 86, 87, 154, 171, 172, 184, 185, 350, 359, 360 Weil reciprocity, 357 Wiles, 437, 440, 448, 461 xedni calculus, 165 Yin, 178 Yu, 178 © 2008 by Taylor & Francis Group, LLC 513 Zagier, 440 zero, 340 zeta function, 273, 430, 432, 441 ... as to how elliptic curves are used in number theory Similarly, a non-applications oriented reader could skip Chapters 5, 6, and and jump straight into the number theory in Chapters and beyond... computer scientists and cryptographers who want to learn about elliptic curves The other is for mathematicians who want to learn about the number theory and geometry of elliptic curves Of course,... The goal of the present book is to develop the theory of elliptic curves assuming only modest backgrounds in elementary number theory and in groups and fields, approximately what would be covered

Ngày đăng: 19/04/2019, 11:06