1. Trang chủ
  2. » Khoa Học Tự Nhiên

Foundations of differential geometry vol 1 kobayashi, nomi

169 130 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 169
Dung lượng 10,6 MB

Nội dung

-, -., _*Y A '&-*: , ;\y 1*:., I; ,: + "2 i Number, 15, vol j e: >&?a~ : DIFFAER$NTI& GE&ETRY T By Shoshichi Kobayashi 6ad Kabumi~No&zn ,.a - ‘ _ FOUNDATIONS OF FOUN@ATIOkS OF DIFlf’ERENl%.AL GEOMETRY ’ ’ r , VOLUME I SHOSHICHI KOBAYASHI University of California, Berkeley, California and KATSUMI NOMIZU Brown University, Providence, Rhode Island INTER8CIENCE PUBLISHEqS a dl~ision of i& Wiley & Sons, New York +* - 1963 t : ?I, INTERSCIENCE PUBLISHERS n., i“ - London a di~is&n zf John Wilby i So&, New York s PREFACE Differential g&etry has a long l&dry as a &ld of mathematics and yet its rigorous foundaticvn in”&e realm of contemporary mathematics is:nlatively new We h& written this book, the first of the twe;ivolumes of the Fdatiwdf D@nntial Geometry, with the intition of provid& a”l v&&tic introduction to differential ‘&ometry w&h @ also, &ve’ ‘a~ a reference book Our primary conce~ was to make it ,+l&&ta.@ed as much as possible and to give compl& ~MO& of ali’&d&d results in the foundation We hope that; && pw has been $chieved with the following arrangtments In chapter I we have given a brief survq ;of differentiablei m&nKMs, ,I$& mtips Ad ,fibre bundles The readers who-areu&amil& G&h &din.,qay learn thi subjects from t+e books +f Chevotlley, ppin, Pontrjagin, and Steenrod, listed in the Bilk aie our standard references in Chapter I We a coficise account of tensor- algti &d MU& fiek& th&“&n&l theme of which is the notiib;i ef8~h’aFtihc ‘k&ebr& of tensOr fields In the Appdiccs, we have @Gn some ‘r&t&s from topology, Lie grbup theory and othirs which %ve n’eed & the iain text With these preparations, the main t&t of thi book is &l&ontained Chapter II -c&ntains&e conilection theory of Ehresmann and its lateq development Results in this chapter are applied to linear and affifie cdnnections in Chapter III atid to Riemannian connections in Chapter IV Mat~y basic results on normal coordinates, convex neighborhoods, dis!ance, cotipleteness and Monomy groups are’ p&&l here completely, including the di: Rham decomposition thearem for Ri&mannian m&lds; ‘I In Chhpter v, -we ‘int&&ce the sectional curvature of’ a Rieme lM%&Id.‘a&i tbt Spaces of constant curvattire A more complete treMment!&“&$ert& of Riemanni& manifolds involving Hctional ‘&&+attrS depends on “talculus of iariations and will tie given II We’ discuss flat’ affine and a* IV Riemannian connec In Chapter VI; trqnsfornihtions and infinitesimal transformations which p&cx+e a given linear connection or A Eemambn metric We include here various results concerning R$ci tensor, holoztomy and infmitesimal isometries We then’ ’ V Vl PREFACE treat the wtension of local, transformations and the so-called equivaleqC Q problem for a&e and Riemannian connections The resuh in this chap ter are closely related to differential geometry ,c$ qhomogeaeous spaces (in particula*$~ symmetric sPaces) wt\i& ‘are planocd for Volume&I In al!, t& chapters, we have tried& familiarize $b readers with various techniques of computatio&phich are curmtly in use in di&rential geometry These T:,- (1) classical tensor calculus with indices ; (2) exterior differew calculus of E Cartan and (3) formalism of covariant differentiatiqn a,Y, which is thd newest among the the’& -We have also jllu,sfr;tsed as wk see fit bundle or &o&&g directly in) the methods of using ,? suitable , the base space /.,, :.’ The Notes include B&F ,histprical facts and supplementary results Pertinent to thi &i;&fent of the present, v&me The Bibliogr@!Y at the en&&+* only tboge booti and papers * which we quote thro~$$&uZ~~,~~k ,+ -_ I ‘ ‘.$ f Theoqems, prop~i~~n~~~~l~o~~~~~ ;IKe”&mbered for each section For example, in e+& ,&@@qs qayr, &apter II, Theorem 3.1 is in S,sMon IrJ.the re&&,+~~~ r; it will be referred tQ simply as Theorem 3.l,:~~~iR~ot~~~.~IFUbsequent chapters, it is referred to as TheA)rem $.I cQf.(&pta&* ‘.Ve originally phmg$ toAte ~@&&&,which would include the content o< he present ,vc&@ ~5 weU.+s &e following topics: submanifolds; variat+ns of’ t& leng# ‘hgral; differential geometry of complex and K4&r;unanifblds;,~fferential geometry of homogeneo?rs spaces; symme& spaceg;.cbaracteristic classes The considerations of tjple,;an$ spase,h3ve made it desirable to divide the book in two,voluqes The:top& mentihned above will ’ therefore be included in.V@ume II In concluding the preface, we sb+d like, to thank ,Professor L Bers, who invited US to undertgke this project, a@ Interscience Publishers, a~‘di$sidn of Jc&n Wiley a,nd ‘Sons, for their patience and kind coaparat$n We ‘se greqtly indebted tp, Dr A J Lohwater, Dr ,H C)sreki,Mess+!A Howard,and E Ruh for their kind help which resulted in maqy improvements of both the content and the prescnt+#on .We al& acknowledger;- th.e grants of the National Science Fo&&&n which support&p+rt oift:he work included in this book., ;,,, j r: -;f : ’ * StiOSHICFiI fbi3AYASHI KATSUMI NOMI zu i Contents xi Interdependence of the Chapters and the Sections C HAP T I R Manifolds Diffrentiable E Differentiable manifolds Tensor algebras Tensor fields Lie groups -.:, Fibre bundles 17 26 38 50 ,;‘.L II C HAPTER Tbeory of Connections Connections in a principal fibre bundle Existence and extension of connections i I Parallelism Holonomy groups Curvature form Bnd structure equation Mappings of connections Reduction theorem , Holonomy theorem Flat connections : 10 Local and infinitesimal holonomy groups 11 Invariant ‘connections 63 67 68 71 75 79 83 ’ 89 92 94 103 1, CHAPTER III Linear and Affine Connections Linear connections Affine connection 7; ‘+ Developments Curvature and torsion tensors Connections in a vector bundle Geodesics Expressions in local coordinate systems ? vii i3 118 125 130 132 138 140 +-tr* !a CONTENTS Normal coordinates *?‘ * f Linear infinitesimal holonomy’groups 146 : : izl k%P~R Iv Rie-ashdan conneclions Riemannian metrics 2, Kemannian connections 3, Normal coordinates and ~&I neighborhoods : : 4, Completeness Holonomy groups 6.The decomposition theorem of de I&& : : : : Affine holonomy groups 154 158 162 172 179 167 193 &APTRRV Curvature and space Forms Algebraic preliminaries ; -193 Sectional curvature 201 SpaCeS of constant +rvature 204 Flat a&e and Ri &ar&nconrLkt&i 209 ,‘i ; CHAPTER 1 vz;y T~iWZWblU ~emapp;dgr~*,~tioas Infinitesimal affuw tansfbrmatwns hometries aryl infinitesimal isom& ‘ .g * Holonotny anh &finitesimp!iaometries ‘.‘I 1 * ’ Ricci tensor and infinitesimal iaomet& Extension of local &morphisms - Equivalence problem -225 229 236 ’ 4 ’ : : : 248 * ‘: * * * * ‘252 256 IAPPRUDICES Ordinary F differential equati0n.s 267 A connected, locally compact metric space,.is separable 269 Partition af unity , 272 On an arcwise connected subgroup of a Lie group , 275 Irreducible subgroups Of o(n) : 277 Green’s theorem : 281 Factorization lemma , 284 ix CONT&NTS N&s Connections and holonomy,groups i?: Complete affine and Riemannian connections Ricci tensor and scalar curvature 292 Spaces of constant positive curvature 2% Flat Riemannian manifolds 297 Parallel displacement of curvature - - : - 366 Symmetric spaces 366 L i n e a r c o n n e c t i o n s with r~urrent ~urv~ture i: The automorphiim group of a geometric structure Groups of &met&s and affine transformations with 308 maximum dimeiisions 309 Conformal transformationd of a Riemannian manifol& Summary of Basic Notations Bibliography ; 313 315 325 of the Chapters and the Sections Interdeprndence ui’ I Ii-1 to r-7 r .I, + VI-1 : I III-l,2 I II-8 ‘$-5,6 - I ’ I-10 , LJ ? ,.: M-7,8 I I I n-11 VI-3 -p-4 cl VI-5 I Exceptions Chapter I1 : ‘Theorem 11.8 requires Section II-IO Chapter lil , Proposition 6.2 requires Section 111-4 Chapter I\‘: Corollby 2.4 requiws Proposition i.4 in Chapter III Chap1t.r IV: ‘I’hcorcm I, (4) requires Section III-4 and Proposition in C!lnptcr JIJ Chapter 1.: P r o p o s i t i o n wquirrs Section 111-7 Chapter 1’1: ‘1’hcon.m 3.3 requires Section \;-2 Chapter \ I : Corollary 5.6 requires Example 4.1 in Chapter V Chapter \‘l : Corollary 6.4 requires Proposition 2.6 in Chapter I\‘ C h a p t e r \ ‘ I : ‘I‘hcorrm IO rcq:zilcs Section V-2 6.2 A @d&&~~of %@.$&h& on’s &I;&&& ‘space S is a set r of transformations sai$y&g the foli~wG3~ a&ms: (1) Each J-e F is-a hotie@merphism ef an open set (called the domain ,off) of S 0.~0 another *open set (called the range off) of s ; it -,- ” j x (2) Iffc T’, their the restriction off to an arbitrary open subset of the domain off is i.n F; ~(3) &et Us= uUj where, each Ui.is.an open set of S A homeomkphisn;ijcof, c’ontb a‘n?open s&df S belongs to I’ if the’restric“ i tion off t0 Ul’is in I‘ fcir Lverv i:- :, (4) -For every cfpen set U iFS;‘tlie identity transfbrmation of Lr , , ‘,, : is in r; (5) Iffc l’, thenf-’ f I’; : ; 1* 446) :Iff* 11 is aq bomeamorphism~of U on&o VTadi,*f-“ I: is a homeomorphism of IJ’ onto V’ and if% V n U’.~ is hen-empty, then the homeomorphism f’ df ,of j-1( K n U’)bofitb f’( P n Li’) is in 1‘ Ii kkgi?#S:qfe~ examples of psixdogroupk~~l&h ai: used in this b% -@ Jj# bsrhe pwofu- t.upla~ of re.4: numbers (xl, x2 , x”) ~~th’th~~~~~t~l~g~~~.A fitdppingJ of an open set oikni into R”! js sai&+l,be of ~~~~-,.C$ r =+1.,:-Z, , aa, if f is continuously r tirnq &@&qentiable By -class CO l&z mea.2 thatf:$ continuous By cla&CX&yz mean tkt Lf is real anal& :Tbe @dagroup 6’(W) ~&#@g#iv7natitilPs of.class CT of R” -is &he :f*et of! homeomocphisms J d,?,n:&peaiset +&R” onto: an own; set of*w such that both f an&f? iare pf cl&O OsW;ously i”fiR”) & ca pseudogroup of transformations ‘of RI If r < s, then P(‘“) is a I r AxawmJ vr IJlPP~RaNTIAL ~qyp=, I subpseudogroup of l?(R”) If we consider only those f~ P(R”) whose Jacobiang ,are positive everywhere, we obtain a subpseudogroup of ,P(R”) T h i s subpseudogroup, denoted by QR”), is calied~ thy of doSs the pseudogroup of o$ntatt of R” Let C” be”tl&#&e numbers with the usual topology The ps (i.e., complex analytic) yqf~iions of C* cm be defined and will be den& ii by%+@&) We shall iden R*“, when necessary, by mapping (21, , P) E Cn into (x!, ; x”, y’, , y”) e R2”, where ,$ = xi + &j ‘8 Under this id&iiication, l?(O) is a, of rq(RsR) for,any Y F An atlas of a ti Mcom$Q.iile %v.i” 4&*&ogroup r is a fa~~t~&g~ gUj, vi>, @Ied charts, s~!y~;.~ (a) Each Ut.$,bz+n,ov$pt of $ and CJU, = M; (b) Each qi isra~hor&&norphism of &i onto an open set of S; j’ (c) Whenever U;, ti, U, is non-empty, the mapping qi $’ of gf(Ui A U,) onto qj( Ui n U,) is an element of r .:-:A complete atlas of Mcompatible with r is an atlas of&f comther atlas of M patible with r which is not contained in e with I’ is concompatible with r Every atlas of M eo tained in a unique complete fact, given an atlas A = Qj p-l: Sp(U n Vi) + yi(U”i Wi) is an element of I’ whenever U A Vi is non&rpty Then ;kis the ‘ I complete atlas containing A If l” is a subpseudogroup of I’, then an SatEas of Mucompatible with l” k compatible with l? A dt@xntiable manifold of class c’ is a Hausdorff space with a fixed complete *atlas compatible with P(R”) The integer I is’ called the dimension of the manifold Any atlas ofJa RMdorff space compatible with P(R”), enlarged to al compkte ad& defines a dii$erentiable structure of class’O.,Since p(R”) T’(R”) for t < s, a diffekentiable structure of~4ass (?fldefinh uniquely a di&ren&ble structure of class C k differentiable mamk~ld of c&s @” is “also called a rcal’ktj& manifold (TW&W! *he bIc we shall hostly consider differentiable manifolds ofi t&s cm %’ ii ‘,’ l I DIFFERENTIABLE MANIFOLDS a dl&entiable manifold or, s’ ly, manifold, we shall mean a ‘differentiable manifold of class T y.) A complex (anabtic) manifold of complex dimension n is a Ha rff space with a fixed complete atlas comp.a$>le with I’(CP)“’ ented differentiable manifold of class C’ 1s a Hausdorff spa ,a fixed complete atlas compatible with.~~(R”) An orien&j differentiable structure of class Cr gives rise to a differenti#e structnre ‘of class $7 uniquely Not every difherentiable str&&e of&l& Cr is thus dbtained; if it is obtained from an &kntied Ont$&“is .called orientable &I orientable man&Id of class $&&s &.actly two orientations if it is connect&L I&$&g the pro$‘o&ris fact to t,he reader, we shal15pn~y i$$.$ ,&w h’ r&ii,& &&e of an oriented +anifold If af2ariZly ;(afc&&j(&, ~st) d&es anfo$ented manifold, then the, ,f{mjly of &2&s ;( p6, vi) &#nes the manifold with the reverse$ o+ntdt$ori where tyi is the’composition of i, with the transformation (xl,xs~ ; , x”) + (-&, a?, , x”) of R” Since r(v) c r;(w), every complex man&d is oriented as a ma&-‘ fold of class C ; For any structure under consider%io~ (e.g., differentiable structure of class Cr), an allowable chart is a chart which belongs to the fixed complete atlas de&&g the structure From now on, by a chart ,WF shall mean an allowable chart Given an allowable chart (Vi, vi) of an n-dimensional manifold M of class CI, the system of.functions x1 qi, , X” vi defined on Ui is called a local coordinate q&m in -Ui We say then that U, is a coordinate neighborhood For every point p of M;it is possible to find a chart ( Ui, yi) such that &) i the origin of R” and v; is a homeomorphism of Vi onto kn?op& set of R” defined by I.&l < a, , , Ix”] < a for some‘“” “* number a Vi is then called a cub+ tuighbor&od of p yhve ’ IIl,&‘~aturd’ manner R” is an’oriented manifold of class Cr for auy “Y; ‘a~cliart ‘con&s of an elementfof I’i(R*) and the domain off Si$@rly?,, q.!‘q a conipIex mar$bld Any open sr&et N of a manifold M of&&~ is a manifiold of class C in a natural manner a chart of N is &ve&‘bi (oi, n A!‘, -$I,) where (Vi, &) is a chart 0; M and y$ is the re&&@ tif ++ t& ‘VI&p X SimilaAy, f&i complex manifolds ’ ‘ ” ‘ ” ,,;,‘:;:-’ Given two man&l& &” *‘MI of class 0; a’ mapping f: M *‘MI is said to be dif&&iable of class clc, k r, if, for every chart (Vi, vi) of M and every chart (V,, yj) of M’ such that I D I F F E R E N T I A B L E MANIPOLDS l~O~‘NDATIONS OF DIP&&;~TIAL GEOMETRY the n$pping ylj Lf vi I of q),( U,) into wj( V,j ‘is = I;, differentiable of c$ass 12”; If ul, , U” is a local co$inate syst& in IT, and ,vl., :‘; , v r’s is a local coordinate systefn:;\i yj, lhenf may be” YxprcsSed by a set of diffei&tiable functions, oft~~~s~‘~~~: r: ‘: II ‘r ,,tal Efl(d, ,TP), ;.v,‘” ep(d, , , li”) i!” ;, By a’dQ@rentiable VM/$& or ,simp&, a ‘$.@ing, we shall &$,n a mapping of class C” ,A &Gxentiable f&&ion 0~ cl+ Ck, on # is zi inapping of class C” ?f A4 into R Thet&fin,it& ‘1 of QT a h&&@& (or complex anal$k) *ppifig b; function i?si&lar By a dferenti$le &e of cl& cn: in M;;ck~~a$~$$$ c@&&$able map@ng,g,f _.“clasd Ck of a closkd intq@3”fgl.b] 6% R.‘into 111, namely, tEe’ rcst?iction of a differentiable mapping of claps CLi$f an open inteival containing [q-h] into A4 We shall riow define’s tangent vector (or simply’ a @for) a point p of ‘M Let s(p) be tke glgebra of differentiab!e‘functions ofcla’ss C’ defined in a neighbdigood ofp Let x(t) %e P c&% ‘& &Gs’ Cl, n t S,;fi, such that x(t,,) = p The vector tansent to_the cufve x(t&$‘p 1s a mapping X: iQ) ,*.R de3ined by+“‘: , ‘,‘I .I fir’,, , /’ ’ Xf = ~,d&(t))/a)~o ‘$ In other words, dyf is the ‘&i\i”&%e off in‘ the~directidn ‘of the ‘ cllrve x(t)% t’== to Tlie~~~rror,;~~atisfrdsthe fdllowinq conditiond: L )I “: (,l) X is a linear mapl+&r#$(p) into R; the dimension’of M Let ul, , f , U” be a local coordinate syqqn in aLcoordinate neighb&hood G pf p For ea& j, ($/,@j), is a mapping of 5Cp) &to, &,, which satisfies condit;ons lQl+vd (2) ah:ove We shall s&v that‘?t.he set -of vyct@$ at b is ‘thq.,vqctor space with basis (i318~‘)~, :, , (a/a~‘~)~,.‘ c;iy$n any &r% x(t) with h ‘k x(t,);‘l&‘uj - x’(t)j.,j 1, :.:‘n, ibc its equAtio1~!5 in terms of the local coordinate sy2tt:m $, a $!, $ThqqV, ).,” > (nf(x(t)~~po,” ;I; xj (@i&q, (&j(d)~dk\jo~:*, ‘.s I c 5,: ,,,,!,,, +‘yf11.14 ’ T-o::,!~~,,; * !“lll I?,,: \Illnnr:l!icirl Ill),,,lirri:, -(‘” which proves tll,kt cvcry \‘cctor at p is a linear ccimbination (apfl) ),, (a/&) i, C:on\,crsely, gi\.cn a lincnr combination c p(aptfl) ,,, ronsidcr the curv~‘&finecl by I$ -.-= IIJ( p) i- pkp I j = 1, , 72 Then the vector tnn,g:cllt to 21?iii &rve at t -~ is x S’(a/&‘),, T o prove the l i n e a r ind&~~ence tJf (aj+‘) xj, , (a/au”),, assur11c ?; p(a/allq,, :: : ~~~*~,::; Trig’:’ j : ; Tz x p(auqj3+j; ,;.+k f o r k - l, ,?l This complctcs thd *probf of’&r as$crtion ‘I’hc set of tangent vectors at p, denoted by 7’;(%) or 7’,,, ’IS callrcl the tcqenl space 01 M at p: The n-tuple of not&&s El, , :‘I \vill be called the com@one@ of the.vector p(apj, with respect to the local coordinate system d, , Y” Remark It is known that if a manifold AI is of class C,‘“, then T,,(M) coincides with the space of X: 3(p) -+ R satisfking conditions (1) and (1) above, where z(p) now denotes the algcbrn of all C” fimctions around p From now on we shall consider mainly manifolds of class c,“‘: and mappirqs of class C*‘ ’ A&ctorjeld X on a mafiifold 111 is an assignment of n ve:tor XP to cd point of A/ Iffis a $iffcrentiablc function on IZ~, then XJis a functioh on li defined by (.yf) (pi -:: LY,,.J A vcsctor field X is rallcd djfhvztiobfe if x/-is diffcrcntiablc for cbverv differentiable function J In terms of a 10~21 coordinatr svstcn; uI, , ~‘1, ii vector field ,Y may be cxl~r~sscd by Y x IJ(~/&J), whcrc ij arc functions defined in the coordinatnrlloc~d, called the components of Y with rcspcct to $, , 11” Y is differentiable I if and only if its componc~rrts E1 arc diff~~l-c:ntiablc Let F(M) br th e s,$ of‘ all diffirrntinblc \.cctor fields on \I It’ is” a’ real vector spacr undet tllc* ri;ltural atl~lition and scalar multiphcatioh If X and I’ arc ill X( \f), dcfinc the bracket [X, IrT as’s mapping from the riii of’ fiitic:tions on \I into itsctf bY [X, Yjf == X( I:/‘; “l’(A4’f’) We shall show that [KI’J is a \.ciLor ficlu In terlns of a local coordinate system ul;.* , II”, \vc \Vrite FOUNDATIONS OF DIFFERENTIkL GEOhfETR+ I \ ‘_ Then DIFFERENTIABLE MANIFOLDS A l-form w can be defined also as an g(M)-linear mapping of the S(M)-module S(M) into S(M) The two definitions are related by (cf Proposition 3.1) , (y(X)), = (wp, X,>> ,& WW, P E M [X q”f = Zj,E(SP?‘w)~ - ?www>(aflau’) This means &t IX, yl is a veeto’$ield whose components 4th respect to G, ‘1 , ZP iffe given &(~~(a$/&~) - $(w/&.P)), j= l, , n; With respect to this’ b@ket operation, Z@f) is ,a (of infinite dimcnsioris~ Lie algebra over the real number In particular, we have Jacobi’s id Let AT,(M) be the exterior algebra over T,*(M) An r-form OJ ’ is an assignment of an element of degree r in A T,*(M) to each point p ‘Of M In terms of a local coordinate system al, , un, ti can be expressed uniquely as 0= Is d1 implies VR = (This was known by Lichnerowicz [3, p 41 when M is compact.) They remarked later that the assumption of completeness is not necessary Note Linear connections with recurrent curvature zero on P(uo) such that for u Q P(u& f(u) = v(u) -f (uo) As a special case, K is parallel if and only if f (u) is constant on Wo) * Using this result and the holonomy theorem (Theorem 8.1 of Chapter II), Wong obtained THEOREM Let r be a linear ‘connection on M with recurrent curvature tensor R Then the Lie algebra of its linear holonomy group Y (u,,) is spanned by all elements of the form a,,( X, Y) , where is the curvature form and X and Y are horizontal vectors at u,, In particular, we have Proof The first assertion follows from Corollary 7.9 of Chapter VI Let a, be the local symmetry at a point o of M By Corollary 6.2, a, can be extended to an affine transformation of M onto itself which is involutive Define an involutive automorphism of G by a” = o0 a o IT, Then H lies between the subgroup of all fixed QED elements of (T and its identity component Let M be an n-dimensional manifold with a linear connection I’ A non-zero tensor field K of type (r, s) on M is said to be recurrent’ if there exists a l-form a such that VK = K a The following result is due to Wong [ 11 In the notation of $5 of Chapter III, letf: L(llif) * T HEOREM T;(R”) be the mapping which corresponds to a given tensorjeld K of OPe (r, s) Then K is recurrent if and only if, for the holonomy bundle P(uo) through any u E L(M), there exists a dzjkentiable function q(u) Wzth no 305 _ Ricci tensor field, then fS is also parallel The irreducibility of M implies that 1s = c - g, where c is a,constant and g is the metric tensor (cf Theorem of Appendix 5) If dim M and if the Ricci tensor S is non&trivial, then ;il is a constant function by Theorem of Note Since JR is parallel and since is a constant, R is parallel Next we shall consider the case where the Ricci tensor 5’ vanishes identically Let V R = R @ a’and let Rj,, and a,, be the components of R and a with respect to a local coordinate system xl ,*a*, By Bianchi’s second identity (Theorem 5.3 of Chapter III; see also Note 3), we _ have Multiply by gJm and sum with respect to j and m Since the Ricci tensor vanishes identically, we have Cj,~,~gj”‘Rj~~,~ = Cj,,,gjnlRj,,t = Hence, EjRjktaj = 0, where aj = Zn,gjmam :3r;ti FOI!NDATIONS OF DIFFERENTIAL NOTES GEOI\lETRY ‘I’llis ccluation has the following geometric implication Let x be an arl)itr;\rily fisrcl point of hl and let X and _I’ be any vectors at x If \VI’ clc*notc by I’ the vector at x with components &(x), then the linc’ar translbrmation R(X, E’) : 7’,(A4) -+ 7’,(.14) maps I’ into the zero \‘cctor On the other hand, by the Holonomy Theorem e also (‘l’hcorcm 8.1 of Chapter II) and Theorem of this Note \\‘ong [ l]), the Lie algebra of the linear holonomy grou Y(x) is spanned by the set of all endomorphisms of 7’,(A4) given by fER WAERDEN B L [I] Uber metrisch homogencn Raume, Abh ;2lath Sem Hamburg (19281, - DIEUDONN~, J [I] Sur lcs espaces uniformes complets, Ann EC Sorm Sup 56 (1939), 277-291 ~(’ ‘EHRESMANN, C [ 1] Sur la notion d’espace complet en geometric differentielle, C R Acad Sci Paris 202 (1936), 2033 [2] Les connexions infinitesimales dans un espace librd diffcrentiablc Colloque de Topologie, Bruxelles ( 1950)) 2Y-55 EISENHART , L P [1] Riemannian Geometry 2nd edition, Princeton University Press, 194Y FREUDENTHAL, H [I] Die Topologie der Lieschrn GruppCh al3 algcbraischrs Phanomcn I, Ann of Math 42 (1941), 10.51-1074 FROBENIUS, G [1] Uber die unzerlegbarcn diskreten Bewegungsgruppen, Sitzungsberichte d K&rig Preuss Akad \Viss Berlin 2’3 (1911 I,, 6X 665 FUJIMOTQ, A [l] On the structure tensor of G-structure, Nem Coll Sci Univ Kyoto Ser A, 18 (1960), 157-169 GODEMENT, R [I] Thiorie des, Faisceaux: Ac_tualitis Sci et Ind., #1252, Hermann, Paris, 1958 GOLDBERG, S I and KOBA~ASHI, S [1] The conformal transformation group of a compact Riemannian manifold, Proc Nat Xcad Sci U.S.A 48 (19621, 25-26; \mer J Alath (1962), - [2] The conformal transformation group of a compact homogeneous Riemannian manifold, Bull Amer Math Sot 68 (1962), 378-381 GOTO, M and S ASAKI , S [ 1] Some theorems on holonomy groups of Riemannian manifolds, Trans Amer.-Math Sot 80 (1955), 148-158 HALL, M [ 1] The Theory of Groups, Macmillan, New York, 1959 HANO, J [ 1] On affine transformations of a Riemannian manifold, Sagoya Math J (1955), 99-109 / I 318 FOUNDATIONS OF DIFFERENTIAL GEOMETRY J and MOMORXMOTO, A [1] Note on the group of affine transformations of an a&rely connected manifold, Nagoya Math J., (1955), 71-8 HANO, J, and OZEKI, H [I] On the holonomy groups of linear connections, Nagoya Math J 10 (1956), 97-100 H ANTZSCHE , W and WEIVDT, W [I] Drei dimensionale euklidische Raumformcn, Math Ann., 110 (1934), 593-6 11 BIBLIOGRAPHY 319 HANO, KLiNGENBERG, M’ HELCZASON, [1] Eine Kennzeichnung der Riemannschen sowie der Hermitschen Mannigfaitigkeiten, Math Z 70 (1959)) 300-309 KO B A Y A S H I , S j [l] Le gtiupe de transformations qui laissent invariant un paralltlisme, Colloque de Topologie, Strasbourg (1954) [2] Espaces a connexion de Cartan complete, Proc Japan Acad Sci 30 (1954), 709-710 [3] &paces a connexions affines et riemanniennes symetriques, Nagoya i I Math J (1955), 25-37 [4] h theorem on the affine transformation group of a Riemannian manifold, Nagoya Math J (1955), 39-41 [5] Induced connections and imbedded Riemannian spaces, Nagoya -hlath J 10 (1956), 15-25 [S] Theory of connections, Annali di Mat 43 (1957), 119-194 KO S T A N T , B [I] Holonomy and the Lie algebra in infinitesimal motions of a Ricmannian manifold, Trans Amer Math Sot 80 (1955), 528- 542 S [1] Some remarks on the exponential mapping for an affine connection, Math Stand (1961), 129-146 HERMANN, R [1] On the differential geometry of foliations, ;\nn of Math 72 (1960), 445-457 HI C K S , N [I] A theorem on affine conncxions, III%ois J Math (1959), 242 254 HILBERT, D [I] ijber das Dirichletsche Prinzip, J Reine Angew Math 129 (1905), 63-67 H O P F, H [I] Zum Clifford-Kleinschen Raumproblem, Math Ann 95 (1926), 313-339 H O P F, H and RINOW , W [I] Ober den Begriff der vollstiindigen differentialgeometrischen Flachen Comm Math Helv (1931), 209-225 Hu, S T [ 1] Homotopy Theory, Academic Press, New York, 1959 IWASAWA, K [ 1] On some types of topological groups, Ann of Math 50 (1949), 507558 KELLEY, J L [ 1] General Topology, Van Nostrand, Princeton, 1955 KI L L I N G , W [1] Die nicht-euklidischen Raumformen in analytische Behandlung, Teubner, Leibzig, 1885 [2] aber die Clifford-Kleinschen Raumformen, Math Ann 39 ‘( 1891), 257-278 KLEIN , F [1] Vergleichende Betrachtungen uber neuere geometrische Forchungen, Math Ann 43 (1893), 632100 ’ [2] Vorlesungen tiber nicht-euklidische Geometrie, Spriuger, Berlin, 1928 KUIPER, N R [1] Sur les surfaces localement affines, Colloque de GComCtrie Differrntielle, Strasbourg (19531, 79-88 LEVI-CIVITA, T., [1] Nozione di parallelism0 in una varieta qualunque c conscqucntc specificazione geometrica delta curvature Riemanniana Rend Palermo 42 (1917), 73-205 LEVI-CNITA, T and Rrccr, G [l J Mtthodes de calcul differentiel absolu et leur applications, Math Ann 54 (1901), 125-201 LICHNEROWCZ, A [ 1] Espaces homogenes kahltriens, Colloque de GComCtrie Diffcrcntirlle, Strasbourg (1953), 171-201 [2] ‘I’heorie Globale des Connexions et des Groupes d’Holonomic, Ed Cremonesc, Rome, 1955 [3] GComCtrie des Groupes de Transformations, Dunod, Paris, 1958 M.~TSUSHIMA, Y i [i) On the discrete sul,,~oups and homogeneous spaces of nilpotent Lie ~groups, Nagoya Math J (1951), 95-l 10 MILNOR, [1] Groups which act on S” without fixed points, Amer J Math 79 (1957) , 623-630 MINKOWSKI, H [ 1] DiskontStiuititsbereich fur arithmetische Aquivalenz, J Reinc :Ingew Math 129 (1965), 220-274 WJ FOUNDATIONS OF DIFFERENTIAL GEOMETRY BIBLIOGRAPHY D and ZIPPIN, L [ 1] Transformation Groups, Interscience Tracts #I, Interscience, New Y o r k , 5 M YERS, S B and S TEENROD, N [ 11 The group of isometrics of a Riemannian manifold, Ann of Math 40 (1939) 400-416 N ACANO, ‘T ’ P [ 1] The conformal transformation on a space with parallel Ricci tensor, J Math Sot Japan 11 (1959) 10-14 [2] On flbered Riemannian manifolds, Sci, Papers, College General Educ Univ ofTokyo 10 (1960), 17-27 NACANO T a n d YANO, K [I ] Einstrin spaces admitting a one-parameter group of conformal transformations, :inn of Math 69 (1959i, 451-461 N,\R:\SIYIIAN, M S and RA>IANAN, S [1] Existence of universal connections, :imer J VIath 83 (196l), 563572 321 M ONTGOMERY , - _ II %J”“HIX, :\ [I] X,-t-forming sets of eigenvectors, Indag Xfath 13 (1951), 200-212 [2] On the holonomy group of linear connections, Indag Math 15 (1953), 233.-249; 16 (1954), 17-25 [3] ;\ note on infinitesimal holonomy groups, Nagoya Math J (1957), 14.5 -146 NOMIX, K [I] On the group of affine transformations of an affinely connected manifold, Prod Amer Math Sot., (1953), 816-823 [2] Invariant affine connections on homogeneous spaces, Amer J Math., 76 (1954 , 33-65 - 431 Studies on Riemannian homogeneous spaces, Nagoya Math J., ( 19551, 43 56 [4] Reduction throrem for connections and its application to the problem of isotropy and holonomy groups of a Riemannian manifold, Nagoya hlath J 119551, 57-66 I.51 ,Un thcoreme sur les groupes d’holonomie, Nagoya Math J 10 (1956), 101-103 [6] On infinitesimal holonomy and isotropy groups, Nagoya Alath, J 1 (195-i), 111-114 [7] Lie Groups and Differential Geometry, Publ Math Sot Japan, ‘* [81 fy5; d , b l n oca an g o a existence of Killing vector fields;Xnn of Math 72 (19601, 105-120 [9] Sur les algebres de Lie de generateurs de Killing et l’homogcneite d’une varidte riemannienne, Osaka Math, J 14 (1962!, 45-51 No~rzu, K and OZEKI, H [1] The existence of complete Riemannian metrics, Proc Amer Math Sot 12 (1961), 889-891 [2] On the degree of differentiability of curves used in the definition of the holonomy group, Bull Amer Math SOC 68 (1962), 74-75 [3] A theorem on curvature tensor fields, Proc Nat Plead Sci U.S.A 48 ( 1962), 206-207 N OWACKI , W [ 1] Die euklidischen, dreidimensionalen gescholssenen und offenen Raumformen, Comm Math Helv (1934), 81-93 _ OZEKI, H [ 1] Infinitesimal holonomy groups of bundle connections, Nagoya Math J 10 (1956), 105-123 PALAIS, R S [ 1] A Global Formulation of the Lie Theory of Transformation Groups Mem Amer Math Sot., #22, 1957 [2] On the differentiability of isometries, Proc Amer Math Sot (1957)) 805-807 P ONTRJAGIN, L [I] Topological Groups, Princeton University Press, 1956 F~INHART, B ’ [l] Foliated manifolds with bundle-like metrics, Ann of Math 69 (1959), 119-132 DE RHAM, G [ 1] Sur la reductibilite d’un espace de Riemann, Comm Math Helv 26 (1952), 328-344 ’ R I E M A N N , B [l] Uber die Hypothesen, welche de Geometrie zugrunde liegen, Ges Werke SAITC), M [ 1] Sur certains groupes de Lie &solubles I, Sci,: Papers College General Educ Univ of Tokyo i957), l-l 1; II, ibid., 157-168 SCHOUTEN J A and STRUIK, D J [l] @.some properties of general manifolds relating to Einstein’s theory of.gravitation, Amer J Math 43 (1921), 213-216 “.’ &HUR, F: [II Uber den Zusammenhang der Riume konstanter Kriimmungsmasses mit den projektiven Raumen, Math ;\nn 27 (1886), 537-567 SEIFERT, H.and THRELFALL,~' [ 1] Topologische Untersuchung der Diskontinuitatsbereiche endlicher Bewegungsgruppen des dreidmensionalen sphirischen Raumes,.Math &III 104 (1930), 1-70; 107 (1933), 543-586 322 SIBUYA, FOUNDATIONS OF BIBLIOGRAPHY DIFFERENTIAL GEOMETRY [1] On Ruse’s spaces of recurrent curvature, Proc London Math Sot (2) 52 (1950), 36-64 [2] The fibring of Riemannian manifolds, Proc London Math Sot (3) (1953), l-19 [3] Connexions for parallel distribution in the large, Quart J* Math (Oxford) (2) (1955), 301-308; II, (1958), 221-231 WANG, H.C [I] On invariant connections’&ver a principal fibre bundle Nagoya Math J 13 (1958), I-19 WEIL, :\ [I] Sur les thcoremes de de Rham, Comm Math Hclv 26 (1952), 119-145 WEYL, H [.I] RI-ine infinitesimalgeometrie, Math Z (1918\, 384-411 [2] Z u r Infinitesimalgeomctrie; Einornung drr lmjc’ktiven und konformcn /\uffassung Gottingen‘ Nachrichtcn (19ll’!:rtl)- 112 [3] Raum, &it, hlatcrir Springer, Berlin, 1!118 J H C [I] Convex regions in the geometry of paths, Quart J Math (1932), 33-42 WILLMORE, T.J [I] Parallel distributions on manifolds, Proc London Math SOC (3) (1956), 191-204 [2] Connexions for systems of parallel distributions, Quart J Math (2) (1956), 269-276 WOLF, J A [ 1] Sur la classification des varittts riemanniennes homogtnes a courbure constante, C R Acad Sci Paris 250 (1960), 3443-3445 [2] The manifolds covered by a Riemannian homogeneous manifold, Amer J Math 82 (1960), 661-688 [3] Homogeneous manifolds of constant curvature, Comm Math Helv 36 (1961), 112-147 [4] The Clifford-Klein space forms of indefinite metric, Ann of Math 75 (1962), 77-80 [5] Vincent’s conjecture of Clifford translations of the sphere, Comm Math Helv 36 (1961), 33-41 [6] Discrete groups, symmetric spaces, and global holonomy, Amer J Math 84 (1962), 527-542 ’ WONC, Y c [l] Recurrent tensors on a linearly connected differentiable manifold, Trans Amer Math Sot, 99 (1961), 325-341 YANO, K [I] On harmonic and Killing vectors, Ann of Math 55 (1952), 38-45 [2] The Theory of Lie Derivatives and Its Applications, North Holland Publishing Co., Amsterdam, YAMABE, H [ 1] On an arcwise connected subgroup of a Lie group, Osaka Math J (1950), 13-14 YOSIDA, K [l] A theorem concerning the semi-simple Lie groups, Tohoku Math J., 43 (Part II) (1937), 81-84 ZASSENHAUS, H [l] Beweis eines Satzes tiber diskrete Gruppen, Abh Math Sem Hamburg 12 (1938), 289-312 [2] Faber endliche Fastkorper, Abh Math Sem Hamburg 11 (1936), 187-220 WHITEHEAD, y [I] Note on real matrices and linear dynamical systems with periodic coefficients, J Math (Inal Appl (19601, 363-372 SIEGEL, C L [1] Einhcitcn quadratische Formen, Abh Math Scm Hamburg 13 (194Oi, 209-239 SIERPIN~KI, W [1] Sur les espaces metriques localement separables, Fund hlath 21 (1933), 107-I 13 SIMONS, J [1] On transitivity of holonomy systems, Ann of blath 76 (1962), 213-234 SMITH, J W [1] Lorentz structures on the plane, Trans Amer iLlath Sot 95 (1969), 226-237 STEENROD,N [ 1] The Topology of Fibre Bundles, Princeton University Press, 195 TAKIZAWA, N [1] On Cartan connexions and their torsions, Mem Coll Sci Univ Kyoto, ser A, 29 (1955), 199-217 TANAKA,N [I] Conformal connections and conformal transformations, Trans Amer Math Sot 92 (1959), 168-190 VINCENT,G [1] Les groupcs lineaires finis saris points fixes, Comm Math Helv 20 (1947), 117-171 - WALKER, A G % 323 INDEX Absolute parallelism, 122 Adjoint rcprescntation, 40 Affine connection, 129 generalized, 127 frame, 126 holonomy group, 130 mapping, 225 parallel displacement, 130 parameter, 138 space, 125 tangent, 125 transformation, 125, 226 infinitesimal, 230 Alternation, 28 Analytic continuation, 254 Arc-length, 157 Atlas, complete, Automorphism of a connection, 81 of a Lie algebra, 40 of a Lie group, 40 , Bianchi’s identities, 78, 121, 135 Bundle associated, 55 holonomy, 85 homomorphism of, 53 induced, 60 of affine frames, 126 of linear frames, 56 of orthonormal frames, 60 principal fibre, 50 reduced, 53 sub-, 53 tangent, 56 tensor, 56 trivial, 50 vector, 113 L Canonical decomposition ( = dc Rham decompdsition), 185, 192 flat connection, 92 form on L(.M), 118 invariant connection, 110, 301 invariant Riemannian metric, 155 linear connection, 302 metric, 155 l-form on a group, 41 parameter of a grodcsic, 162 Chart, Christoffel’s symbols (I’:.,), 141 Compact-open topalogy, 46 Complete, * linear connection, 139 Riemannian manifold, 172 Riemannian metric, 172 vector field, 13 Components of a linear connection, 141 of a l-form, of a tensor (field), 21, 26 of a vector (field), Conformal transformation, 309 infinitesimal, 309 Connection, 63 affine, 129 canonical, 110, 301 canonical flat, 92 canonical linear, 302 flat, 92 flat affine, 209 form, 64 generalized affine, 127 induced, 82 invariant, 81, 103 by parallelism, 262 Levi-Civita, 158 325 326 Connection linear, 119 metric, 117, 158 Rkmannian, t 58 Uniwtd, 230 Constant curvature, 202 space of, 202, 204 Contraction, 22 Contravariant tensor (space), 20 Convex neighborhood, 140, 166 Coordinate neighborhood, Covariant derivative, 114, I1 5, 122 differential, 124 djfferentiation, 115, 116, 123 tensor (space), 20 Covector, Covering space, 61 Cross section, 57 adapted to a normal coordinate system, 257 Cubic neighborhood, Curvature, 132 c constant, 202 form, 77 recurrent, 305 scalar, 294 sectional, 202 tensor (field), 132, 145 Rkmannian, 201 transformation, 133 Cylinder, 223 Euclidean, 10 twisted, 223 Derivation of Z\(M), 33 of T(M), 30 of the tensor algebra, 25 Devclopmtnt, 131 DifTcomorphism, Differential covariant, 124 of rl function, of a mapping, Discontinuous group, 44 properly, 43 Distanw function, 157 Distribution, 10 involutive, 10 Divergencr, 281 Mectivc action of a group, 42 kinstein manifold, 294 Elliptic, 209 Iklidran cylindw, 21 O locally, 197, 209, 210 metric, 154 motion, 15 subspace, 218 tangent space, 193 torus, 210 Exponential mapping, 39, 140, 147 Exterior covariant derivative, 77 covariant differentiation, 77 derivative, 7, 36 differentiation, 7, 36 327 INDEX INDEX c Fibre, 55 bundle, principal, 50 metric, 116 transitive, 106 Flat affine connection, 209 connection, 92 canonical, 92 linear connectibn, 210 Riemannian manifold’, 209, 210 Form curvature, 77 l-form, r-form, tcnsorial, 75 pseudo-, 75 torsion, 120 Frame affinr, 126 linear, 55 orthonormal, 60 Free action of a group, 42 Frobenius, theorem of, 10 Fundamental vector field, 51 Geodesic, 138, 146 minim&ng, 166 totally, 180 Green’s theorem, 281 G-structure, 288 Holomorphic, Holonomy bundle, 85 Holonomy group, 71, 72 affine, 130 homogeneous, 130 infinitesimal, 96, 151 linear, 130 local, 94, 151 restricted, 71, 72 Holonomy theorem, 89 Homogeneous Riemannian manifold, 155, 176 space (qubtient space), 43 symmetric, 301 Homomorphism of fibre bundles, 55 Homothetic transformation, 242, 309 infinitesimal, 309 Homotopic, 284 C’-, 284 Horizontal component, 63 curve, 68, 68 lift, 64, 68, 88 subspace, 63, 87 vector, 63 Hyperbolic, 209 Hypersurface, Imbedding, 3, 53 isometric, 161 Immersion, isometric, 161 Indefinite Ricmannian metric, 135 Induced bundle, 60 connection, 82 Ricmannian metric, 154 Inner product, 24 Integral curve, 12 C Integral manifold, O Interior product, 35 Invariant by parallelism, 262 connection, 81, 103 Riemannian metric, 154 Involutive distribution, 10 Irreducible group of Euclidean motions, 218 Riemannian manifold, 179 Isometric, 161 imbedding, 161 immersion, 161 Isometry, 46, 161, 236 infinitesimal, 237 Isotropv ’ group, linear, 154 subgroup, 49 Killing-Cartan form, 155 Killing vector field, 237 Klein bottle, 223 Lasso, 73, 184, 284 I,eibniz’s formula, 11 Levi-Civita connection, 158 Lit algebra, 38 dcrivativc, 29 difftwntiation, 29 group, 38 subgroup, 39 transformntion group,‘41 I.ift, 64 OR, 88 horizontal, 64, 68, 88 naturA, 23O I,inr:tr connection 11’) frame, i5 holrinomy group, 130 isotropy group, 154 Local I&s of a distribution, 10 coordinate system, 328 INDEX ‘ ‘\ 329 INDEX Locally affine, 210 Euclidean, 197, 209, 210 symmetric, 303 Lorentz manifold (metric), 292, 297 Manifold, 2, complex analytic, differentiable, 2, oriented, orientable, real analytic, sub-, Maurrr-Cartan, equations of, 41 Metric connection, 117, 158 Mobius band, 223 Natural lift of a vector field, 230 Non-prolongable, 178 Normal coordinate system, 148, 162 -parameter group of transformations, subgroup, 39 Orbit, 12 Orientation, Orthonormal frame, 60 12 Paracompact, 58 Parallel cross section, 88 displacement, 70, 87, 88 affine, 130 tensor field, 124 Partition of unity, 272 Point field, 131 Projection, covering, 50 Properly discontinuous, 43 Pseudogroup of transformations, 1, Pseudotensorial form, 75 Quotient space, 43, 44 Rank of a mapping, Real projective space, 52 Recurrent curvature, 305 Recurrent tensor, 304 Reduced bundle, 53 R e d u c i b l e connection, 81, 83 Riemannian manifold, 179 structure group, 53 Reduction of connection, 81, 83 of structure group, 5.3 Reduction theorem, 83 de Rham decomposition, 185, 192 Ricci tensor (held), 248, 292 Riemarmian connection, 158 curvature tensor, 201 homogeneous space, 155 manifold, 60, 154 ’ metric, 27, 154, 155 canonical invariant, 155 indefinite, 155 induced, 154 invariant, 154 Scalar curvature, 294 Schur, theorem of, 202 Sectional curvature, 202 Segment, 168 Simple covering, 168 Skew-derivation, 33 Space form, 209 Standard horizontal vector held, 119 Structure ‘constants, 41 equations, 77, 78, 118, 120, 129 group, 50 Subbundle, 53 Submanifold, Symmetric homogeneous space, locally, 303 Riernannian, 302 Symmetrization, 28 Symmetry, 301 Tangent affine space, 125 301 +-gent &ndle, space, vect*; Tensor algebra, &!, 24 56 contrairariant,bun%, 20 q _ covariant , 20 ‘f%d, 26 product, 17 space, 20,21 Tcnsorial form, 75 pseudo-, 75 Torsion form, 120 of two tensor fields of type (l,l), 38 tensor (field), 132, 145 translation, 132 Torus, 62 Euclidean, 210 twisted, 223 Total differential, Totally geodesic, 180 Transformation, Transition functions, 51 Trivial fibre bundle, 51 Twisted cylinder, 223 torus, 223 Type ad G, 77 of tensor, 21 Universal factorization Vector, bundle, 113 field, Vertical component, 63 subspace, 63, 87 vector, 63 Volume element, 281 property, 17 ... transpose of 11 Since T is generated by F, II and I’*, 11 is uniquely dctcrminc,tl its restriction to F, V a n d V* It follows that 11 *Ii is iujccti.c Conversely, given an endomorphism 11 of 1, ‘... induced by a tensor field of type (I,? In other words, the set of Ieruor,fie/dr qf Qpe (1, 1) is an ideal of th&Lie algebra of derivations oj’ 1( .11 1) On the other hand, the ret of Lie d{fffrentiations... follows that the set of all tensor fields S of type (1, 1) forms a subalgebra of the Lit algebra of derivations of Z(M) In the proof of Proposition 3.3,’ we showed that a derivation of l(.Zlj is induted

Ngày đăng: 25/03/2019, 13:27

TỪ KHÓA LIÊN QUAN

TÀI LIỆU CÙNG NGƯỜI DÙNG

  • Đang cập nhật ...

TÀI LIỆU LIÊN QUAN