1. Trang chủ
  2. » Giáo án - Bài giảng

Discrrete mathematics for computer science asymptotic

19 83 0

Đang tải... (xem toàn văn)

Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống

THÔNG TIN TÀI LIỆU

Thông tin cơ bản

Định dạng
Số trang 19
Dung lượng 209,55 KB

Nội dung

Growth Rates of Functions 3/26/12 Asymptotic Equivalence • Def: ⎛  ⎞ f (n) : g(n) iff lim n ⎜  ⎟ ⎝   ⎠ For example, n                  Note that n2+1 is being used to name the function f such that f(n) = n2+1 for every n 3/26/12 An example: Stirling’s formula ⎛n⎞ n! : ⎜ ⎟ ⎝e⎠ 3/26/12      Little-Oh: f = o(g) • Def: f(n) = o(g(n)) if  lim  n   • For example, n2 = o(n3) since   lim      n     3/26/12 = o( ∙ ) is “all one symbol” • “f = o(g)” is really a strict partial order on functions • NEVER write “o(g) = f”, etc 3/26/12 Big-Oh: O(∙) • Asymptotic Order of Growth: ⎛  ⎞ f (n)      ⎜  ⎟  ⎝   ⎠ • “f grows no faster than g” • A Weak Partial Order 3/26/12 Growth Order 3n                       3/26/12 f = o(g) implies f = O(g)  because if  lim  n                  3/26/12 Big-Omega • f = Ω(g) means g = O(f) • “f grows at least as quickly as g” 3/26/12 Big-Theta: �(∙) “Same order of growth” f (n)                         So, for example, 3n      3/26/12  Rough Paraphrase • f∼g: f and g grow to be roughly equal • f=o(g): f grows more slowly than g • f=O(g): f grows at most as quickly as g • f=Ω(g): f grows at least as quickly as g • f=�(g): f and g grow at the same rate 3/26/12 Equivalent Defn of O(∙) “From some point on, the value of f is at most a constant multiple of the value of g” f (n)                3/26/12 Three Concrete Examples • Polynomials • Logarithmic functions • Exponential functions 3/26/12 Polynomials • A (univariate) polynomial is a function such as f(n) = 3n5+2n2-n+2 (for all natural numbers n) • This is a polynomial of degree (the largest exponent)  • Or in general f (n)    • Theorem:  – If a1 • Theorem: Any polynomial is o(any exponential) • If c

Ngày đăng: 22/03/2019, 10:59

TỪ KHÓA LIÊN QUAN