Tài liệu hạn chế xem trước, để xem đầy đủ mời bạn chọn Tải xuống
1
/ 68 trang
THÔNG TIN TÀI LIỆU
Thông tin cơ bản
Định dạng
Số trang
68
Dung lượng
2,08 MB
Nội dung
ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THU TRANG NGHIÊNCỨUTƯƠNGTÁCRAMANKẾTHỢPTRONGMƠITRƯỜNGKHÍĐƯỢCCHỨABỞISỢIQUANGTỬLÕIRỖNG LUẬN VĂN THẠC SĨ VẬT LÍ Thái Nguyên-2018 ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THU TRANG NGHIÊNCỨUTƯƠNGTÁCRAMANKẾTHỢPTRONGMƠITRƯỜNGKHÍĐƯỢCCHỨABỞISỢIQUANGTỬLÕIRỖNG Chuyên ngành: Quang học Mã số: 8.44.01.10 LUẬN VĂN THẠC SĨ VẬT LÍ NGƯỜI HƯỚNG DẪN KHOA HỌC TS Nguyễn Mạnh Thắng TháiNguyên-2018 LỜI CAM ĐOAN Tôi xin cam đoan cơng trình nghiêncứu riêng Các số liệu, kết nêu luận văn trung thực Những kết luận luận văn chưa cơng bố cơng trình khác TÁC GIẢ LUẬN VĂN NGUYỄN THỊ THU TRANG i LỜI CẢM ƠN Trước tiên, em xin bày tỏ lòng biết ơn tới TS.Nguyễn Mạnh Thắng tận tình hướng dẫn, giúp đỡem suốt trình thực hiệnLuận văn Em xin chân thành cảm ơn thầy cô tổ môn Quang học, Ban chủ nhiệm khoa Vật Lí, trường Đại học Khoa học – Đại Học Thái Nguyên giúp em hoàn thành Luận văn Tôi xin chân thành cảm ơn tới quan Tạp chí Khoa học Cơng nghệ qn - Viện Khoa học Công nghệ quân tạo điều kiện cho mặt thời gian sở vật chất để tơi hồn thiện đề tài Cuối xin chân thành cảm ơn sâu sắc tới gia đình, bạn bè, đồng nghiệp quan tâm, giúp đỡ động viên suốt q trình thực Luận văn Tơi xin chân thành cảm ơn! Thái Nguyên, ngày tháng năm 2018 Học viên Nguyễn Thị Thu Trang ii MỤC LỤC MỞ ĐẦU CHƯƠNG 1: TÁN XẠ RAMAN 1.1 Tán xạ Ramantự phát 1.2 Tán xạ Raman cưỡng 1.3 Tán xạ Ramantự phát tán xạ Raman cưỡng 10 1.4 Hệ phương trình cổ điển mơ tả tươngtác tán xạ Raman cưỡng 12 1.5 Hệ phương trình Maxwell - Bloch cho tán xạ Raman 21 1.5.1 Toán tử ma trận mật độ 21 1.5.2 Hệ kích thích nguyên tử hai mức 22 1.5.3 Phương trình đảo mật độ nguyên tử 24 1.5.4 Mô men dao động cảm ứng 27 1.5.5 Phân cực phi tuyến 27 CHƯƠNG : SỢIQUANGTỬLÕIRỖNG (HC-PCFs) 31 2.1 Sợiquang truyền thống 31 2.2 Sợi tinh thể quangtửlõirỗng 32 2.3 Dẫn sóng dựa vùng cấm quangtử 33 2.4 Mật độ trạng thái 36 2.5 HC-PCFs tăng cường hiệu ứng tươngtác phi tuyến laser - khí 38 CHƯƠNG 3:TƯƠNG TÁC TÁN XẠ RAMANKẾTHỢP THUẬN VÀ NGƯỢC TRONGMƠITRƯỜNGKHÍ H2 ĐƯỢCCHỨABỞI HC-PCFs 42 3.1 Tán xạ Raman cưỡng ngược kếthợp 43 3.1.1 Hệ phương trình tươngtác ba sóng kếthợp 43 3.1.2 Sự tươngtác xuất chuỗi xung tín hiệu Stokes ngược 46 3.1.3 Dạng tiệm cận soliton chuỗi xung Stokes 50 3.2 TươngtácRamankếthợp thuận 50 3.2.1 Hệ phương trình tươngtácRamankếthợp thuận 50 3.2.2 Quá trình phát triển động học hệ tươngtácRamankếthợp thuận 51 KẾT LUẬN…… ………………………………………………………….55 TÀI LIỆU THAM KHẢO………………………… …………………… 57 iii DANH MỤC CÁC KÝ HIỆU, CÁC CHỮ VIẾT TẮT SRS Tán xạ Raman cưỡng FSRS Tán xạ Raman cưỡng thuận BSRS Tán xạ Raman cưỡng ngược HC-PCFs Sợi tinh thể quangtửlõirỗng PGB-PCFs Sợi dẫn sóng hẹp lõirỗng Kagomé-PCFs Sợi dẫn băng rộnglõirỗng TIR Sợiquang “chiết suất bậc” truyền thống hoạt động chế phản xạ toàn phần bên sợiquang DOS Mật độ trạng thái iv DANH MỤC CÁC HÌNH Hình Chùm Gaussian hội tụ không gian tự Hình 2: Chùm Gauss tập trung vào mao dẫn đường kính 2a Hình 3: Chùm Gauss hội tụ vào sợi tinh thể quangtửrỗng HC-PCFs Hình 4: Cơ chế tạo SRS phân cực tròn quay HC-PCF Hình 1: Sơ đồ mức lượng chuyển dịch tán xạ Raman Hình 2: Các trình tán xạ Hình 3: Phân bố trường tán xạ Raman Hình 4: Mơ hình phân tử tán xạ Raman 13 Hình 5: Phụ thuộc độ cảm Raman vào tần số 15 Hình 6: Phụ thuộc độ cảm Raman vào tần số 17 Hình 7: Quan hệ hợp pha sóng Stokes Đối Stoke tán xạ Raman 19 Hình 8: Phụ thuộc hệ số khuếch đại liên kết vào độ lệch pha 20 Hình 9: Hệ hai mức lượng trạng thái kích thích 23 Hình 10: Giá trị kỳ vọng moment lưỡng cực cảm ứng 27 Hình 1: Sơ đồ chế dẫn sáng sợiquang truyền thống 31 Hình 2: Cấu trúc HC-PCFs với cấu trúc vỏ hình lục giác 32 Hình 3: Biểu đồ truyền sóng sợiquang 34 Hình 4: Sơ đồ DOS (3.4a) cho lớp vỏ sợiquang mô bên phải (3.4b) 37 Hình 5: Cửa sổ truyền (transmission window) sợi HC-PCFs (trái) hình ảnh chụp mặt cắt ngang (phải) 38 Hình 6: Độ dài tươngtác hiệu dụng Leff (màu đỏ) cho cấu hình khác 39 Hình 7: So sánh giá trị M cấu hình khác 41 Hình 1: Sơ đồ hình học minh họa 42 Hình 2: Sự phát triển động học trình tươngtác ba trường 48 Hình 3: Chuỗi xung tiệm cận dạng hyperbolic-secant bền 50 Hình 4: Sự phát triển trình tươngtácRamankếthợp thuận ba trường bơm 53 v MỞ ĐẦU Khi truyền qua mơitrường vật chất, ánh sáng hoạt động theo chế khác nhau, phụ thuộc vào tính chất ánh sáng mơitrường Ánh sáng bị hấp thụ, truyền qua, phản xạ, khúc xạ, nhiễu xạ, tán xạ, biến điệu v.v Tán xạ chia làm hai loại tán xạ đàn hồi tán xạ phi tuyến: Tán xạ đàn hồi hay gọi tán xạ Rayleigh, tán xạ khơng có chuyển hóa lượng ánh sáng vật chất, dẫn đến khơng có dịch chuyển tần số sóng kích thích ωs = ω0 (trong ω0 tần số sóng kích thích tần số bơm, ωs tần số sóng tán xạ); Tán xạ phi tuyến hay gọi tán xạ cưỡng bức, loại có chuyển hóa lượng dựa vào va chạm photons (lượng tử ánh sáng) phân tử nguyên tửmôitrường hoạt chất, kết dẫn đến dịch chuyển tần số sóng kích thích, vạch phát dịch chuyển phía tần số thấp ω0 gọi vạch Stokes ωs = ω0 – Ω, ngược lại vạch phát dịch chuyển phía tăng tần sốgọi vạch đối Stokes (hoặc anti-Stokes) ωAS = ω0 + Ω, Ω tần số dao động cưỡng phân tử tần số kếthợp nguyên tử ánh sáng kích thích gây Năm 1928 C.V Raman khám phá tượng tán xạ khơng đàn hồi mang tên ơng [1] Ơng gọi loại xạ thứ cấp với cường độ tín hiệu quan sát yếu Quả thật, tán xạ Ramantự phát với tỷ lệ chuyển đổi tần số cực nhỏ khoảng 1:106 , có nghĩa khoảng tổng số 106 số photons ánh sáng tới dịch chuyển thành photons tín hiệu Stokes Nâng cao hiệu suất dịch chuyển tần số thử thách quang học phi tuyến thời gian dài, vấn đề giải laser phát minh vào năm 60 [2] Laser ánh sáng kếthợp có cường độ sáng cao, sử dụng để kích thích tạo hiệu ứng phi tuyến quang học nói chung tán xạ Raman nói riêng mà ánh sáng thông thường Nếu tán xạ Ramantự phát photon phát tồn khơng gian góc 4 theo mơ hình lưỡng cực điện cổ điển, sử dụng thấu kính để hội tụ tạo chiều dài tươngtác cỡ vài mm (chiều dài Rayleigh) để tạo chế độ tán xạ Raman cưỡng bức, hiệu suất nâng lên tới hàng chục phần trăm, tức gấp hàng triệu lần so với chế độ tự phát [2,3] Tán xạ Raman cưỡng (SRS) quan sát dung dịch Nitrobenzene sử dụng laser Ruby [3] Một thời gian ngắn sau khám phá đó, người ta nhận trình tán xạ Raman cưỡng gắn liền phonon quang [4] Những phonon quang dao động đồng ngun tửmơitrường hoạt chất, chúng dao động quay, kích thích liên kết hai Những kích thích kếthợp nguồn gốc tạo phổ dao động Stokes tương ứng [5] Nó đại lượng sinh trình quang học phi tuyến hệ phương trình mơ tả trường điện từ Maxwell Để tạo hiệu ứng SRS mơitrườngkhí chùm kích thích phải đạt cường độ ngưỡng cao Ban đầu người ta hội tụ chùm laser qua khe nhỏtrong không gian tự bình khí hoạt chất để trì tươngtác với khíRaman hoạt chất: khí Raman, ví dụ khí H2được đổ đầy dọc bên bình dẫn khí, chùm laser cỡ vài chục mJ hội tụ vào bên bình dẫn khí Hình 0.1 Kết thu hiệu suất tán xạ Raman vài % [6] Hiệu thấp giải thích cách dễ dàng: tăng cường độ ánh sáng cách hội tụ chùm tia, độ dài tươngtác ngắn lại, xấp xỉ với chiều dài Rayleigh Thông thường chùm laser hội tụ mạnh thấu kính chiều dài Rayleigh thường khơng dài vài mm (xem Hình 0.1 minh họa), mật độ photon đủ lớn để phát SRS bị giới hạn khoảng Rayleigh Khe nhỏ Chiều dài Rayleigh Hình 0.1: Chùm Gaussian hội tụ khơng gian tự Cường độ ánh sáng đủ lớn cho tươngtác khí-laser bị giới hạn chiều dài Rayleigh chùm tia (giới hạn nhiễu xạ) Trên hình minh họa mật độ photon màu sắc xanh, màu đậm mật độ photon (cường độ ánh sáng) lớn ngược lại Để cải thiện hiệu suất tán xạ Raman, sau người ta thực thí nghiệm SRS ống dẫn sóng thay bình khí để giam khí hoạt chất cải thiện quang học [7] Tuy nhiên, số suy giảm ống dẫn sóng tỷ lệ với λ2/a3, λ bước sóng ánh sáng kích thích, a bán kính ống dẫn sóng [8], bán kính ống dẫn sóng nhỏ tổn hao quang học cao Dẫn quang sử dụng ống dẫn sóng minh họa Hình 0.2, màu xanh thể chùm laser, độ đậm minh họa mật độ photon Chúng ta nhận thấy sau truyền đoạn ngắn chùm laser suy giảm đáng kể cường độ Hình 0.2: Chùm Gauss tập trung vào mộtốngdẫn sóng đường kính 2a Hằng số suy giảm tỷ lệ với đại lượng λ2/a3, đại lượng cao ống dẫn sóng có bán kính lõi nhỏ Năm 1991, giáo sư Phillip St John Russell cộng trường Đại học Bath, Vương quốc Anh đề xuất ý tưởng giam chùm laser vào mô ̣t lõirỗngsợiquangtử dựa chế vùng cấm quangtử hai chiều Cấu trúc bao gồm mảng ống dẫn sóng khí cực nhỏ chạy dọc theo bao quanh toàn chiều dài sợi quang, hoạt động lớp vỏ sợi quang.Lớp vỏ bao quanh lõirỗng kích thước cỡ µm, lõirỗng hoạt động sai hỏng cấu trúc quangtử Nếu thiết kế phù hợp, lớp vỏ tạo vùng cấm giam toàn ánh sáng lõirỗng Cấu trúc tinh thể quangtửrỗng (HC-PCFs) thiết kế chế tạo lần đầu năm 1995, cho phép nhà khoa học khả tiếp cận trạng thái tươngtác phi tuyến phức tạp vật chất - laser mà trước tiếp cận [9,10] dạng thời gian xung mầm Trongnghiêncứu này, sử dụng sợiquangtửlõirỗng có bán kính lõi chiều dài sợiquangtương ứng 5µm 1.4m, khí H2 đổ đầy lõisợiquang với áp suất thay đổi nhờ hệ bơm đặc biệt Hằng số truyền sóng Stokes bơm tương ứng βS = 5.5 106 m −1 ; β P = 5.9 106 m −1 [30] Năng lượng xung Stokes mầm 0.1 µJ, áp suất khí H2 điều chỉnh bar Đại lượng tắt ( dần chuẩn hóa μ=0.0145, cường độ Raman (phân cực tròn) κ1* = 7.4 10−8 m V2 ) Mật độ khí H2 trạng thái orthogonal-H2 62% tổng số phân tửkhí H2 nhiệt độ phòng Năng lượng bơm giả sử 18µJ, lượng đủ lớn để tạo chế độ kếthợp cao tán xạ Raman cưỡng ngược kết tạo chuỗi dao động [58,59] 47 Cường độ chuẩn hóa 1- Trường bơm 2- Trường Stokes Thời gian (ns) Trường bơm Trường Stokes Trườngkếthợp Cường độ chuẩn hóa Thời gian (ns) Trường bơm Trường Stokes Trườngkếthợp Cường độ chuẩn hóa Thời gian (ns) Hình 3.2: Sự phát triển động học trình tươngtác ba trường 48 Sự phát triển theo thời trình tươngtác ba sóng cộng hưởng mơ tả sau: Tại thời điểm ban đầu t=0, khơng có tươngtác xảy trường bơm (đường cong màu xanh cây) trường mầm Stokes, chưa xuất trườngkếthợpKhi t>0 xung mầm Stokes (đường cong màu đỏ) khuếch đại trường bơm ngược, trườngkếthợp bắt đầu xuất trễ so với xung mầm Stokes Khi thời gian tươngtác tăng, xung mầm khuếch đại tăng Nếu cường độ chùm bơm chưa đủ lớn để vượt qua ảnh hưởng tắt dần mơitrường hoạt chất Raman, xung tín hiệu Stokes gần khuếch đại tuyến tính đồng (cường độ độ rộng xung tăng tỷ lệ thuận) Khi cường độ chùm bơm đủ mạnh (vượt ngưỡng) để vượt qua ảnh hưởng tắt dần mơi trường, q trình phi tuyến bắt đầu xảy ra, chuỗi xung dao động xuất hình 3.2b, 3.2c Số lượng xung chuỗi tăng tỷ lệ với thời gian tươngtác (độ dài xung bơm) Quá trình xuất đa xung thú vị giải thích cách xem xét chế dòng chảy lượng bên ba trường bơm Stokes kếthợpKhitrường Stokes trườngkếthợp tăng trường bơm có xu hướng suy giảm tới giá trị tạo dòng lượng chảy ngược vào trường bơm, kết pha dịch chuyển góc Sự gia tăng trường bơm làm suy giảm trường Stokes trườngkếthợp mặt sau xung Stokes Kết mặt trước xung Stokes dựng đứng giảm nhanh mặt sau xung Stokes bị hẹp dần Khi khoảng xung bơm (thời gian tương tác) nhỏ độ rộng xung mầm Stokes trình nén xung dẫn đến việc tạo xung soliton ‘đơn’ [30] không xuất thêm xung thứ cấp Khi khoảng xung bơm dài đáng kể so với khoảng xung mầm Stokes, xuất xung thứ cấp sau xung mầm bị suy giảm tới Xung thứ cấp bị khuếch đại ngược xung thứ tiếp tục Kết xung bơm đủ dài tạo chuỗi xung liên tiếp hình 3.2c Tại thời gian tươngtác t=25ns xuất chuỗi gồm xung với độ dài tương ứng 5ns, 6ns, 7ns, 9ns tương ứng cho xung mầm Stokes ban đầu, xung Stokes thứ 2, xung Stokes thứ thứ 49 3.1.3 Dạng tiệm cận soliton chuỗi xung Stokes Trong giới hạn lượng bơm cao thời gian tươngtác đủ dài, xung mầm Stokes có dạng thời gian nhỏ đáng kể so với xung bơm phương trình 3.14 cho lời giải xung 2 , = 4arctan(ex p(Z)) Thay vào (3.12, 3.13) ta có: A P = a tanh(Z) ρ= (3.16) Ω a 0sech(Z) ωP AS = −2 ωP sech(Z) Ω (3.17) (3.18) Cường độ chuẩn hóa Chuỗi xung tiệm cận Trường bơm Trườngkếthợp Thời gian (ns) Hình 3.3: Chuỗi xung tiệm cận dạng hyperbolic-secant bềnđược mô tả đường cong màu đỏ, có vận tốc với sóng kếthợp (được mô tả nét đứt màu xanh da trời) Nghiệm (3.18) trạng thái tiệm cận phát triển đường bao xung Stokes tín hiệu Trong trạng thái tốc độ sóng Stokes sóng kếthợp bị định dạng tiệm cận tới chuỗi xung có dạng đặc biệt hyperbolic-secant 3.2 TươngtácRamankếthợp thuận 3.2.1 Hệ phương trình tươngtácRamankếthợp thuận Giả sử trường Stokes mầm ES truyền chiều với xung bơm EP mơitrườngkhí H2 chứalõirỗng HC-PCFs Hệ phương trình đường bao (3.1950 3.21) tươngtác ba sóng kếthợp tán xạ Ramankếthợp [60] Trong đó, chúng tơi bỏ qua đóng góp dịch chuyển Stark tán sắc mơitrườngkhí v Ε P Ε P γ + = iκ P P ρ12 ES − P Ε P z v P t S v S (3.19) ΕS ΕS γ * + = iκ 2ρ12 E P − S ΕS z v S t (3.20) ( n-n0 ) n 1 * = iκ1E*P ESρ12 − iκ1*E P E*Sρ12 − t 2 T1 (3.21) ρ12 * ρ = iκ1 nE P E*S − 12 t T2 (3.22) Trong đó, P ,S tần số sóng bơm sóng Stokes; κ 2,1 số liên kết Raman; v S,P vận tốc môitrường tán sắc v P vS c (vận tốc ánh sáng chân khơng) mơitrường khí; T1 thời gian hồi phục nghịch đảo mật độ phân tử kích thích; T2 thời gian hồi phục sóng kết hợp; n nghịch đảo mật độ, n0 giá trị n giá trị cân nhiệt bậc thời gian T1; ρ12 kếthợp phân tử, γ P γ S mát tuyến tính mơitrường tần số sóng bơm sóng Stokes Để giải hệ phương trình (3.19 - 3.21), sử dụng hệ tọa độ chuyển động với thời gian trễ τ = t − z/c, với t thời gian hệ thí nghiệm z khoảng cách truyền dọc theo sợiquang Bằng việc sử dụng hệ tọa độ chuyển động, chúng tơi đơn giản hệ phương trình đạo hàm riêng phức tạp hệ phương trình vi phân thơng thường phụ thuộc vào z hoặcτ [61] Sự phát triển động học q trình tán xạ kếthợp mơ số hình 3.4 3.2.2 Quá trình phát triển động học hệ tươngtácRamankếthợp thuận Chúng giả sử xung Stokes mầm dạng Gaussian ES có độ rộng 15ns truyền chiều với xung bơm EP có độ rộng 15ns với kếthợp phân tử ρ12 mơitrườngkhí hoạt chất Raman H2 chứalõirỗngsợiquangtử HC-PCFs Mất mát tuyến tính HC-PCFs tần số Stokes tần số bơm cực thấp 51 γS = γ P 0.01 dB/m [62]; thời gian hồi phục nghịch đảo mật độ T1 = 1000ns; thời gian tắt dần kếthợp phân tử T2=5ns; áp suất khí H2 1bar điều chỉnh đưa vào lõisợi quang; số phân tử chuẩn hóa N=1; n0= -1 Trongnghiêncứu chúng tôi, sợiquang HC-PCFs nghiêncứu tán xạ Raman ngược kếthợp mục 3.1, có bán kính lõi r= 5µm, chiều dài 1.4m Cửa sổ truyền phổ thiết kế cho cho phép tần số bơm ωP tần số Stokes bậc ωS, tính chất ưu việt cho phép ta loại ảnh hưởng hiệu ứng Stokes bậc cao trình tạo anti-Stokes Hằng số truyền sóng tín hiệu Stokes sóng bơm β S = 5.5 106 m −1 ; β P = 5.9 106 m −1 Biên độ xung nhỏ ES= 0.01.EP, cường độ liên kết ( Raman κ1* = 7.4 10−8 m V2 ) Mật độ khí H trạng thái orthogonal-H 62% ỏ nhiệt độ phòng 52 Cường độ tổng Cường độ chuẩn hóa Trường bơm Trường Stokes Trườngkếthợp a) Thời gian (ns) Cường độ chuẩn hóa Cường độ tổng b) Trường bơm Trường Stokes Trườngkếthợp Thời gian (ns) Cường độ chuẩn hóa Cường độ tổng c) Trường bơm Trường Stokes Trườngkếthợp Thời gian (ns) Cường độ tổng Cường độ chuẩn hóa Trường bơm d) Trường Stokes Trườngkếthợp Thời gian (ns) Hình 3.4: Sự phát triển trình tươngtácRamankếthợp thuận ba trường bơm Stokes kếthợp 53 Trên hình hình 3.4 phát triển cấu trúc thời gian ba trường xung bơm – Stokes – kếthợp vị trí khác dọc theo sợiquang HC-PCFs: a) z=0.5m; b) z=1m; c) z=2m; d) z=4m Sự phát triển gia tăng cường độ trường Stokes với giảm cường độ cường độ trường bơm dọc theo sợiquang gây trao đổi lượng hai trường bơm Stokes Trong trình khảo sát trao đổi tươngtáctrường bơm trường Stokes, lượng sóng bơm gần chuyển cho lượng sóng Stokes (hiệu suất xấp xỉ đạt 80%) Như khảo sát trình tươngtác tán xạ Ramankếthợp cao mơitrườngkhí H2 theo hai cấu hình ngược thuận nhờ sử dụng tính chất ưu việt sợiquangtửlõirỗng HC-PCFs Đối với trình động học Ramankếthợp ngược chúng tơi nhận thấy có xuất chuỗi xung đồng ngược tạo từ xung ‘đơn’, giới hạn tươngtác tiệm cận chuỗi xung bị nén ngược trở thành chuỗi soliton đồng Trong trình tán xạ Raman thuận kếthợp cao hiệu xuất chuyển đổi tần số cao, đạt xấp xỉ 80% Kết mô sử dụng để định hướng cho thí nghiệm tạo soliton dịch chuyển tần số sóng hiểu rõ chất vật lý trình tươngtác phức tạp tươngtác tán xạ Ramankếthợp cao 54 KẾT LUẬN Trong luận văn thực số cơng việc sau: Giới thiệu, phân tích tượng tán xạ Raman sử dụng cách tiếp cận cổ điển lượng tử để mô tả tươngtác ánh sáng - vật chất dựa nguồn gốc vật lý trình tán xạ Raman Ở đây, lý thuyết thiết lập cách dẫn phương trình mơ tả q trình tán xạ Ramantừtự phát tới cưỡng Trong đó, hình thức luận cổ điển giúp ta có hình dung trực quan, ngược lại hình thức luận lượng tử cung cấp tranh vật lý đầy đủ q trình tán xạ Raman Mơ tả phân tích chế dẫn sóngánh sáng sợi tinh thể quangtử (PCFs) Sơ đồ truyền sóng quang học sử dụng để phân tích so sánh với ống dẫn sóng thơng thường Sau đó, chúng tơi phân tích giới thiệu sợi HC-PCFs dẫn sóng có dải truyền hẹp Cuối cùng, so sánh hiệu suất tươngtác phi tuyến ánh sáng – khí hoạt chất HC-PCFs với cấu hình truyền thống khác Tơi sử dụng đặc tính vượt trội sợiquangtửlõirỗng HC-PCFs để bước đầu nghiêncứu trình phát triển động học, hiệu ứng phức tạp tán xạ Ramankếthợpmơitrườngkhí H2 mà hệ dẫn quang khác khó tiếp cận.Nghiên cứu tiến hành theo hai cấu hình khơng gian là: tán xạ Raman cưỡng ngược (BSRS) tán xạ Raman cưỡng thuận (FSRS thơng thường) mơitrườngkhí H2 đổ lõisợiquang HC-PCFs Đối với cấu hình khơng gian thứ hệ phương trình mơ tả BSRS lời giải gần tiệm cận dẫn cho tươngtác ngược kếthợp ba sóng: sóng bơm, sóng Stokes truyền ngược sóng kết hợp.Kết tạo chuỗi dao động kếthợptừ xung ‘đơn’ ban đầu Trong giới hạn tiệm cận chuỗi dao động tín hiệu Stokes trở thành chuỗi xung soliton thời gian đồng mơitrườngkhí Hydrogen chứasợiquangtửlõirỗng HC-PCFs Đối với cấu hình thứ hai chúng tơi tính đến thay đổi theo thời gian mật độ nghịch đảo nguyên tử dao động Cấu trúc phát triển động học phức tạp trường bơm, Stokes kếthợp mô tả chi tiết trực quan.Kết mô giúp ta hiểu rõ 55 chất vật lý trình tươngtác lựa chọn thông số tối ưu cho phát tần số Stokes 56 TÀI LIỆU THAM KHẢO [1] C.V.RamanandK.S.Krishnan.“ANewTypeofSecondaryRadiation.”In:Nature 121.3048 (1928), pp 501–502 (cit on pp 1, 17) [2] R.W.Boyd.NonlinearOptics.AcademicPress,2008(cit.onpp.1,12,17,20,26–28) [3] E.J Woodbury and W.K Ng In: Proc IRE 50 (1962), p 2347 (cit on pp 2,55) [4] Y.R.ShenandN.Bloembergen.“TheoryofStimulatedBrillouinandRamanScat- tering.” In: Physical Review 137 (1965), p 1787 (cit on pp 2, 14,23) [5] A.Abdolvand.CoherentRamanInteractioninGas-FilledHollow-CorePhotonic CrystalFibers.PhDthesis.Friedrich-Alexander-UniversitaetErlangen-Nuărnberg, 2011 (cit on pp 2, 4, 14, 23, 26, 30, 32, 41, 45, 47, 57,66) [6] M D Duncan, R Mahon, L L Tankersley, and J Reintjes “Transient stimulated Raman amplification in hydrogen.” In: J Opt Soc Am B (1988), pp 37–52 (cit on pp 2,56) [7] P Rabinowitz, A Kaldor, R Brickman, and W Schmidt “Waveguide H2 Raman laser.” In: Applied Optics 15 (1976), pp 2005–2006 (cit on pp 3, 57) [8] E Marcatili and R Schmeltzer “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers.” In: The Bell System Technical Journal 43 (1964), 17831809 (cit on pp 3, 48, 50, 51) [9] P St.J Russell “Photonic Crystal Fibers.” In: Journal of Lightwave Technology 24 (2006), pp 4729–4749 (cit on pp 3, 40, 47, 54,68) [10] P St.J Russell “Photonic Crystal Fibers.” In: Science 299 (2003), pp 358–362 (cit on pp 3, 40,41) [11] R F Cregan, B J Mangan, J C Knight, T A Birks, P St.J Russell, P J Roberts, and D C Allan “Single-Mode Photonic Band Gap Guidance of Light in Air.” In: Science 285 (1999), pp 1537–1539 (cit on pp 4,57) [12] F.Benabid,J.C.Knight,G.Antonopoulos,andP.St.J.Russell.“StimulatedRaman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber.” In: Science 298 (2002), pp 399–402 (cit on pp 4, 55,57) 57 [13] Wang, C.-S., Theory of stimulated Raman scattering Physical Review, 1969 182(2) [14] Hellwarth, R., Theory of stimulated Raman scattering Physical Review, 1963 130(5): p 1850 [15] N Butcher & D.Cotter, (1990), The elements of Nonlinear Optics, Cambridge University Press [16] G.H.He, S.H Liu, (1999), “Physics of nonlinear optics”, World Scientific [17] E.G Sauter, (1996), Nonlinear Optics, John Willey & sons, Inc New York [18] R W Boy, Nonlinear Optics, Acadimic Press Inc (1992)]: [19] P W Milonni and J H Eberly Lasers John Wiley & Sons, 1988 (cit on p.27) [20] W Kolos and L Wolniewicz “Polarizability of the Hydrogen Molecule.” In: J Chem Phys 46 (1967), p 1426 (cit on pp 29,75) [21] D A Long The Raman Effect John Wiley & Sons, Ltd, 2002 (cit on pp 29,75) [22] M.G Raymer and I A Walmsley The Quantum Coherence Properties of Stimulated Raman Scattering Progress in Optics XXVIII, E.Wolf, 1990, pp 181–270 (cit on pp 26, 30, 71,74) [23] Saleh, B.E and M.C Teich, Fundamentals of photonics Chapter 9, Vol 32 2007: Wiley-Interscience Hoboken, NJ [24] Russell, P., Photonic crystal fibers Science, 2003 299(5605): p 358-362 [25] Yeh, P., A Yariv, and E Marom, Theory of Bragg fiber JOSA, 1978 68(9): p 1196- 1201 [26] Russell, P.S.J., Photonic-crystal fibers Journal of lightwave technology, 2006 24(12): p 4729-4749 [27] Couny, F., et al., Generation and photonic guidance of multi-octave optical-frequency combs Science, 2007 318(5853): p 1118-1121 [28] Benabid, F., et al., Ultrahigh efficiency laser wavelength conversion in a gas-filled hollow core photonic crystal fiber by pure stimulated rotational Raman scattering in molecular hydrogen Physical review letters, 2004 93(12): p 123903 [29] Pearce, G., Plane-wave methods for modelling photonic crystal fibre 2008 58 [30] Abdolvand, A., et al., Solitary Pulse Generation by Backward Raman Scattering in H2-Filled Photonic Crystal Fibers Physical review letters, 2009 103(18): p 183902 [31] Nazarkin, A., et al., Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers Physical review letters, 2010 105(17): p 173902 [32] Chugreev, A., et al., Manipulation of coherent Stokes light by transient stimulated Raman scattering in gas filled hollow-core PCF Optics Express, 2009 17(11): p 8822-8829 [33] Benabid, F., et al., Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber Science, 2002 298(5592): p 399-402 [34] Maier, M., W Kaiser, and J Giordmaine, Backward stimulated Raman scattering Physical Review, 1969 177(2): p 580 [35] Jacobs, R.R., et al., High‐efficiency energy extraction in backward‐wave Raman scattering Applied Physics Letters, 1980 37(3): p 264-266 [36] Grasyuk, A.Z., et al., Compression of light pulses by stimulated Raman scattering without a frequency shift Soviet Journal of Quantum Electronics, 1989 19(8): p 1045 [37] Sentrayan, K., A Michael, and V Kushawaha, Intense backward Raman lasers in CH and H Applied optics, 1993 32(6): p 930-934 [38] Schillinger, H and K Witte, Raman compression of iodine laser pulses JOSA B, 1993 10(6): p 1040-1049 [39] Islam, N.R and K Sakuda, Wave-front reconstruction by backward-stimulated Raman scattering in a multimode graded-index optical fiber JOSA B, 1997 14(11): p 3238-3241 [40] Murray, J., et al., Raman pulse compression of excimer lasers for application to laser fusion Quantum Electronics, IEEE Journal of, 1979 15(5): p 342-368 [41] Malkin, V., G Shvets, and N Fisch, Fast compression of laser beams to highly overcritical powers Physical review letters, 1999 82(22): p 4448-4451 59 [42] Ren, J., et al., A new method for generating ultraintense and ultrashort laser pulses Nature Physics, 2007 3(10): p 732-736 [43] Trines, R., et al., Simulations of efficient Raman amplification into the multipetawatt regime Nature Physics, 2010 7(1): p 87-92 [44] Maier, M., W Kaiser, and J Giordmaine, Intense light bursts in the stimulated Raman effect Physical review letters, 1966 17(26): p 1275-1277 [45] J.A.Armstrong, S.S Jha, and N.S.Shiren, 1970 IEEE J Quantum Elec 123 [46] D J Kaup, A Reiman, “Space-time evolution of nonlinear three-wave interactions I interaction in a homogeneous medium,” Rev Mod Phys 51, 275–309 (1979) [47] K Nozaki and T T Taniuti, “Propagation of solitary pulses in interactions of plasma waves”J Phys Soc Jpn Vol.34, No.3(1973) [48] Hae June Lee, Jincheol Kim and Hyyong Suk, “Solitary wave generation by two counter-propagating laser pulses in a plasma” Journal of the Korean Physical Society, Vol 44, No.5, pp 1246 (2004) [49] V M Malkin, G Shvets, and N J Fisch, “Fast Compression of Laser Beams to Highly Overcritical Powers” Phys Rev Lett 82, 4448,(1999) [50] Stefano Trillo“Bright and dark simultons in second-harmonic generation”V.21, No 15/ Opt Lett.(1996) [51] A Picozzi and M Haelterman, “Spontaneous formation of symbiotic solitary waves in a backward quasi-phasematched parametric oscillator,” Opt Lett 23, 1808–1810 (1998) [52] A Degasperis, M Conforti, F Baronio, and S Wabnitz, “Stable control of pulse speed in parametric three-wave solitons,” Phys Rev Lett 97, 093901 (2006) [53] M.F Saleh, W Chang, P Hoelzer, A Nazarkin, J C Travers, N Y Joly, P St.J Russell, and F Biancalana, Phys Rev Lett 107, 203902 (2011) [54] M.Ziemienczuk, A M Walser, A Abdolvand, and P St J Russell, JOSA B, Vol 29, Issue 7, pp 1563-1568 (2012) 60 [55] Nazarkin, A., A Abdolvand, and P.S.J Russell, Optimizing anti-Stokes Raman scattering in gas-filled hollow-core photonic crystal fibers Physical Review A, 2009 79(3): p 031805 [56] C.R Menyuk, D.Levi, P Winternitz “Self-Similarity in stimulated Raman scattering”, Phys Rev Lett 69, No.21 (1992) [57] V M Malkin, G Shvets, and N J Fisch, “Fast Compression of Laser Beams to Highly Overcritical Powers” Phys Rev Lett 82, 4448,(1999) [58] Raymer, M and J Mostowski, Stimulated Raman scattering: unified treatment of spontaneous initiation and spatial propagation Physical Review A, 1981 24(4): p 1980 [59] Raymer, M., I Walmsley, and E Wolf, Progress in Optics XXVIII Chapter 3,1990 [60] Nazarkin, A., Abdolvand, A., Chugreev, A.V and Russell, P St.J., 2010a, “Direct observation of self-similarity in evolution of transient stimulated Raman scattering in gas-filled photonic crystal fibers,” Phys Rev Lett 105, 173902 [61] D L Bobroff and H A Haus, “Impulse Response of Active Coupled Wave Systems” J Appl Phys 38, 390(1967) [62] V.A Gorbunov, “Formation and amplification of uitrashort optical pulses as a result”,Sov J Quant Electron 14,1066 (1984) 61 ...ĐẠI HỌC THÁI NGUYÊN TRƯỜNG ĐẠI HỌC KHOA HỌC NGUYỄN THỊ THU TRANG NGHIÊN CỨU TƯƠNG TÁC RAMAN KẾT HỢP TRONG MƠI TRƯỜNG KHÍ ĐƯỢC CHỨA BỞI SỢI QUANG TỬ LÕI RỖNG Chuyên ngành: Quang học Mã số: 8.44.01.10... 3:TƯƠNG TÁC TÁN XẠ RAMAN KẾT HỢP THUẬN VÀ NGƯỢC TRONG MƠI TRƯỜNG KHÍ H2 ĐƯỢC CHỨA BỞI HC-PCFs 42 3.1 Tán xạ Raman cưỡng ngược kết hợp 43 3.1.1 Hệ phương trình tương tác ba sóng kết. .. xạ Raman cưỡng FSRS Tán xạ Raman cưỡng thuận BSRS Tán xạ Raman cưỡng ngược HC-PCFs Sợi tinh thể quang tử lõi rỗng PGB-PCFs Sợi dẫn sóng hẹp lõi rỗng Kagomé-PCFs Sợi dẫn băng rộng lõi rỗng TIR Sợi