Download full Solutions Manual Digital & Analog Communication Systems (8th Edition) version (Script + Answers) at: https://getbooksolutions.com/ https://getbooksolutions.com/download/solutions-manual-digital-analog-communicationsystems-8th-edition-answer-and-script Example 1_01: % File: Example1_1.m for Example 1-1 clear; % hr is the receiving antenna height in feet % ht is antenna height in feet % dr is distance to the horizon for the receiving antenna % dt is distance to the horizon for the transmitting antenna % d is LOS distance between the receiving and transmitting antennas % Select a value for the height(ft) of the Receiving Antenna, hr hr = 5; dr = sqrt(2*hr); ht = 0:10:1000; dt = sqrt(2*ht); d = dr +dt; plot(ht,d); text(710,22,'hr=') text(760,22,num2str(hr)) xlabel('Transmitting Antenna Height in feet'); ylabel('LOS distance in miles'); title('Distance for LOS Propagation'); grid; % Select a print-out value for the transmitting antenna height, htt htt = 612.5; dtt = sqrt(2*htt); dfix = dr +dtt; https://getbooksolutions.com/ fprintf('\n\nFor a Receiving Antenna Height of %6.2f',hr); fprintf(' ft\n'); fprintf('and a Transmitting Antenna Height of %6.2f',htt); fprintf(' ft\n'); fprintf('\nThe LOS distance is %6.2f',dfix); fprintf(' miles\n'); fprintf('\nSee the Window for a plot of the LOS as a\n'); fprintf('function of the Transmitting Antenna Height for a'); fprintf('\nReceiving Antenna Height of %6.2f',hr); fprintf(' ft\n\n'); SUB https://getbooksolutions.com/ Example: 2.04 % File: Example2_04.m for Example 2-4 % This example plots Eq (2-44) where % the second term is negligible for positive % frequences if fo is sufficiently large % The Magnitude-Phase Spectral Functions % will be plotted for the case of positive frequencies % The Magnitude function will be plotted in dB units % The Phase function will be plotted in degree units clear; T = 2; fo = 500; f = (fo-50):1:(fo+50); for (k = 1:101) W(k) = (T/2j)*1/(1+2j*pi*T*(f(k)-fo)); end; B = log(W); WdB = (20/log(10))*real(B); Theta = (180/pi)*imag(B); subplot(211); plot(f,WdB); xlabel('f'); ylabel('W(f) in dB'); grid; https://getbooksolutions.com/ subplot(212); plot(f,Theta); xlabel('f'); ylabel('Angle of W(f) in degrees'); grid; SUB P2_25 % File: P2_25.m clear; M = 8; N = 2^M; n = 0:N-1; T = 300; dt = T/N; tk = n*dt-100; % Creating time waveform w = u_step(tk,5)-u_step(tk,75); for (i = 1:length(w)) w(i) = w(i) * (sin(2*pi/512*tk(i)) + sin(70*pi/512*tk(i))); end; % Approximating the Fourier Integral using the FFT W = dt*fft(w); fn = n/T; fs = 1/dt; fprintf('\nSee Window for plot.\n'); subplot(211); axis([0 100 -2 2]); plot(tk,w); title('Time waveform'); xlabel('t in sec >'); ylabel('w(t)'); axis; subplot(212); plot(fn,abs(W)); title('MAGNITUDE SPECTRUM from 0 to fs'); https://getbooksolutions.com/ xlabel('f in Hz >'); ylabel('Magnitude of W(f)'); subplot(111); SUB https://getbooksolutions.com/ https://getbooksolutions.com/