ĐỀ THITHỬ ĐẠI HỌC 2009 Đề 14 Câu I: Cho hàm số 1x2 1x y + +− = (C) 1. Khảo sát và vẽ đồ thị hàm số. 2. Viết phương trình tiếp tuyến với (C), biết rằng tiếp tuyến đó đi qua giao điểm của đường tiệm cận và trục Ox. Câu II: 1. Giải phương trình: 1xcos 12 xsin22 = π − 2. Tìm m để phương trình: m54x6x4x23x =+−−+−−− có đúng 2 nghiệm Câu III: Cho đường thẳng d: 1 1z 1 2y 2 3x − + = + = − và mặt phẳng (P): 02zyx =+++ 1. Tìm giao điểm M của d và (P). 2. Viết phương trình đường thẳng ∆ nằm trong (P) sao cho ∆ ⊥ d và khoảng cách từ M đến ∆ bằng 42 . Câu IV: 1. Tính ( ) ∫ − − = 1 0 2 dx 4x 1xx I 2. Cho a, b là các số dương thỏa mãn ab + a + b = 3. Chứng minh: 2 3 ba ba ab 1a b3 1b a3 22 ++≤ + + + + + . Câu Va (cho chương trình THPT không phân ban): 1. Chứng minh với mọi n nguyên dương luôn có ( ) ( ) ( ) 0C1C1 .C1nnC 1n n 1n 2n n 2n 1 n 0 n =−+−++−− − − − − . 2. Trong mặt phẳng Oxy cho điểm A(2, 1) lấy điểm B thuộc trục Ox có hoành độ x ≥ 0 và điểm C thuộc trục Oy có trung độ y ≥ 0 sao cho ∆ABC vuông tại A. Tìm B, C sao cho diện tích ∆ABC lớn nhất. Câu Vb (cho chương trình THPT phân ban): 1. Giải bất phương trình: ( ) 2 2 1 2 2 1 1 log 2x 3x 1 log x 1 2 2 − + + − ≥ . 2. Cho lăng trụ đứng ABCA 1 B 1 C 1 có đáy ABC là tam giác vuông aACAB == , AA 1 = a 2 . Gọi M, N lần lượt là trung điểm của đoạn AA 1 và BC 1 . Chứng minh MN là đường vuông góc chung của các đường thẳng AA 1 và BC 1 . Tính 11 BCMA V . Bài giải Câu I: 1. Khảo sát (Bạn đọc tự làm) 2. Giao điểm của tiệm cận đứng với trục Ox là − 0, 2 1 A Phương trình tiếp tuyến (∆) qua A có dạng += 2 1 xky (∆) tiếp xúc với (C) / x 1 1 k x 2x 1 2 x 1 k co ù nghieäm 2x 1 − + = + ÷ + ⇔ − + = ÷ + ( ) = + − += + +− ⇔ )2( k 1x2 3 )1( 2 1 xk 1x2 1x 2 Thế (2) vào (1) ta có pt hoành độ tiếp điểm là ( ) 2 1 3 x x 1 2 2x 1 2x 1 + ÷ − + = − + + 1 (x 1)(2x 1) 3(x ) 2 ⇔ − + = + và 1 x 2 ≠ − 3 x 1 2 ⇔ − = 5 x 2 ⇔ = . Do đó 12 1 k −= Vậy phương trình tiếp tuyến cần tìm là: 1 1 y x 12 2 = − + ÷ Câu II: 1. Giải phương trình: 1xcos 12 xsin22 = π − (1) (1) 1 12 sin 12 x2sin2 = π − π −⇔ 1 sin 2x sin 12 12 2 π π ⇔ − − = ÷ 12 cos 6 sin2 12 sin 4 sin 12 x2sin ππ = π + π = π −⇔ 12 5 sin 12 cos 12 x2sin π = π = π −⇔ ( ) 5 7 2x k2 hay 2x k2 k Z 12 12 12 12 π π π π ⇔ − = + π − = + π ∈ ( ) x k hay x k k Z 4 3 π π ⇔ = + π = + π ∈ 2. P/trình cho ( ) ( ) m94x64x14x24x =+−−−++−−−⇔ (1) ( ) ( ) m34x14x 22 =−−+−−⇔ m34x14x =−−+−−⇔ (1) đặt: 04xt ≥−= (1) m3t1t =−+−⇔ (∗) Phương trình cho có đúng 2 nghiệm ⇔ phương trình (∗) có đúng 2 nghiệm t ≥ 0 Vẽ đồ thị của hàm số ( ) 0t ,3t1ttf ≥−+−= Ta có ( ) ≥− ≤≤ ≤≤− = 3t neáu 4t2 3t1 neáu 2 1t0 neáu t24 tf y 4 2 0 1 2 3 x Từ đồ thị ta có ycbt ⇔ 2 < m ≤ 4 Cách khác m3t1t =−+−⇔ và t 0 ≥ { { { 0 t 1 1 t 3 t 3 hay hay m 4 2t m 2 m 2t 4 ≤ < ≤ ≤ > ⇔ = − = = − { 0 t 1 t 3 1 t 3 2 m 4 hay hay m 2 m 2 4 m 4 m t t 2 2 ≤ < > ≤ ≤ ⇔ < ≤ > = − + = = Do đó, ycbt ⇔ 2 < m ≤ 4 ( khi 2 < m ≤ 4 thì (∗) có đúng 2 nghiệm t 1 , t 2 thỏa 1 0 t 1≤ < và t 2 > 3 ) Câu III: 1. Tìm giao điểm M của đường thẳng d và mặt phẳng (P) Phương trình số của d: −−= +−= += t1z t2y t23x có VTCP ( ) 1,1,2a −= Thế vào phương trình (P): (3 + 2t) + (–2 + t) + (–1 – t) + 2 = 0 ⇒ t = –1⇒ M ( 1 ;- 3 ; 0) Mặt phẳng (Q) chứa d và vuông góc (P) có PVT [ ] ( ) 1,3,2n,an PQ −== Suy ra phương trình mặt phẳng (Q) chứa d và vuông góc (P) là: 2(x – 1) – 3(y + 3) + 1(z – 0) = 0 ⇔ 2x – 3y + z – 11 = 0 (Q) 2. Phương trình đường thẳng (d') hình chiếu của d lên mặt phẳng P là: d': { x y z 2 0 2x 3y z 11 0 + + + = − + − = có VTCP ( ) d' a 4;1; 5= − r ⇒ Phương trình tham số của d': x 1 4t y 3 t z 5t = + = − + = − Trên d' tìm điểm N sao cho MN = 42 Q P ∆ N M d d' Vì N ∈ d' ⇒ N(4t +1, –3 + t, – 5t) ( ) ( ) 2 2 2 2 MN 4t t 5t 42t 42= + + − = = 2 t 1 t 1⇒ = ⇔ = ± . t = 1 ⇒ N 1 (5, –2, –5) Đường thẳng ∆ 1 qua N 1 nằm trong (P), vuông góc d' có VTCP 1 P d' a n ,a ∆ = r r r ( ) ( ) 6;9; 3 3 2, 3,1= − − = − − . Vậy phương trình ∆ 1 : x 5 y 2 z 5 2 3 1 − + + = = − . t = –1 ⇒ N 2 (–3, –4, 5) Đường thẳng ∆ 2 qua N 2 nằm trong (P), vuông góc d' có VTCP ( ) 'd P a,na 2 = ∆ ( ) 3 2, 3,1= − − Vậy phương trình ∆ 2 : x 3 y 4 z 5 2 3 1 + + − = = − Câu IV: 1. Tính ( ) ∫∫ − − = − − = 1 0 2 2 1 0 2 dx 4x xx dx 4x 1xx I ( ) 2 1 1 1 2 2 2 2 2 0 0 0 d x 4 x 4 1 dx 1 dx 1 4 x 4 x 4 2 x 4 x 2 − = − + = − + ÷ − − − − ∫ ∫ ∫ 1 1 2 0 0 1 x 2 3 1 ln x 4 ln 1 ln 2 ln3 2 x 2 2 − = − − + = + − + 2. Từ giả thiết a, b > 0 và ab + a + b = 3. Suy ra: . ab 3 (a b)= − + , (a+1)(b+1) = ab +a +b + 1 = 4 bđt đã cho tương đương với 2 2 3 3a(a 1) 3b(b 1) 3 a b 1 2 (a 1)(b 1) a b + + + + + ≥ + − + + + ( ) ( ) 1 ba 3 ba 4 3 ba 4 3 2 3 ba 2222 − + ++++≥++⇔ ( ) ( ) ( ) 4 ba 12 ba3ba36ba4 2222 − + ++++≥++⇔ ( ) 2 2 12 a b 3 a b 10 a b ⇔ + − + − + ≥ + (A) Đặt x = a+b > 0 2 2 x (a b) 4ab 4(3 x)⇒ = + ≥ = − 2 x 4x 12 0 x 6hay x 2⇒ + − ≥ ⇒ ≤ − ≥ x 2⇒ ≥ ( vì x > 0) 2 2 2 x a b 2ab= + + 2 2 2 2 a b x 2(3 x) x 2x 6⇒ + = − − = + − Thế x như trên , (A) thành 2 12 x x 4 0 x − − + ≥ , với x≥ 2 3 2 x x 4x 12 0⇔ − + − ≥ , với x≥ 2 ( ) ( ) 2 x 2 x x 6 0⇔ − + + ≥ , với x≥ 2 (hiển nhiên đúng) Vậy bđt cho đã được chứng minh. Câu Va: 1. Với mọi n ∈ N ta có ( ) ( ) ( ) n n n 1n n 1n 1n1 n n0 n n C1xC1 .xCxC1x −+−++−=− − − − Lấy đạo hàm hai vế ta có ( ) ( ) ( ) 1n n 1n 2n1 n 1n0 n 1n C1 .xC1nxnC1xn − − −− − −++−−=− Cho x = 1 ta có ( ) ( ) 1n n 1n 1 n 0 n C1 .C1nnC0 − − −++−−= 2. Ta có A(2, 1); B(b, 0); C(0,c) với b, c ≥ 0 Ta có ∆ABC vuông tại A 0AC.AB =⇔ Ta có ( ) 1,2bAB −−= ; ( ) 1c,2AC −−= Do ∆ABC vuông tại A ( ) ( ) 01c2b2AC.AB =−−−−=⇒ ( ) 2 5 b005b2c2b21c ≤≤⇒≥+−=⇒−−=−⇔ Ta lại có ( ) ( ) 22 ABC 1c411b 2 1 AC.AB 2 1 S −++−== ( ) ( ) ( ) 12b2b4412b 2 1 S 222 ABC +−=−++−= vì 2 5 b0 ≤≤ nên SABC = (b – 2) 2 + 1 lớn nhất ⇔ b = 0 Khi đó c = 5. Vậy, ycbt ⇔ B(0, 0) và C(0, 5) Câu Vb: 1. Giải phương trình: ( ) 2 2 1 2 2 1 1 log 2x 3x 1 log x 1 2 2 − + + − ≥ (1) (1) ( ) ( ) 2 1 1xlog 2 1 1x3x2log 2 1 2 2 2 2 ≥−++−−⇔ ( ) ( ) 2 1 1xlog 2 1 1x3x2log 2 1 2 2 2 2 ≥−++−−⇔ ( ) ( ) 2 2 2 x 1 (x 1) log 1 2 1 (x 1)(2x 1) 2 x 1 x 2 − − ⇔ ≥ ⇔ ≥ − − − − ÷ (x 1) 2 (2x 1) − ⇔ ≥ − 3x 1 1 1 0 x 2x 1 3 2 − + ⇔ ≥ ⇔ ≤ < − 2. Chọn hệ trục Oxyz sao cho A(0,0,0); C(-a,0,0); B(0,a,0), A 1 (0,0, a 2 ) Suy ra a 2 M 0,0, 2 ÷ ÷ C 1 (-a,0, a 2 ) a a a 2 N , , 2 2 2 − ÷ ÷ và ( ) 1 BC a, a,a 2= − − uuuur ; a a MN , ,0 2 2 = − ÷ uuuur ; ( ) 2a,0,0AA 1 = Ta có: 0AA.MNBC.MN 11 == Vậy MN là đường vuông góc chung của hai đường thẳng AA 1 và BC 1 Ta có 1 2 MA a 0,0, 2 = ÷ ÷ uuuuur 2 MB a 0,1, 2 = − ÷ ÷ uuur 1 2 MC a 1,0, 2 = − ÷ ÷ uuuur Ta có 2 1 2 MA ,MB a ,0,0 2 = ÷ ÷ uuuuur uuur [ ] 2 2a MCMB,MA 3 11 =⇒ [ ] 12 2a MCMB,MA 6 1 V 3 11BCMA 11 == (đvtt) . ĐỀ THI THỬ ĐẠI HỌC 2009 Đề 14 Câu I: Cho hàm số 1x2 1x y + +− = (C) 1. Khảo sát và vẽ đồ thị hàm số. 2. Viết phương trình tiếp. 3x − + = + = − và mặt phẳng (P): 02zyx =+++ 1. Tìm giao điểm M của d và (P). 2. Viết phương trình đường thẳng ∆ nằm trong (P) sao cho ∆ ⊥ d và khoảng cách